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ABSTRACT
Our approach to automatically summarizing online mental health
posts could help counselors by reducing their reading time, enabling
quicker and more effective support for individuals seeking mental
health assistance. Neural text summarization methods demonstrate
promising performance owing to their strong pre-training proce-
dure. Random token/span masking technique is often relied upon by
existing pre-trained language models; an approach that overlooks
the importance of content when learning word representations. In
an attempt to rectify this, we propose using source and summary
alignments as a saliency signal to enhance the pre-training strategy
of language model for better representation learning of important
content, paving the way for a positive impact on the model fine-
tuning phase. Our experiments on a mental health-related dataset
for user post summarization (MentSum) reveal improved perfor-
mance, as evidenced by human evaluation metrics, surpassing the
current state-of-the-art system.
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1 INTRODUCTION AND RELATEDWORK
Social media platforms such as Reddit have become popular spaces
for people to discuss a range of topics, including mental health.
These forums are crucial for individuals seeking mental health sup-
port or advice. However, for mental health professionals navigating
and understanding the vast amount of user-generated content is
challenging [4, 9, 23, 26]. Creating summaries of these posts is not
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only a technical task but also a means to grasp the nuance aspects
of mental health more effectively [13, 20, 24, 33]. In this context,
summarization efforts aim to create concise, abstractive summaries,
known as tl;dr (Too Long; Didn’t Read), from user posts.

The majority of research in the mental health domain has pri-
marily concentrated on predictive tasks [6–8, 18, 22, 32]. However,
the development of the MentSum dataset, as introduced in [25], has
made the task viable. Building on this, [24] achieved the state-of-
the-art (SOTA) performance by implementing a curriculum-guided
abstractive summarizer on this dataset. In a broader context, pre-
trained language models [10, 16, 17, 30] have revolutionized NLP
by two-step process of pre-training and fine-tuning. Existing mod-
els [1, 2, 14] in the social media domain have primarily focused
on fine-tuning. However, none have focused specifically on pre-
training the language model for summarization-specific purposes
in the social media domain. Our work fills this gap by enhancing the
pre-training stage, identifying salient content, and masking it for
representation learning. Despite some work showing that further
pre-training on in-domain data can enhance model performance[12,
15, 29], none have considered content importance 1. Our work is
the first to incorporate content saliency in the pre-training stage
for the social media domain. We identify important content by
aligning it with the tl;dr summary, mask it, and have the pre-
trained language model (i.e., Bart) predict these masked spans.
This replaces Bart’s random text infilling pre-training objective
with masked important content. We then use this pre-trained model
to fine-tune the state-of-the-art summarizer, BART + R3F [2], for
mental-health social media summarization. The work that comes
closest to ours is Pegasus [30], which masks the top-m important
sentences. However, we diverge by using token alignments with the
summary as a measure of content saliency. Our evaluations reveal
our method outperforms the SOTA system in fluency, informative-
ness, and faithfulness, while also improving automatic evaluation
metrics. In summary, our contributions include proposing and eval-
uating a novel model that pre-trains the language model on masked
salient content over social media data to improve mental health
post summarization.

2 APPROACH
Aiming to improve important span representations (as defined
earlier), we replace Bart’s typical random masking approach with
salient span masking. We explain the steps in the following in more
detail.
Identification of salient spans. To identify the salient spans,
we employ two orthogonal methods to make alignments between

1In our framework, content importance in pre-training is defined as those spans of
text that are likely to be present in summary.
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BART Encoder BART Decoder

Honestly , it depends on what your expectations and skill level are ...

Honestly , it [MASK] on what your [MASK] and [MASK] are . <s> Honestly , it depends on what your 
expectations and skill level are .

Honestly , it depends on what your 
expectations and skill level are

Figure 1: An example sentence from the pre-training dataset. As shown, the important spans with varying lengths are first
selected, masked, and fed into the encoder. The autoregressive decoder then reconstructs the input text by predicting the
masked input spans.

users’ posts and their associated tl;dr summary. Specifically, we
frame the alignment problem as a sequence-tagging task, where
the post terms are tagged if they are copied into the tl;dr. Formally
written, let b = {𝑏0, 𝑏1, ..., 𝑏𝑛} be the binary tags over the post words
(excluding stop words) 2 x = {𝑥0, 𝑥1, ..., 𝑥𝑛} and tl;dr terms y =

{𝑦0, 𝑦1, ..., 𝑦𝑚}, with 𝑛 and𝑚 being the length of the user post and
tl;dr, respectively. To align the user post to the tl;dr, we denote
the word 𝑥𝑖 as copied if (1) it is included in the longest possible sub-
sequence of words 𝑠 = {𝑥𝑖− 𝑗 :𝑖;𝑖;𝑖+𝑘 , ( 𝑗 ≤ 𝑖, 𝑘 ≤ (𝑛−𝑖)) |𝑠 ∈ x, 𝑠 ∈ y},
and (2) there exists no earlier sequence 𝑢 with 𝑠 = 𝑢. While the
proposed method generates supervised labels for token masking,
it does not guarantee that enough labels will be generated due
to the abstractive nature of the pretraining dataset. To address
this issue, we identify frequently occurring spans across the data
collection and annotate their occurrence within each sample. Our
investigations show that around 32% of tokens (on average) are
identified as being part of the salient spans. 3
Pre-training Bart on salient spans.Our goal is to learn effective
representations of the salient content (i.e., odds-on-copied spans as
discussed in Section 2) for better summarization in the fine-tuning
stage. In this sense, after identifying and masking salient spans,
we pre-train the Bart model over the masked spans. A sample of
pre-training iteration is shown in Figure. 1. The Bart model 4 is
trained to generate the output sequence by predicting the masked
tokens within the input. We choose to pre-train the model using
text infilling pre-training objective, considering its effectiveness as
reported by Lewis et al. [16]. Our pre-training strategy, as well as
the associated pre-trained checkpoint, is referred to as SigBart,
which is short for Significant Bart.

2To increase the match between user post and summary, we use the lemmatization.
3Bart randomly masks 30% of tokens (default setting).
4We used bart-large as the initial checkpoint.

3 EXPERIMENTAL SETUP
The experimental setup is set to address the following research
questions;
- RQ1: Does pre-training on salient content/spans lead to improved
summaries in terms of automatic and qualitative metrics as com-
pared to the SOTA Bart + R3F model? 5 and

- RQ2: Does the proposed pre-training method lead to improve-
ments as compared to the existing baselines that differ in pre-
training and fine-tuning stages, in terms of rouge evaluation
metrics?

Datasets. We use Webis-TLDR-17[27] for pre-training 6, which
comprises 3.8M user posts and their paired tl;dr summaries. For
fine-tuning, we use MentSum [25] with over 24k mental-health
post, summary pairs. For more information on the datasets, please
refer to the respective papers.
Comparison.We compare our model with several extractive and
abstractive baselines as listed below. The Bart + R3F baseline is
for evaluating RQ1, and the rest for RQ2.
- CurrSum [24]: a SOTA curriculum-guided abstractive model
that exploits SuperLoss (a confidence-aware curriculum loss) as
a progressive training signal to enhance the learning efficiency
and performance of the summarization model.

- Bart + R3F [2]: a SOTA abstractive system that discourages
representation change during fine-tuning when possible without
hurting the system performance. In the experiment, we include
this model to assess the impact of SigBart’s pre-training strategy
in comparison to a scenario when it is not employed (i.e., RQ1).

- MatchSum [31]: an extractive summarizer that matches text
spans of source and summary in semantic space for selecting the
most important sentences in fine-tuning time.

5Note that the fine-tuning stage of both models is the same, and the only difference is
the pre-training stage to validate our hypothesis.
6The pre-training dataset comes from social media domain.



SigBart: Enhanced Pre-training via Salient Content Representation Learning for Social Media Summarization WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

Model Rg-1 (%) Rg-2 (%) Rg-L (%) BS (%)

SigBart (ours) 30.79* 9.41* 21.72* 86.69*
Bart + R3F [2021b] 29.66 8.78 21.25 85.79

(a)

CurrSum† [2022b] 30.16 8.82 21.24 86.32
MatchSum† [2020] 26.29 6.32 17.12 –
Pegasus [2020] 29.48 8.26 20.39 –
SocialPegasus 29.71 8.49 20.66 –
Bart† [2020] 29.13 7.98 20.27 –

(b)
Table 1: Results for Rouge (F1) and Bertscore (F1) metrics comparing our SigBart model with (a) Bart + R3F (RQ1); (b)
existing baseline systems (RQ2), on the MentSum dataset. indicates statistical significance (paired t-test, 𝑝 < 0.05) against Bart
+ R3F. † shows the results reported from prior works onMentSum [24, 25].

- Bart [16]: an abstractive model that pre-trains the encoder-
decoder framework for summarization task.

- Pegasus [30]: an abstractive model that adds a new pre-training
objective where gap sentences are masked to be predicted by the
remaining sentences in the input document.

- SocialPegasus: a Pegasus model that we have pre-trained on
the same pre-training dataset as SigBart with Pegasus’s pre-
training objectives. The purpose of including this baseline is to
compare the effectiveness of our pre-training approach compared
to the Pegasus pre-training.

Implementation.We use Huggingface Transformers [28] to imple-
ment SigBartmodel and the Bart + R3F model for fine-tuning. We
pre-train the Bart-large model on dual NVIDIA RTX A6000 GPUs
for 7 days, 5 epochs, with a learning rate of 3𝑒 − 5 and warm-up
steps of 2000. For fine-tuning, we fix the learning rate to 3𝑒 − 5with
a weight decay of 0.01. We fine-tune the Bart + R3F and SigBart
for 8 epochs with intervals of 0.5 epoch for validation, and use the
checkpoint with the highest rouge-1 score in inference time.

4 RESULTS AND DISCUSSION
4.1 Automatic evaluation.
Table 1 presents experimental results with respect to automatic
evaluation metrics over MentSum dataset. In what follows, we
present the results and discussions around each research question.
RQ1: As demonstrated in Table 1 (a), SigBart improves rouge-1
by 3.8%, rouge-2 by 6.6%, rouge-l by 2.2%, and Bertscore by 1.1%
in comparison to the Bart + R3Fmodel. As the fine-tuning stage of
these two models are the same, with difference being on pre-trained
stage, this improvement backs our hypothesis on effectiveness of
learning salient representations during the pre-training stage.
RQ2: Table 1 (b) provides the automatic evaluation of other exist-
ing baselines that have different pre-training and fine-tuning. The
results indicate that SigBart outperforms these existing systems,
including the best performing baseline (i.e., CurrSum) by relative
improvements of 2.1% (rouge-1), 6.3% (rouge-2), 2.3% (rouge-l),
and 0.5% (Bertscore). Moreover, a comparative analysis of Pega-
sus and SocialPegasus shows only a marginal improvement, indi-
cating that pre-training Pegasus on short documents, akin to those

System Flue. Info. Faith.

Bart + R3F 4.43 3.92 4.26
agr. rate (%) 47 52 53
SigBart 4.51 4.18 4.41
agr. rate (%) 51 54 54

Relative imp. (%) +1.8 +6.4 +3.4
Table 2: Human evaluation scores, agreement rates, and rela-
tive improvement of SigBart overBart + R3F, onMentSum.

found in social media, may not lead to considerable benefits. So-
cialPegasus, despite its approach, still lags behind SigBart model.
This discrepancy could potentially be attributed to the divergence
between the pre-training strategies of SigBart and SocialPegasus,
the latter of which adopts a similar but deviating pre-training.

4.2 Human evaluation.
We undertook a human evaluation to contrast SigBart with the
Bart + R3F baseline (i.e., the baseline with the same fine-tuning,
yet different pre-training), using three qualitative metrics: Fluency
(is the summary easy to read and understand?), Informativeness
(does the summary provide key information about the user post?),
and Faithfulness (is the summary’s information supported by the
user post?). The evaluation task was double-blinded, involving 50
randomly picked cases from the MentSum’s test set. To minimize
bias, we randomized the order of the summaries for evaluation. For
the scoring process, each case was independently reviewed by two
assessors, scoring each sample from 1 (worst) to 5 (best) based on
these metrics. A third assessor resolved any scoring differences
exceeding 2 points.

As presented in Table 2, SigBart model consistently surpasses
the baseline in all qualitative metrics. The improvements are specif-
ically prominent in the informativeness and faithfulness metrics,
presenting relative improvements exceeding 6% and 3%, respec-
tively. This highlights the effectiveness of the SigBart-specific
pre-training method in improving the qualitative metrics. We also
attribute gains in fluency to the augmented transferability achieved
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User-written Baseline-generated SigBart-generated

spooned a girl i like and didn’t make a
move cause ...

cuddled with girl i like, got blocked by
her best friend.

cuddledwith a girl i like, she was really
close to me and i didn’t make a move.

rouge (%): (19.35 / 13.79 / 19.35) rouge (%): (71.79 / 37.84 / 51.28)
Human: (4, 2, 3) Human: (3, 4, 5)

i went to walmart with $1000 in cash in
my wallet, got distracted by some dumb
sh*t while meandering around and some-
how lost my wallet and now i’m a broke
*****.

went to walmart with my wallet in a
pamphlet holder caddy, lost it in the clear-
ance aisle and now i’m out $1000 and
my credit card.

i lost my wallet at walmart and now
i’m out $1000.

rouge (%): (57.63 / 24.56 / 37.29) rouge (%): (45.45 / 23.81 / 36.36)
Human: (4, 3, 3) Human: (4, 2, 5)

made a lunch lady believe i’ve immi-
grated to study and stay at my cousins
because of how awkward the situation
was when in fact i’ve lived in england
my whole life.

made a lady think i’ve come over to eng-
land to study and am staying at my
cousins when in fact i was born in eng-
land.

i made a stranger think i’ve been living
in england for my whole life when i
was born in saudi.

rouge (%): (64.41 / 38.60 / 61.02) rouge (%): (51.86 / 23.08 / 37.04)
Human: (4, 4, 4) Human: (3, 3, 2)

Table 3: Three samples of the the user-written, baseline (Bart + R3F) generated, and SigBart-generated tl;dr summaries.
The text that is unfaithful to the post is in Gray and the salient information that is picked up by the summarization systems
is shown in Bold. We further show the rouge evaluation results for each system summary (rouge-1, rouge-2, rouge-l), as
well as the human-assigned scores (Fluency, Informativeness, Faithfulness) below each generated summary. The user post is
partially shown to preserve user privacy.

by continued pre-training on in-domain data collections [12]. Co-
hen’s inter-rater agreement indicates moderate agreement.

5 ERROR ANALYSIS
Evaluating underperformed cases, we found that SigBart generates
text spans by muddling different source materials, which is a press-
ing issue of SOTA abstractive summarizers [5, 19], requiring them to
deal with complex reasoning over user post. For instance, SigBart
unfaithfully produces phrase “...i was born in saudi...” by
attending to “born” and “saudi” from two different regions of the
user post. Furthermore, SigBart misses producing segments that
are not directly mentioned within the user post, but inferred from
it. This is a common phenomenon in social media summarization as
also denoted by Sotudeh et al. [25], and it remains yet an open ques-
tion for pre-trained summarization models. For example, we have a
phrase “...saved 317 gb worth of data...” in the gold sum-
mary, where “317” is inferred from the user post; neither SigBart
nor Bart + R3F infers “317” to produce in the summary. Lastly,
the current aligner employs exact matching between the user post
and the summary, leading to certain limitations. For instance, a
phrase like “...saw food being wasted...” in the gold sum-
mary does not align with “...seeing perfectly good food
thrown away...” in the user post. Similarly, “...meandering

around...” in the gold summary does not align with “...start
walking away...” in the user post. Despite these phrases convey-
ing similar meanings, they are not detected as alignments by the
current system. Future research could address this by employing
semantic textual alignment methods, as suggested by Ernst et al.
[11]. Examples of generated summaries on two samples are shown
in Table 3.

6 ETHICS AND PRIVACY
In compliance with similar research practices on health domain [3,
21], Our research strictly adhered to ethical standards by using
only anonymized data, ensuring no identification and exploration
of users. We maintained stringent data security measures, with
access restricted to the research team, to uphold confidentiality
and integrity in our mental health study. While our automated
summarization system advances state-of-the-art capabilities, it is
crucial to acknowledge the potential for misrepresentation or over-
simplification of complex mental health narratives within the posts.
Given the sensitivity of such topics, special care must be exercised
when implementing these technologies on mental health-related
datasets at a production scale, ensuring that their application does
not compromise the nuanced understanding of mental health issues.
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