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ABSTRACT

Automating the process of clinical text summarization could save
clinicians’ reading time and reduce their fatigue, acknowledging
the necessity of human professionals in the loop. This paper ad-
dresses clinical text summarization, aiming to incorporate ontology
concept relationships via a Graph Neural Network (GNN) into the
summarization process. Specifically, we propose a model, extending
Bart’s encoder-decoder framework with GNN encoder and multi-
head attentional layers for decoder, producing ontology-aware sum-
maries. This GNN interacts with the textual encoder, influencing
their mutual representations. The model’s effectiveness is validated
on two real-world radiology datasets. We also present an ablation
study to elucidate the impact of varied graph configurations and
an error analysis aimed at pinpointing potential areas for future
improvements.
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1 INTRODUCTION AND RELATEDWORK

Clinical notes summarization is the process of extracting relevant
information from patient’s clinical notes and generating a summary
that captures themost important aspects of the patient’s medical his-
tory and current condition. The increasing amount of unstructured
data in electronic health records (EHRs) such as Radiology reports
has led to the need for efficient methods to extract and summarize
important information from clinical notes. Radiology reports are a
common type of clinical notes, documenting the observations made
by radiologists during the imaging process. These reports typically
consist of multiple sections, including the findings and impression
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sections. The findings section describes the results of the imaging
examination in detail. The impression provides the overall inter-
pretation of the findings and is of paramount importance to other
practitioners, such as referring physicians and surgeons, as it helps
them make informed decisions regarding patient care. Automating
the process of generating impression given the findings has be-
come increasingly important and useful in recent years, attracting
attention from researchers [6, 7, 12, 16, 23, 24]. In this sense, an
automated summarization system would not only save clinicians’
time and reduce fatigue [4, 9] but also provide summaries that can
be easily reviewed and edited by the practitioners.

Traditional clinical summarization methods relied on rule-based
methods, information extraction techniques, and machine learn-
ing strategies [14]. Recent literature, however, emphasizes the use
of deep neural network techniques for more effective summariza-
tion. For instance, Zhang et al. [23] proposed to encode a separate
section of the report (i.e., Background) to aid the summarization
system in the decoding process. Moreover, MacAvaney et al. [12]
proposed the recognition of ontological concepts in the findings
text and incorporating them to enhance the decoder’s performance.
Sotudeh et al. [16] retrieved medical ontologies from findings,
and then incorporated the concept of ontology saliency for im-
proved summarization. Despite these advancements, our proposed
method distinguishes itself by extending ontological concepts with
their attributes from the knowledge base, a facet unaddressed in
prior studies. Also, recent efforts aimed at enhancing the factual
accuracy of generated impressions [13, 24, 25] suggest promising
avenues for the further refinement of this procedure. In summary,
our contributions are twofold:

• Proposing a novel graph-based clinical report summarizer
leveraging a graph encoder to reveal pertinent ontology
relationships.

• Evaluating the proposed system, conducting an ablation
study, and error analysis of the system-generated results,
thereby laying the groundwork for future improvements.

2 GRAPH-BASED CLINICAL

SUMMARIZATION

Overview. This work examines the integration of external onto-
logical resources into summarization framework. The methodology
involves the construction of a graph featuring ontological concepts
from radiology reports, enriched by associated attributes retrieved
from the ontology resource, all of which are transformed into nodes.
These nodes interconnect as edges, representing parent and child
concepts, definitions, and synonyms. This graph is then fed into the
Graph Neural Network (GNN) [19] module, yielding an encoded
representation for each node. An “interaction node” is employed to
facilitate the knowledge sharing between the GNN and Bart [10]
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Figure 1: The detailed illustration of our model. As indi-

cated, our model adds two separate modules, namely GNN

Encoder [19] and Graph Multi-head Attention layers [18]

within the decoder to the standard Transformers network.

encoder. This strategy promotes information exchange between the
two modules, leading to updates in node representations that the
decoder subsequently applies in hierarchical decoding. The general
architecture of our model is shown in Figure 1. We name our model
“Ontology Graph-based Bart”, abbreviated as OntG-Bart.

Graph construction. We extract clinical concepts from the RadLex
ontology1 base given the findings text; then we extend each con-
cept with its attributes including: (1) definition, (2) child concepts,
(3) parent concept, and (4) synonym(s). We then create a graph
G(V, E) for each clinical note, where G comprises 𝑁 nodes, each
depicting an ontology concept and any related attributes. Graph
edges are determined based on five types of relations derived from
the retrieved attributes for each concept as follows: concept-to-
concept (C2C): Nodes are linked by a C2C edge if both represent
findings-mentioned concepts. concept-to-child (C2Child): A con-
cept node is connected to its ontology-retrieved children nodes via
a C2Child edge; concept-to-parent (C2P): A C2P edge is established
between a concept node and its singular parent node; concept-to-
definition (C2Def): A C2Def edge links the concept node and its
definition node, indicating the relationship; concept-to-synonym
(C2Syn): A C2Syn edge is set up between the concept node and its
synonym nodes, signifying synonymy. We also introduce a unique
“Interaction node”, linked to concept nodes, to compile critical graph
data and affect Bart representations via information exchange in
encoder layers. Initial node embeddings also utilize the efficient
TransE [1] method for relational information representation.

Ontology-infused encoder. In our summarization encoder, we
leverage a modified GreaseLM [22] model to infuse medical ontol-
ogy knowledge into the summarization encoder. The design facili-
tates the fusion and information exchange between the summariza-
tion encoder and the medical ontology GNN encoder. Our approach
integrates the summarization encoder with a graph neural network
via an Interaction node and <s> token representation by Bart en-
coder. This enables the encoder’s tokens to gain insights from the
knowledge graph, leading to a unified framework that effectively
reasons over input text and medical ontology. The Bart encoder
takes in the findings word embeddings {ℎ (0)0 , ℎ

(0)
1 , ..., ℎ

(0)
𝐽

} and

1http://www.radlex.org/Files/radlex3.10.xlsx

then processes it through encoder layers including multi-head self-
attention layers and linear layers, to output token representations
for each layer:

{ℎ (ℓ )0 , ℎ
(ℓ )
1 , ..., ℎ

(ℓ )
𝐽

} = Enc-Layer({ℎ (ℓ−1)0 , ℎ
(ℓ−1)
1 , ..., ℎ

(ℓ−1)
𝐽

}) (1)

for ℓ = 1, 2, ..., 𝑁

Enc-Layer(·) indicates a single layer of Bart encoder, ℎ (ℓ )0 is the
token representations associated with <s> token (i.e., Bart en-
coder’s interaction token) at layer ℓ . The graph encoder is designed
to process the information (i.e., ontology concepts and relations)
embedded in the input graph, alongside the textual Transformers en-
coder that takes in the findings text. To initialize the graph nodes,
we first compute the node embeddings {𝑒 (0)0 , 𝑒

(0)
1 , ..., 𝑒

(0)
𝐾

} for the
retrieved ontology concepts using TransE as discussed in Section 2.
We then implement a Graph Neural Network (GNN) encoder [19]
to process the graph and update the node representations. To be
more specific, each layer of the GNN model takes in the current
representations of the node embeddings {𝑒 (𝑙−1)0 , 𝑒

(𝑙−1)
1 , ..., 𝑒

(𝑙−1)
𝐾

}
to facilitate the information flow between nodes in the graph, based
on the adjacency matrix and output a pre-computed encoding for
each node:

{𝑒 (ℓ )0 , 𝑒
(ℓ )
1 , ..., 𝑒

(ℓ )
𝐾

} = GNN({𝑒 (ℓ−1)0 , 𝑒
(ℓ−1)
1 , ..., 𝑒

(ℓ−1)
𝐾

}) (2)
for ℓ = 1, 2, ..., 𝑀

GNN(·) is an implementation of GraphAttentionNetworks (GATs) [19],
and {𝑒 (ℓ )0 denotes the interaction node representations at the ℓ-
th layer. Once the Bart and GNN encoder layers processed the
findings and graph’s information, we utilize a multi-layer per-
ceptron module to fuse the information through the interaction
node’s gate and further pass them to the upper layers, [ℎ̃ (ℓ )0 ; 𝑒 (ℓ )0 ] =
MLP( [ℎ (ℓ )0 , 𝑒

(ℓ )
0 ])where ℎ̃ (ℓ )0 and 𝑒 (ℓ )0 are the fused interaction nodes

in layer ℓ . We then update the representation of the interaction
token and node with the fused representations and then pass them
to the next layer. Once the graph node representations are obtained,
we employ a hierarchical decoder to attend to the encoded graph
and textual representations in order to generate the impression.

Hierarchical ontology decoder.We incorporate another multi-
head attention layer (MATG ) to attend to the graph’s node rep-
resentations, and place it before the Bart’s multi-head attention
layer (MAT) to enable hierarchical decoding. In this sense, the
impression tokens (gold impression in training, and generated
impression at inference) are first informed of the knowledge em-
bedded in the graph, and then passed to the upper layers that take
care of final impression generation. Specifically, the decoder inputs
are processed by a self-attention layer, followed by a multi-head
cross-attention layer that attends to the graph encoder outputs
(node representations), as follows:

MAT
G (𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾

𝑇√︁
𝑑𝑘

)𝑉 , 𝑄′ = MAT
G
·𝑉 (3)

where 𝑄,𝐾,𝑉 are linear transformations denoting query, key, and
value matrices, respectively. MATG (·) denotes the cross-attention
operation on graph G encoder outputs. The final output of the
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graph cross-attention layer is represented by 𝑄 ′ which is the dot
product of the attention weights with the value matrix (i.e., graph
encoder outputs). 𝑄 ′ is then passed to the upper multi-head at-
tention layer, shown as MAT(·), that attends to the Bart’s en-
coder outputs (i.e., 𝑉 ′) in a similar way as in Equation 3, produc-
ing ontology-aware decoder output y. The decoder finally em-
ploys a linear projection with Softmax function to sample the
next impression token sequence from the vocabulary distribution:
yo = Watt (MAT(𝑄 ′, 𝐾 ′,𝑉 ′) ·𝑉 ′) + y, 𝑃vocab = softmax(Woutyo).
We attempted to alter the sequence betweenMAT andMATG in our
experiments. However, due to the lack of substantial improvement
in performance, we decided not to pursue this approach further.

3 EXPERIMENTAL SETUP

Research questions. The following research questions will be
specifically addressed in the experiments:

- RQ1: Does incorporating a variety of relationships from medical
ontologies into the summarizer result in improved performance
in terms of Rouge and BertScore automatic evaluation metrics?

- RQ2: How significantly does each relationship, extracted from
the ontology, contribute to the performance enhancement of the
summarization model?

Datasets and ontology. Weused two real-world radiology datasets:
MIMIC Chest X-ray (MIMIC-CXR)[8] and one from a large urban
hospital, totaling 117,324 (MIMIC-CXR) and 41,066 (urban hospital)
reports after preprocessing[12, 23]. We split the data into training,
validation, and testing sets in an 8:1:1 ratio. The RadLex ontology,
with over 40k radiological terms, was used in our study.

Baselines.We compare our model to a number of extractive and
abstractive baselines listed below:

- LSA & LexRank [3, 17]: These extractive methods utilize mathe-
matical and graph principles: Singular Value Decomposition (SVD)
and graph-based ranking, to evaluate sentence saliency.

- Pointer-Generator (PG) [15]: A seq2seq summarizer that copies
findings words directly under high attention, thus integrating
the advantages of both extractive and abstractive summarization.

- Ont. PG [12]: An abstractive summarizer that leverages ontology
concepts (from RadLex), encoded via an auxiliary encoder, to steer
the decoding process.

- OntologyABS [16]: A PG model extension that integrates signifi-
cant ontological terms, determined by a content selector, into the
seq2seq network during summarization.

- Bart [5]: An abstractive summarizer pre-trained via text corrup-
tion and reconstruction, improving summarization performance
by learning robust text representations.

- Pegasus [21]: An advanced abstractive summarizer that develops
a summarization-specific pre-training self-supervised objective
by masking key sentences in a text and generating an output
sequence from the remaining text.

- GraphRadSum [7]: The previous SOTA abstractive summarizer
in the clinical notes domain that forms a graph from a clinical
report, models the graph entities and relationships with a GNN
encoder, and optimizes the GNN using contrastive learning loss
to emphasize findings’ keywords.

Implementation details. We employed the default hyperparame-
ters for the execution of the baseline models. For our system, we
set the batch size to 6 and the learning rate to 3𝑒 − 5. The model
was trained over 15 epochs, and we selected the best checkpoint
based on the highest Rouge-1 score on the validation set.

Table 1: Rouge (RG) and BertScore (BS) results on the test

set of the MIMIC-CXR and Urban Hospital datasets. * shows

statistically significant improvement (paired t-test, p < 0.05)

as compared to the best-performing baseline (i.e., Bart).

MIMIC-CXR Urban Hospital

Model RG-1 RG-2 RG-L BS RG-1 RG-2 RG-L BS

LexRank [3] 14.74 7.15 12.99 85.07 20.84 10.62 18.12 84.30
LSA [17] 18.28 9.30 16.75 85.93 22.85 11.69 19.66 84.90
PG [15] 51.47 39.26 50.22 87.01 37.17 22.36 35.45 85.49
Ont. PG [11] 51.92 39.66 50.89 87.82 38.42 23.29 37.02 87.16
OntologyAbs [16] 53.69 40.92 51.99 88.46 39.01 23.64 37.28 88.14
Pegasus [21] 56.41 44.88 54.01 89.91 47.71 31.87 41.99 89.47
Bart [10] 58.43 45.81 55.32 92.59 49.29 32.78 43.19 90.02
GraphRadSum [7] 57.38 45.12 54.91 92.88 48.98 32.36 42.91 90.29

OntG-Bart 59.66
*

46.12 56.33
*

93.02 50.67
*

33.44 44.21
*

90.91

4 EXPERIMENTAL RESULTS

Automatic evaluation. Table. 1 presents the experimental perfor-
mance of the baselines along with our model in terms of Rouge
and BertScore evaluation metrics. Comparing abstractive summa-
rization systems with one another, amongst the traditional seq2seq
neural summarizers, the OntologyABS model outperforms the PG
network, but as expected it falls behind the pre-trained contextu-
alized summarizers. Among the pre-trained Transformers-based
abstractive summarizers, the Pegasus model underperforms the
Bart system. This is likely due to its reliance on an extractive ob-
jective (i.e., Gap Sentence Prediction), which is shown to be less
effective in clinical notes domain [12, 16, 23]. The Bart summariza-
tion model has the highest score amongst the baselines, however, it
falls behind OntG-Bart which outperforms all methods, achieving
statistically significantly improved scores on Rouge-1 and Rouge-L
metrics. Comparing Bart andGraphRadSummodels whose perfor-
mances are similar to each other in some metrics (with Bart being
slightly better), we notice that Bart performs better at impression
generation process (i.e., decoding) due to its strong pre-trained
decoder. This is not the case in GraphRadSum which trains the
decoder from scratch. Overall, our model gains relative improve-
ments of 2.2%, 2.7% (Rouge-1), 0.8%, 2.0% (Rouge-2), and 1.8%, 2.3%
(Rouge-L), 1.0% (BertScore) on MIMIC-CXR and Urban datasets,
respectively, as compared to the Bart baseline, addressing our first
research question, indicating the positive impact of our approach.
Ablation study. The results of the ablation study (Table 2) show a
minor effect on performance when excluding concept2concept and
concept2child relations. This is likely due to the fact that the Bart
system has already encoded the relationships between concepts
through its self-attention mechanism. Additionally, it may be diffi-
cult to identify relevant children nodes for a specific finding. Adding
relevancy scores of children nodes to the report could address this
latter issue [2, 20]. Excluding concept-to-definition and concept-to-
synonym relationships significantly reduced BertScore, showing
their importance in semantic space understanding. Pre-training the
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model with these relationships could potentially enhance perfor-
mance. Changes in model complexity are negligible across ablation
configurations due to the dominance of summarization-specific
layers, with each relationship addition contributing around 20k
trainable parameters, a minuscule fraction of the total.

Table 2: Ablation study in terms of Rouge and BertScore

metrics on the MIMIC-CXR and Urban Hospital datasets.

Ablation Setting MIMIC-CXR Urban Hospital

C2C C2Child C2P C2Def C2Syn RG-1 RG-2 RG-L BS RG-1 RG-2 RG-L BS

– – – – – 58.43 45.81 55.32 92.59 49.29 32.78 43.19 90.02
✓ ✓ ✓ ✓ ✓ 59.66

* 46.12 56.33* 93.02 50.67
*

33.44 44.21
*

90.91

– ✓ ✓ ✓ ✓ 59.51* 46.18 56.31* 92.89 50.39* 33.41 44.20* 90.84
✓ – ✓ ✓ ✓ 59.49* 45.89 56.01 92.85 50.31* 33.32 44.05 90.85
✓ ✓ – ✓ ✓ 58.81 45.92 55.87 92.66 50.08 33.06 43.91 90.74
✓ ✓ ✓ – ✓ 59.31 46.05 56.35

* 92.69 50.11 33.09 44.21
* 90.62

✓ ✓ ✓ ✓ – 58.92 45.88 55.82 92.71 50.09 33.12 43.96 90.66

- - ✓ ✓ ✓ 59.22 46.01 55.99 92.99 50.35 33.34 44.12 90.85
- ✓ ✓ - ✓ 59.15 45.89 55.91 92.75 50.41 33.39 44.18* 90.59
- ✓ ✓ ✓ - 59.01 45.81 55.78 92.78 50.28 33.22 44.06 90.61

- - ✓ - ✓ 59.21 45.93 56.06 92.81 50.36 33.09 43.99 90.66
- - ✓ ✓ - 59.05 45.89 55.98 92.86 50.41 33.12 44.08 90.68
- - - ✓ ✓ 58.97 45.78 55.91 93.01 50.21 33.01 43.89 90.81

5 ERROR ANALYSIS

To pinpoint OntG-Bart’s limitations, we compared 50 cases gen-
erated by our model, the Bart baseline, and the corresponding
human-written summary from each dataset (i.e., 100 cases in to-
tal). We present three types of the most common errors, listed as
follows with corresponding error rates in percentages: (1) High In-

formational Volume Graph (rate: 46%): when the report graph
has a high volume of information, our model focuses more on the
concepts and the connections between them, causing misalignment
with human-written impressions (e.g., the model generated “1. ET
tube in appropriate position. 2. Nonspecific interstitial prominence in
the lower lungs bilaterally.”, while the gold impression is “ET tube in
appropriate position”). Incorporating ontological word significance
[5, 16] could address this; (2) Factual Inconsistency (rate: 34%):

the model sometimes exhibits factual inconsistencies in underper-
formed cases due to loss of contextual information when nodes are
selected (e.g., themodel negated “pneumonia” in “No acute cardiopul-
monary process; specifically, no evidence of pneumonia”, whereas the
human-written impression is “Resolution of the left lower lobe pneu-
monia”). Constructing more sophisticated graphs that can better
preserve the contextualized information of the concepts could re-
solve this; (3) Inclusion of Unmentioned Information (rate:

24%): the summarizer includes information present in the graph
but not mentioned in the gold impression (e.g., the human-written
impression, “No evidence of acute cardiopulmonary process”, while
the system generates “1. No evidence of acute cardiopulmonary pro-
cess. 2. Hyperexpansion of the lungs compatible with patient’s known
COPD”).

6 CONCLUSION

Streamlining clinical note summarization through automation can
be beneficial for healthcare providers, providing them with a sug-
gested summary. We presented a novel graph-assisted summarizer
that uses medical ontologies to enhance shared representations.
Our model outperformed existing models on radiology datasets,
suggesting its effectiveness. Additionally, we showed the influence
of different types of graph relationships on performance and future
improvement areas.
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