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Abstract

Medication recommendation is a critical function of clinical deci-
sion support systems, directly influencing patient safety and treat-
ment efficacy. While large language models (LLMs) show promise
in clinical tasks such as summarization and question answering,
their ability to make accurate treatment predictions remains lim-
ited, in part, due to their lack of specialized medical knowledge
and exposure to real-world patient data. We introduce TreatRAG,
an interpretable, model-agnostic retrieval-augmented generation
(RAG) framework aimed at early-stage development to enhance
medication recommendation accuracy using publicly available clin-
ical data; thus, TreatRAG forms a critical foundational step toward
future clinical validation and domain expert involvement. TreatRAG
retrieves similar patient cases, i.e., so called "digital twins", using
interpretable N-gram Jaccard similarity and augments the input
prompt to ground LLM predictions in real clinical scenarios. We
evaluate our framework on the MIMIC-IV dataset using BioGPT,
BioMistral, Phi3, and Flan-T5. TreatRAG-enhanced BioGPT im-
proves its F1-score from 0.14 to 0.34, BioMistral from 0.22 to 0.54,
Phi-3 from 0.09 to 0.16, and Flan-T5 from 0.23 to 0.30, while also low-
ering, often significantly, the hallucination rate. Our model-agnostic
framework offers a flexible, effective, and interpretable solution to
advance the reliability of LLMs in clinical decision support.
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1 Introduction

Clinical decision support (CDS) systems assist clinicians in making
accurate and timely decisions [3, 15]. Among these applications,
medication recommendation is particularly critical, as medication
recommendation directly impacts patient safety and treatment effec-
tiveness [10, 18]. For instance, a CDS system can analyze a patient’s
medical history, allergies, and current medications to suggest the
most appropriate antibiotic while flagging potential drug interac-
tions. Thus, medication recommendation systems reduce medical
errors and improve patient outcomes [21]. Large Language Models
(LLMs) have demonstrated promising results on diverse healthcare
tasks. In the medical field, LLMs were applied to tasks such as
clinical note summarization[6, 23] and question-answering [2, 4].
While LLMs excel at extracting and organizing key information
from patient records, they still face challenges in making highly
accurate clinical decisions.

We introduce TreatRAG, a Retrieval-Augmented Generation
(RAG) framework for patient medication recommendations, de-
signed to enhance LLM reasoning by integrating real-world pa-
tient data, e.g., MIMIC-IV [9], without requiring additional train-
ing. Incorporating clinical data ensures that recommendations are
informed by up-to-date, relevant clinical information. Unlike ap-
proaches that rely solely on pre-trained LLM knowledge, our method
incorporates de-identified Electronic Health Records (EHRs) di-
rectly into the process, improving the precision of medication sug-
gestions. Our framework bridges the gap between generic LLM
outputs and clinically actionable insights by combining retrieval-
augmented generation with structured EHR analysis.

To associate patient records with relevant historical cases, we se-
lected N-gram Jaccard similarity due to its interpretability and sim-
plicity, qualities highly beneficial in clinical settings, and validated
its effectiveness through an ablation study comparing it to dense
embedding methods (e.g., SBERT with FAISS). This method identi-
fies clinically relevant cases by comparing a patient’s history and
diagnoses with past records. Gap statistics filter out less informative
matches, retaining only contextually valuable cases. Retrieved cases
are then structured into prompts for the LLM, which generate med-
ication recommendations based on both patient data and historical
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treatments. We implement our model-agnostic RAG framework
using BioGPT[13], BioMistral[11], Flan-T5 [7] and Phi3[1]. Our
main contributions are as follows:

e We propose a RAG framework that integrates real patient
data as input to enhance the clinical actionability of pre-
trained LLMs without additional training costs.

e We demonstrate the flexibility of our RAG framework by
implementing and evaluating it with BioGPT, BioMistral,
Flan-T5, and Phi-3, incorporating the MIMIC-IV dataset in
our experiments.

2 Related Work

Advances in deep learning greatly improved EHR representation
learning, enabling a wide range of CDS tasks [5, 20, 27-30]. To
enhance interpretability, safety, and efficacy , models employ se-
quential modeling [5], reinforcement learning [31], and graph-based
approaches [20, 27], where the latter integrating drug-drug interac-
tion (DDI) graphs, to maximize treatment safety and effectiveness.
Language modeling via transformers, using the pre-train, fine-tune
paradigm, greatly improves the accuracy and fairness of medication
recommendations [19, 26], especially on rare diseases [32].

While recent models have advanced medication recommenda-
tions, challenges remain in adapting to the diverse patient tra-
jectories. LLMs offer improved generalization and robustness by
leveraging broad medical knowledge and flexible reasoning capabil-
ities [12, 24]. However, hallucinations and contextually irrelevant
output often undermine their utility in clinical settings [17]. RAG
addresses the aforemention limitations by incorporating external,
domain-specific information, such as medical knowledge or pa-
tient histories, into the inference process, thereby enhancing the
contextual accuracy and reliability of LLM-generated responses
[8, 17, 25]. Our approach integrates similar patient trajectories as
retrieval context to ground LLM-based medication recommenda-
tions in real-world clinical patterns, resulting in more accurate and
robust decisions.

3 Methodology

TreatRAG operates in three stages: (1) transforming structured
clinical records into interpretable text representations, (2) retrieving
similar patient cases, commonly referred to as "digital twins" based
on textual similarity, and (3) constructing prompts that integrate
the retrieved cases with the target patient’s information to guide
generation, as illustrated in Figure 1. TreatRAG adopts a transparent
retrieval mechanism based on N-gram Jaccard similarity. Given
two patient case texts, represented as sets of N-grams, the Jaccard
similarity is defined as:

_|AnB|
" JAUB|

J(A B) 1
where A and B are the N-gram sets for two patient cases. This token-
based approach enables interpretable case matching that aligns with
the structure and semantics of clinical narratives. By grounding
recommendations in retrieved examples, the framework enhances
the factual reliability of language models without requiring model
retraining or fine-tuning.
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Figure 1: Overview of the TreatRAG framework. The sys-
tem consists of three main stages: (1) Data Processing: trans-
forming structured EHR data into natural language prompts,
(2) Retrieve Clinically Similar Cases: retrieving similar pa-
tient cases using N-gram Jaccard similarity, and (3) Generate
Medication Recommendation: generating medication rec-
ommendations using a pretrained LLM. Retrieved cases are
incorporated into the prompt to ground predictions in real-
world clinical examples. NDC: National Drug Code, RXUCI:
RxNorm Concept Unique Identifier, ATC3: Level 3 Anatomi-
cal Therapeutic Chemical.

3.1 Medical Recommendation

The prompt structure is inspired by prior LLM-based healthcare
work [12], which formats structured clinical inputs into natural lan-
guage to enhance model compatibility. We preprocess each patient
record into a structured textual prompt to ensure compatibility with
LLMs. For each patient, we extract all visits in historical order and
summarize each visit with its respective diagnoses and prescribed
medications. The summaries are formatted into natural language
using a consistent prompt template, as shown in Figure 2. Earlier
visits include both diagnoses and prescriptions, while the final visit
contains only diagnoses. The prompt ends with a cue: “Then, the
patient should be prescribed:” to instruct the model to generate the
appropriate medications for the most recent visit.

The patient has < TOTAL_VISIT_NUM > times ICU visits. In the first visit,
the patient had diagnosis: < DIAGNOSIS >, ..., < DIAGNOSIS >. The patient
was prescribed: <PRESCRIPTION>, ..., < PRESCRIPTION >. In the second
visit, .... In this visit, the patient has diagnosis: < DIAGNOSIS>, ..., <
DIAGNOSIS >. Then, the patient should be prescribed:

Figure 2: Prompt template for medication recommendation.

Medication prediction is explicitly conditioned on the diagnoses
from the patient’s latest visit. These diagnoses represent the "query"
for our retrieval-augmented generation framework and encompass
a broad range of clinical conditions common in the MIMIC-IV
dataset, such as infections, cardiovascular diseases, respiratory is-
sues, and metabolic disorders. We do not limit our evaluation to
a fixed set of ailments; instead, we allow the model to general-
ize across the naturally occurring diagnostic distribution within
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MIMIC-IV. This setting follows prior work on medication recom-
mendation [12, 14, 22], where the prediction task involves inferring
appropriate medications based on structured diagnosis inputs.

4 Experiment

We investigate the research question: Can an integrated, model-
agnostic RAG framework statistically significantly improve the accu-
racy of medication prediction of LLM architectures?

4.1 Data Preprocessing

We utilize MIMIC-1V, a comprehensive clinical dataset containing
patient records from the Intensive Care Unit (ICU), including pa-
tient admission, diagnoses, and prescription data. The preprocessing
stage focuses on extracting and structuring relevant information
from these records to ensure consistency in representation. This
includes standardizing drug identifiers by mapping them to com-
mon terminologies and integrating external medical knowledge
to account for potential drug-drug interactions. By normalizing
medication data and structuring them in a unified format, Anatom-
ical Therapeutic Chemical (ATC) Classification, we enable efficient
retrieval and facilitate accurate predictions.

4.2 Retrieval Mechanism

To improve prediction reliability, we retrieve similar patient cases
to provide additional clinical context. We use N-gram Jaccard simi-
larity, which directly compares textual structure, capturing both
semantic content and word order—key for clinical interpretability.
Patient records are tokenized into N-grams, forming the basis for
similarity computation. We rigorously evaluated our framework
using patient-level splits, ensuring no overlap between test patients
and retrieval pools, and conducted adaptive retrieval selecting up
to k similar cases, typically fewer than 6 after filtering by adaptive
thresholds (mean + 1.5xstandard deviation). This threshold was ex-
perimentally determined to balance retrieval precision and coverage.
To meet the model’s token limitations, truncation strategies such
as summarizing or omitting older visits were applied. If no cases
pass this adaptive threshold, we skip reference to avoid introducing
misleading context. This reduces noise, filters out weak matches,
and ensures that only informative cases are included. By combin-
ing interpretable similarity with adaptive filtering and truncation
strategies, our method enhances retrieval precision and minimizes
hallucinations—boosting reliability without model fine-tuning.

4.3 LLM-Based Prediction

We evaluated the performance of four state-of-the-art language
models, Flan-T5-small, BioGPT, BioMistral-7B, and Phi-3-mini on
the task of medication prediction using our proposed framework.
BioGPT is a biomedical-specific generative model pre-trained on
PubMed articles, enabling fluent, domain-aware text generation.
BioMistral specializes in biomedical and clinical content, leverag-
ing scientific literature and structured EHR data to enhance medi-
cal understanding. Flan-T5 is an instruction-tuned model built for
general-purpose reasoning and well-suited for structured clinical
prompts. Phi-3, a compact instruction-following model optimized
for efficiency, brings strong few-shot performance to a variety of
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healthcare-related NLP tasks. In the TreatRAG framework, the re-
trieved similar case data are incorporated into the target patient’s
prompt, ensuring that medication recommendations are informed
by relevant past cases. This retrieval-enhanced approach allows
LLMs to generate more reliable, evidence-based treatment sug-
gestions, bridging the gap between pre-trained knowledge and
real-world clinical applications.

4.4 Model Implementation

We implement our framework using state-of-the-art, open-weight
LLM models. Each model is prompted with the retrieved patient
data as a reference for the main question, allowing it to adapt to clin-
ical decision-making tasks. The system is optimized to fully utilize
available GPUs, ensuring fast and accurate similarity computation
across large datasets. This methodology ensures that our system
improves both accuracy and interpretability by grounding medica-
tion recommendations in real-world patient data while maintaining
the flexibility to adapt to evolving medical knowledge.

4.5 Evaluation

We evaluate the performance of our framework using two key
metrics: F1-score and Jaccard similarity. The F1-score provides a
balanced measure of precision and recall for the predicted ATC
codes, ensuring that both over-prediction and under-prediction are
penalized appropriately. Jaccard similarity quantifies the overlap
between predicted and ground-truth medication sets, offering an
interpretable metric to assess set-level agreement.

5 Results

We augmented all baseline models using retrieval-based augmen-
tation, leading to consistent performance improvements across all
evaluated architectures. Table 1 summarizes the statistics of the
MIMIC dataset. As shown in Table 2, TreatRAG-enhanced mod-
els achieved substantial gains over their baselines, with TreatRAG
BioMistral achieving the highest overall performance with F1-score
of 0.54 and Jaccard similarity of 0.37. All improvements were statis-
tically significant according to paired t-tests (p < 0.05), highlighting
the effectiveness of our augmentation approach.

Table 1: MIMIC Dataset Statistics. Summary of the MIMIC-IV
dataset used in our experiments, including patient counts,
admissions, and disease diversity.

Metric Value
Number of patients 180,733
Total number of admissions 431,231

Average admissions per patient 2.39
Number of diseases 25,809

6 Discussion

Our results suggest that TreatRAG is beneficial across different
model architectures. While performance varies by model, the frame-
work consistently enhances medication prediction. This shows that
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Table 2: Evaluation Results. * indicates the statistically sig-
nificant improvements (i.e., Paired t-test with p<0.05)

Model Fl-score Jaccard Similarity
Baseline BioGPT 0.14 0.07
Baseline BioMistral 0.23 0.13
Baseline Phi3 0.09 0.05
Baseline Flan-T5 0.23 0.12
TreatRAG BioGPT 0.34* 0.21*
TreatRAG BioMistral 0.54* 0.37*
TreatRAG Phi3 0.16" 0.09*
TreatRAG Flan-T5 0.30* 0.17*

the model-agnostic TreatRAG framework can be developed to inte-
grate with multiple LLMs, provided that effective retrieval strategies
and relevant clinical datasets are utilized. In addition to its accuracy,
our approach is computationally efficient. Unlike training or fine-
tuning large models, our retrieval-mechanism, prompt-engineered
approach operates directly on existing patient records without
requiring model updates or retraining. This makes the method
lightweight and easily deployable in real-world settings, especially
when computational resources are limited.

It is worth noting that the evaluated models were not trained
explicitly with ATC or medication prediction tasks. Consequently,
they may occasionally generate hallucinated outputs, including
non-existent three-character codes” These errors highlight the limi-
tations of using pre-trained LLMs alone for structured clinical tasks
and emphasize the value of retrieval grounding to enhance reliabil-
ity and clinical validity. We conducted a hallucination analysis by
extracting predicted drug terms and comparing them against valid
ATC-3 codes from the WHO classification [16]. Any unmatched
term was considered a hallucination. We report both the overall
hallucination rate and the per-patient hallucination percentage.

Table 3: Hallucination analysis under baseline and TreatRAG.
TreatRAG significantly reduces over hallucinations for
BioGPT (84.41 — 39.85%) and BioMistral (72.83 — 32.76%),
with smaller gains for Phi-3 and Flan-T5. Overall, TreatRAG
lowers hallucination rates and improves factual reliability.

Method BioGPT BioMistral Phi-3 Flan-T5
Hallucination Rate (%)
Baseline 84.41% 72.83% 86.18% 42.26%
TreatRAG 39.85% 32.76% 86.16% 37.66%
Average Hallucination per Patient (%)
Baseline 70.37% 57.17% 69.63% 60.38%
TreatRAG 28.21% 17.50% 25.43% 58.65%
Patients with 0% / 100% Hallucination (%)

Baseline 19.00 / 68.00% 41.07 / 57.14% 22.13/55.32% 39.36 / 60.34%
TreatRAG 43.06 / 20.74% 76.69/16.40% 71.92/21.32% 41.25/ 58.63%

As shown in Table 3, TreatRAG substantially reduced hallucina-
tions for BioGPT and BioMistral (from 84.41% to 39.85% and 72.83%
to 32.76%, respectively), aligning with their F1 and Jaccard score
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improvements. Phi-3 showed minimal overall change but improved
at the patient level, while Flan-T5 exhibited modest gains. These
results confirm that retrieval grounding enhances both predictive
accuracy and factual reliability in medication recommendation.

Table 4: Prevalence of Rare Diagnoses and Affected Patients
in the MIMIC-IV. This table summarizes the frequency of
rare diagnostic codes and the number of affected patients
in the dataset. A diagnosis is considered rare if it appears in
the records of fewer than a threshold n patients. The left col-
umn defines these rarity thresholds (n), the middle column
lists the number of distinct diagnoses that fall under each
threshold, and the right column reports how many unique
patients have such a rare condition. These statistics highlight
the long-tail distribution of medical diagnoses and motivate
using retrieval-augmented models like TreatRAG, which can
handle sparse and infrequent data more effectively.

Threshold (n) Diagnoses <n Patients Affected
<50 9,699 25,524
< 100 11,660 39,154
< 200 13,491 58,473

Table 5: Performance Comparison Between TreatRAG and
Baseline Across Rare Diseases. This table reports F1 and Jac-
card scores for different model backbones (BioGPT, BioMis-
tral, Phi3, FlanT5) under various rarity thresholds (< 50,
< 100, < 200). TreatRAG consistently outperforms the base-
line across all settings, particularly under rarer diagnos-
tic conditions, demonstrating its effectiveness in handling
sparse and imbalanced medical data.

Baseline (F1/Jaccard)

Threshold (n) BioGPT BioMistral Phi3 FlanT5
< 50 0.10/0.04 0.14/0.22 0.08/0.04 0.23/0.13
< 100 0.14 / 0.06 0.27/0.16 0.08/0.05 0.25/0.13
< 200 0.15/0.07 0.21/0.12 0.09/0.05 0.26/0.15
TreatRAG (F1/Jaccard)
Threshold (n) BioGPT  BioMistral Phi3 FlanT5
< 50 0.33/0.22 0.23/0.35 0.12/0.05 0.23/0.13
< 100 0.33/0.22 0.27/0.18 0.14/0.08 0.26/0.14
< 200 0.34/0.23 0.26 / 0.17 0.12/0.05 0.28/0.16

Rare diseases pose a significant challenge for clinical decision
support systems due to the lack of sufficient data to train disease-
specific models. In our evaluation, we define a diagnosis as rare
if it appears in the records of fewer than n patients. To assess
TreatRAG’s performance under these low-resource conditions, Ta-
ble 4 summarizes the statistic of rare diagnoses in the MIMIC-IV
dataset. The table reports the number of distinct diagnostic codes
that meet each rarity threshold, along with the total number of pa-
tients affected. These statistics reflect the long-tail nature of clinical
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data and underscore the need for models that can effectively handle
sparse and infrequent conditions.

As shown in Table 5, TreatRAG consistently outperforms base-
line models across all rarity thresholds, with particularly strong
improvements under the rarest settings (<50 patients). For exam-
ple, BioGPT’s F1-score more than triples, from 0.10 to 0.33, and
BioMistral’s Jaccard similarity improves from 0.22 to 0.35. These
results highlight TreatRAG’s ability to improve clinical reliabil-
ity in data-sparse environments—an essential capability in rare
disease scenarios, where annotated training data are often scarce.
TreatRAG’s zero-shot retrieval-based augmentation proves both
practical and impactful in these contexts.

7 Ablation Studies

We conducted a comprehensive set of ablation experiments to eval-
uate the effect of different representation strategies and similarity
functions on retrieval performance. We compared the following
five retrieval configurations:

e Full Sentence + Jaccard Similarity: Each patient’s full
history is treated as raw text. Queries are compared using
Jaccard similarity over word sets, capturing simple lexical
overlap.

o Full Sentence + Cosine Similarity: Patient texts are trans-
formed into TF-IDF vectors. Similarity is computed using
cosine similarity, measuring the alignment of term-weighted
representations.

e DP Pair Embedding (Patient-level) + Vector Search:
Each visit is embedded as a diagnosis-prescription (DP) pair
using a Sentence-BERT model (all-mpnet-base-v2). Visit
embeddings are aggregated via mean pooling into a single
patient-level vector. Retrieval is performed using cosine sim-
ilarity (via FAISS with L2 distance on normalized vectors).

e DP Pair Embedding (Visit-level) + Vector Search: Visit
embeddings are stored individually in the FAISS index, al-
lowing fine-grained, visit-level matching. This configuration
bypasses patient-level aggregation.

o Full Sentence Embedding + Vector Search: Patient’s full
history is encoded into a single dense vector using SBERT.
Retrieval is performed using cosine similarity through FAISS.

Performance was evaluated using F1-score and Jaccard Score.
Tables 6 show that Full Sent + Jaccard similarity consistently out-
performs TF-IDF-based cosine similarity and dense vector retrieval
across all models. Despite its simplicity, the token-level overlap
captured by Jaccard similarity is highly effective for identifying
relevant patient cases, yielding the highest F1-scores and Jaccard
similarities. Among vector methods, visit-level DP pair embeddings
perform competitively, particularly for BioMistral and Flan-T5. Full
sentence embeddings provide reasonable baseline performance but
are generally outperformed by structured DP-pair representations
that better preserve clinical intent.

8 Future Work

A key direction for improvement is optimizing the retrieval mech-
anism. While our current method relies on structured retrieval
from MIMIC-IV, future work can explore alternative strategies to
enhance flexibility and performance. Incorporating more diverse
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Table 6: F1 and Jaccard scores across different retrieval strate-
gies. Full Sent Cosine with BioMistral achieves the best per-
formance (F1/Jaccard = 0.52/0.34). Other strong-performing
methods include Full Sent Vector and DP Pair (Visit), partic-
ularly when paired with BioMistral and Flan-T5.

Method BioGPT  BioMistral Phi-3 Flan-T5
F1  Jacc. F1  Jace. F1 Jace. F1  Jacc.
Baseline 0.14 0.07 0.22 0.13 0.09 0.05 0.23 0.12

Full Sent. Cosine 0.22 0.13 0.52 034 0.12 0.07 029 0.17
DP Pair (Pat.) 0.16 012 036 024 002 001 029 0.17
DP Pair (Visit) 0.19 010 040 027 0.05 0.03 030 0.13
Full Sent. Vec 020 0.10 044 027 006 003 026 0.15

medical datasets could further improve predictive power. Planned
extensions include:

e External EHR datasets beyond MIMIC-IV to ensure broader
generalization across different patient populations.

e Clinical guidelines and expert-annotated resources to ground
recommendations in established medical knowledge.

e Pharmacogenomic data to personalize medication recom-
mendations based on genetic factors.

o Incorporate clinical knowledge bases (e.g., UMLS, DrugBank)
and expert reviews to ensure closer alignment with clinically
safe and deployable systems.

e Integrating drug-drug interaction (DDI) detection into the
retrieval and generation pipeline.

To enhance patient safety, we aim to extend our framework by
incorporating drug-drug interaction detection into the retrieval
and generation pipeline. By leveraging existing DDI databases (e.g.,
DrugBank, TWOSIDES), we can improve recommendations based
on potential adverse drug interactions. This enables our system to
prioritize safer medication choices, reducing the risk of adverse ef-
fects. Future work will also focus on improving the interpretability
of the generated recommendations. Providing explanations for re-
trieved cases, highlighting salient features influencing predictions,
and implementing attention-based visualization techniques could
make the system more transparent and clinically reliable.

9 Conclusion

We introduced TreatRAG, a retrieval-augmented generation frame-
work designed to enhance medication recommendation by leverag-
ing historical patient data with pretrained language models. Evalua-
tion on the MIMIC-IV dataset demonstrated statistically significant
improvements in prediction accuracy across multiple backbone
models, including BioGPT, BioMistral, Phi-3, and Flan-T5, while
often simultaneously reducing the hallucination rate. TreatRAG
provides an interpretable, model-agnostic approach, advancing the
reliability and clinical safety of CDS systems.

References

[1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad
Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl,
et al. 2024. Phi-3 technical report: A highly capable language model locally on
your phone. arXiv preprint arXiv:2404.14219 (2024).



RecSys ’25, September 22-26, 2025, Prague, Czech Republic

(2]

o
&

[9

=

[10

[11

[12]

(13

[14

[15]

[16

[17

(18]

[19]

[20

[21

Seongsu Bae, Daeun Kyung, Jachee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun
Kweon, Jungwoo Oh, Lei Ji, Eric Chang, Tackeun Kim, et al. 2023. Ehrxqa: A multi-
modal question answering dataset for electronic health records with chest x-ray
images. Advances in Neural Information Processing Systems 36 (2023), 3867-3880.
Tiffani ] Bright, Anthony Wong, Ravi Dhurjati, Erin Bristow, Lori Bastian, Remy R
Coeytaux, Gregory Samsa, Vic Hasselblad, John W Williams, Michael D Musty,
etal. 2012. Effect of clinical decision-support systems: a systematic review. Annals
of internal medicine 157, 1 (2012), 29-43.

Shan Chen, Marco Guevara, Shalini Moningi, Frank Hoebers, Hesham Elhalawani,
Benjamin H Kann, Fallon E Chipidza, Jonathan Leeman, Hugo JWL Aerts, Timo-
thy Miller, et al. 2024. The effect of using a large language model to respond to
patient messages. The Lancet Digital Health 6, 6 (2024), e379-e381.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua A. Kulas, Andy
Schuetz, and Walter F. Stewart. 2016. RETAIN: An Interpretable Predictive
Model for Healthcare using Reverse Time Attention Mechanism. In Proceedings
of the 30th Conference on Neural Information Processing Systems (NeurIPS). https:
//api.semanticscholar.org/CorpusID:948039

Yu-Neng Chuang, Ruixiang Tang, Xiaogian Jiang, and Xia Hu. 2024. SPeC: a soft
prompt-based calibration on performance variability of large language model
in clinical notes summarization. Journal of Biomedical Informatics 151 (2024),
104606.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2024.
Scaling instruction-finetuned language models. Journal of Machine Learning
Research 25, 70 (2024), 1-53.

Xinke Jiang, Yue Fang, Rihong Qiu, Haoyu Zhang, Yongxin Xu, Hao Chen,
Wentao Zhang, Ruizhe Zhang, Yuchen Fang, Xu Chu, et al. 2024. TC-RAG:
Turing-Complete RAG’s Case study on Medical LLM Systems. arXiv preprint
arXiv:2408.09199 (2024).

Alistair Johnson, Leo Bulgarelli, Tom Pollard, Brandon Gow, Benjamin Moody,
Steven Horng, Leo Anthony Celi, and Roger Mark. 2024. MIMIC-IV (version 3.1).
doi:10.13026/kpb9-mt58

Rainu Kaushal, Kaveh G Shojania, and David W Bates. 2003. Effects of computer-
ized physician order entry and clinical decision support systems on medication
safety: a systematic review. Archives of internal medicine 163, 12 (2003), 1409—
1416.

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-Antoine Gourraud, Mick-
ael Rouvier, and Richard Dufour. 2024. Biomistral: A collection of open-
source pretrained large language models for medical domains. arXiv preprint
arXiv:2402.10373 (2024).

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Zijian Zhang, Feng Tian, and
Yefeng Zheng. 2024. Large language model distilling medication recommendation
model. arXiv preprint arXiv:2402.02803 (2024).

Rengqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and
Tie-Yan Liu. 2022. BioGPT: generative pre-trained transformer for biomedical
text generation and mining. Briefings in bioinformatics 23, 6 (2022), bbac409.
Rajat Mishra and S Shridevi. 2024. Knowledge graph driven medicine recom-
mendation system using graph neural networks on longitudinal medical records.
Scientific Reports 14, 1 (2024), 25449.

Mark A Musen, Blackford Middleton, and Robert A Greenes. 2021. Clinical
decision-support systems. In Biomedical informatics: computer applications in
health care and biomedicine. Springer, 795-840.

World Health Organization. 2025. Anatomical Therapeutic Chemical (ATC) Classi-
fication. https://www.who.int/tools/atc-ddd-toolkit/atc-classification Accessed
April 29, 2025.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. 2023. Med-
HALT: Medical Domain Hallucination Test for Large Language Models. In Pro-
ceedings of the 27th Conference on Computational Natural Language Learning
(CoNLL). 314-334.

Leila Shahmoradi, Reza Safdari, Hossein Ahmadi, and Maryam Zahmatkeshan.
2021. Clinical decision support systems-based interventions to improve medica-
tion outcomes: a systematic literature review on features and effects. Medical
Journal of the Islamic Republic of Iran 35 (2021), 27.

Junyuan Shang, Tengfei Ma, Cao Xiao, and Jimeng Sun. 2019. Pre-training of
graph augmented transformers for medication recommendation. In International
Joint Conference on Artificial Intelligence. International Joint Conferences on
Artificial Intelligence.

Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. 2019.
GAMENet: Graph Augmented Memory Networks for Recommending Medication
Combination. In Proceedings of the Thirty-Third AAAI Conference on Artificial In-
telligence, Thirty-First Innovative Applications of Artificial Intelligence Conference,
and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence
(Honolulu, Hawaii, USA) (AAAI'19/IAAI'19/EAAL'19). AAAI Press, Article 139,
8 pages. doi:10.1609/aaai.v33i01.33011126

Deepika Sharma, Gagangeet Singh Aujla, and Rohit Bajaj. 2023. RETRACTED:
Evolution from ancient medication to human-centered Healthcare 4.0: A review
on health care recommender systems. International Journal of Communication
Systems 36, 12 (2023), e4058.

695

Chao-Chin Liu, Hao-Ren Yao, Der-Chen Chang, and Ophir Frieder

Yanchao Tan, Chengjun Kong, Leisheng Yu, Pan Li, Chaochao Chen, Xiaolin
Zheng, Vicki S. Hertzberg, and Carl Yang. 2022. 4SDrug: Symptom-based Set-
to-set Small and Safe Drug Recommendation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Washington DC,
USA) (KDD °22). Association for Computing Machinery, New York, NY, USA,
3970-3980. doi:10.1145/3534678.3539089

Dave Van Veen, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad
Aali, Christian Bluethgen, Anuj Pareek, Malgorzata Polacin, Eduardo Pontes
Reis, Anna Seehofnerova, et al. 2023. Clinical text summarization: adapting large
language models can outperform human experts. Research Square (2023).
Michael Wornow, Yizhe Xu, Rahul Thapa, Birju Patel, Ethan Steinberg, Scott
Fleming, Michael A Pfeffer, Jason Fries, and Nigam H Shah. 2023. The shaky
foundations of large language models and foundation models for electronic health
records. npj digital medicine 6, 1 (2023), 135.

[25] Junde Wu, Jiayuan Zhu, Yunli Qi, Jingkun Chen, Min Xu, Filippo Menolascina,

and Vicente Grau. 2024. Medical graph rag: Towards safe medical large language
model via graph retrieval-augmented generation. arXiv preprint arXiv:2408.04187
(2024).

Rui Wu, Zhaopeng Qiu, Jiacheng Jiang, Guilin Qi, and Xian Wu. 2022. Conditional
generation net for medication recommendation. In Proceedings of the ACM web
conference 2022. 935-945.

Chaoqi Yang, Cao Xiao, Fenglong Ma, Lucas Glass, and Jimeng Sun. 2021. Safe-
Drug: Dual Molecular Graph Encoders for Recommending Effective and Safe Drug
Combinations. In Proceedings of the Thirtieth International Joint Conference on Ar-
tificial Intelligence, IJCAI-21, Zhi-Hua Zhou (Ed.). International Joint Conferences
on Artificial Intelligence Organization, 3735-3741. doi:10.24963/ijcai.2021/514
Main Track.

Hao-Ren Yao, Nairen Cao, Katina Russell, Der-Chen Chang, Ophir Frieder, and
Jeremy T. Fineman. 2024. Self-Supervised Representation Learning on Electronic
Health Records with Graph Kernel Infomax. ACM Trans. Comput. Healthcare 5,
2, Article 10 (April 2024), 28 pages. doi:10.1145/3648695

Hao-Ren Yao, Der-Chen Chang, Ophir Frieder, Wendy Huang, and Tian-Shyug
Lee. 2019. Multiple graph kernel fusion prediction of drug prescription. In Proceed-
ings of the 10th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics. 103-112.

Hao-Ren Yao, Oskar Mencer, Han-Sun Chiang MD, Der-Chen Chang, and Ophir
Frieder. 2025. Forecasting Prescription Efficacy. In Advances in Information
Retrieval: 47th European Conference on Information Retrieval, ECIR 2025, Lucca,
Italy, April 6-10, 2025, Proceedings, Part V (Lucca, Italy). Springer-Verlag, Berlin,
Heidelberg, 78-82. d0i:10.1007/978-3-031-88720-8_14

Yutao Zhang, Robert Chen, Jie Tang, Walter F. Stewart, and Jimeng Sun. 2017.
LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for
Multimorbidity. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’17). Association for Computing
Machinery, New York, NY, USA, 1315-1324. doi:10.1145/3097983.3098109
Zihao Zhao, Yi Jing, Fuli Feng, Jiancan Wu, Chongming Gao, and Xiangnan He.
2024. Leave No Patient Behind: Enhancing Medication Recommendation for Rare
Disease Patients. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval (Washington DC, USA)
(SIGIR ’24). Association for Computing Machinery, New York, NY, USA, 533-542.
doi:10.1145/3626772.3657785


https://api.semanticscholar.org/CorpusID:948039
https://api.semanticscholar.org/CorpusID:948039
https://doi.org/10.13026/kpb9-mt58
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
https://doi.org/10.1609/aaai.v33i01.33011126
https://doi.org/10.1145/3534678.3539089
https://doi.org/10.24963/ijcai.2021/514
https://doi.org/10.1145/3648695
https://doi.org/10.1007/978-3-031-88720-8_14
https://doi.org/10.1145/3097983.3098109
https://doi.org/10.1145/3626772.3657785

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Medical Recommendation

	4 Experiment
	4.1 Data Preprocessing
	4.2 Retrieval Mechanism
	4.3 LLM-Based Prediction
	4.4 Model Implementation
	4.5 Evaluation

	5 Results
	6 Discussion
	7 Ablation Studies
	8 Future Work
	9 Conclusion
	References

