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ABSTRACT

Sparse retrieval methods like BM25 are based on lexical overlap, fo-
cusing on the surface form of the terms that appear in the query and
the document. The use of inverted indices in these methods leads to
high retrieval efficiency. On the other hand, dense retrieval methods
are based on learned dense vectors and, consequently, are effective
but comparatively slow. Since sparse and dense methods approach
problems differently and use complementary relevance signals, ap-
proximation methods were proposed to balance effectiveness and
efficiency. For efficiency, approximation methods like HNSW are
frequently used to approximate exhaustive dense retrieval. How-
ever, approximation techniques still exhibit considerably higher
latency than sparse approaches. We propose LexBoost that first
builds a network of dense neighbors (a corpus graph) using a dense
retrieval approach while indexing. Then, during retrieval, we con-
sider both a document’s lexical relevance scores and its neighbors’
scores to rank the documents. In LexBoost this remarkably simple
application of the Cluster Hypothesis contributes to stronger rank-
ing effectiveness while contributing little computational overhead
(since the corpus graph is constructed offline). The method is robust
across the number of neighbors considered, various fusion parame-
ters for determining the scores, and different dataset construction
methods. We also show that re-ranking on top of LexBoost outper-
forms traditional dense re-ranking and leads to results comparable
with higher-latency exhaustive dense retrieval.
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1 INTRODUCTION

Traditionally, lexical relevance methods like BM25 [32] are used
for efficient retrieval. These methods consider the surface form of
query and document terms and operate using term overlap, rank-
ing documents with more occurrences of important terms ahead
of others. Since the surface form of terms are the same regardless
of their context within the document, lexical methods tend to miss
highly relevant documents due to the vocabulary mismatch prob-
lem, limiting their effectiveness in both precision and recall. To
overcome this limitation, dense methods were proposed; they go
beyond word overlap by learning semantic representations of the
documents. Thesemethods utilize deep neural networks to learn the
low-dimensional representations and match queries and documents
in the low-dimension embedding space [44]. Dense and neural re-
trieval methods represent documents in vector space of predefined
size. They successfully identify semantic closeness between the
query and document, significantly boosting retrieval effectiveness.

An ideal information retrieval system would thus capitalize on
the efficiency of lexical retrieval methods and the effectiveness of
dense retrieval methods. The efficiency limitation of dense retrieval
methods has led to a number of approximation approaches that
efficiently ‘approximate’ the results of an exhaustive dense retrieval
search, including HNSW [24], IVF [35, 46] and LADR [19]. These
methods come close to a dense retriever and do so relatively effi-
ciently. However, using a dense retrieval component still comes
with substantially higher latency than lexical retrievers, thus only
partially addressing the original problem of simultaneously achiev-
ing high effectiveness and efficiency.

We propose LexBoost that goes beyond lexical overlap by uti-
lizing a document’s neighborhood in dense retrieval space. Rather
than directly combining sparse and dense scores, our approach es-
timates relevance by combining a document’s lexical score with its
neighbors’ lexical scores. This is an application of the Cluster Hy-
pothesis [17]: we use a dense model to identify document proximity
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Figure 1: MAP and Recall(rel=2)@1000 for LexBoost on BM25, PL2, DPH, QLD - TREC DL 2019. The faint horizontal lines are

respective baselines (i.e., 𝜆 = 1).

offline and a sparse model to estimate the relevance of a document
(and its neighbors) online.

Figure 1 presents the improvements of LexBoost when used on
top of lexical retrieval methods like BM25 [32], PL2 [3], DPH [3]
and QLD [5]. Since the neighborhood is identified offline (i.e., at
the indexing time), there is essentially no additional query-time
latency overhead when using LexBoost as compared to existing
lexical retrievers. The enriched relevance information by effectively
using knowledge about the neighborhood and negligible additional
latency overheads separates LexBoost from other retrieval ap-
proaches. In summary, our contributions are:

• We introduce LexBoost, which results in statistically signifi-
cant improvements over the state-of-the-art lexical retrieval
methods, including BM25.
• Our proposed method LexBoost introduces negligible ad-
ditional latency overheads in achieving these statistically
significant improvements.
• We conducted extensive experimentation using standard
benchmark datasets in multiple domains and across a wide
range of parameters and demonstrated improvements.

2 RELATEDWORK

Information retrieval is the process of matching the query against
information items and obtaining the most relevant piece of infor-
mation. This process involves creation of an index which is an
optimized data structure built on top of the information items for
faster access [14]. A model (retrieval strategy) is an algorithm along
with pertinent data structures which assigns similarity score to
every query-document pair [14]. Further, document-document sim-
ilarity has also been explored for various applications [43]. Some
of the foundational models of information retrieval are Boolean
model - built on binary relevance, Vector Space model - uses spatial
distance as a similarity measure and Probabilistic model - estimates
document relevance as a probability [22]. These models have heav-
ily inspired the traditional language/vocabulary driven i.e. lexical
information retrieval.

2.1 Lexical Methods

Traditionally, lexical methods based on word overlap were used
[26]. Utilization of inverted index in this sparse retrieval leads to
high efficiency due to the term to document mapping. Different
methods of weighing and normalization [38] led to a range of Term
Frequency Inverse Document Frequency (TFIDF) models. BM25
[32] is one of the most popular and effective formulation in sparse
retrieval. BM25 is a bag-of-words retrieval function. Here the doc-
uments are ranked based on the query terms appearing in each
document, regardless of their proximity within the document. BM25
can be viewed as a non-linear combination of three basic document
attributes: term frequency, document frequency, and the length
of the document [37]. Document length normalization and query
term saturation are the key features in BM25 and hence it did not
favor shorter or longer documents and mitigates the impact of ex-
cessively high term frequency unlike TFIDF. BM25 is also extended
with prescription regarding how to combine additional fields in
document description [31].

Divergence From Randomness (DFR) framework was proposed
to build probabilistic term weighting schemes [3]. It consists of two
divergence functions and one normalization function. Two of the
best DFR framework models are PL2 (Poisson-Laplace with second
normalization of term frequency) and DPH (hyper-geometric model
Popper’s normalization) [3]. These methods typically suffer from
high vocabulary dependence [27]. Query Linear Combination and
Relevant Documents (QLD) uses relevant documents of similar
queries for expressing the query as a linear combination of existing
queries [5]. Query expansion and pseudo relevance feedback offer
resolve to some extent but come with certain latency overhead
[8]. KL expansion [47], Rocchio [33], Relevance Modelling [25] and
RM3 [1] are popular pseudo relevance feedback methods. Efficiency
of lexical methods is exploited by using it as a first-stage document
ranker for a short listed input to intricate dense retrieval and large
language model based systems [18].

2.2 Dense Methods

Further, to improve the effectiveness of information retrieval sys-
tems neural-based approaches for semantic retrieval, such as those
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utilizing CNNs and RNNs have been proposed. Here text docu-
ments and queries are represented in a continuous vector space. As
a next step neural network based similarity measures are used for
relevance calculation [16, 34]. Additionally, neural methods utilize
learned non-linear representations of text data, resulting in signifi-
cant retrieval performance improvements [34]. Further, BERT [13],
GPT [6] and other transformer architectures [39], have been used
to improve the ability of information retrieval systems to attend to
important parts of the query and documents for matching.

Thus, dense retrieval methods focus on learning dense represen-
tations for documents and work on semantic level. This boosts the
effectiveness by a great extent but at the same time an exhaustive
search over all document vectors results in compromized efficiency.
Mainly, two primary types of dense methods exist: interaction-
based where interactions between words in queries are modelled
and the other being representation-based where the model learns
a single vector representation of the query [30]. TAS-B [15] and
TCT-ColBERT-HNP [21] are some of the state-of-the-art result
producing methods belonging to this category. Further, multi rep-
resentations method exemplified by ColBERT require significant
memory and pruning methods have been proposed to make it more
efficient [2]. Also, better sampling strategies have been proposed
to train more effective dense retrieval models [10]. Dense retrieval
approaches have also been modified to perform entity-oriented
document retrieval [9].

The advent of dense retrieval led to learned vector based pseudo
relevance feedback models. Some of the popular ones include Col-
BERT PRF [42], ColBERT-TCT PRF [21] and ANCE PRF [45]. Models
like CEQE (Contextualized Embeddings for Query Expansion) uti-
lize query focused contextualized embedding vectors [28]. Even
though term based and vector based pseudo relevance feedback
help tackle vocabulary dependence to some extent, they come with
latency overheads. This is where LexBoost differentiates from
others.

2.3 Approximation Methods

Approximation methods approximate results of exhaustive dense
retrieval efficiently for the purpose of enhanced efficiency. Even
though they manage to approximate top results they lack in recall
[19]. Re-ranking is the most popular approximation method where
lexical method like BM25 is used to shortlist top 𝑛 documents
which are then re-ranked using costly dense retrieval methods.
Here, the recall limitation is evident and its severity is determined
by shortlisting parameter 𝑛. Other approximation methods can be
classified into tree-based indexing, locality sensitive hashing and
product-quantization-based and graph-based methods [20]. Popular
approximation methods include HNSW [24], IVF [35, 46], GAR [23],
LADR [19] etc. These methods approximate results of a full dense
retriever relatively efficiently. But the presence of a dense retriever
component still adds additional latency overhead.

2.3.1 Comparison with LADR. LexBoost uses corpus graph to
re-rank the documents on the basis of scores assigned to their
neighbors in the first-stage lexical retrieval. LADR uses corpus
graph to identify additional potentially relevant documents to be
re-ranked along with first-stage retrieval results by a dense retrieval
method in the re-ranking stage. Hence, LexBoost and LADR both

Figure 2: System Architecture

use a corpus graph but for different purposes and at different stages
in the multi-stage retrieval pipeline. On the MS MARCO TREC DL
19 dataset [11], LADR results in MAP of 0.50 using seed documents
from BM25. In the same setup, it results in MAP of 0.51 when using
seed documents from the BM25->LexBoost pipeline. This shows
that LexBoost also results in improved effectiveness when used
in first-stage retrieval for approximation methods like LADR at
virtually no additional latency.

2.4 Hybrid Methods

As sparse and dense retrieval methods provide complementary re-
sults - hybrid methods were proposed [7, 29]. In any hybrid method,
the lexical method and dense method output individual scores and
ranked lists which are combined using various fusion formulations.
Convex Combination of lexical and semantic scores and Reciprocal
Rank Fusion of individual ranked lists are two of the most popular
methods to combine output individual scores and ranked lists [7].
Convex Combination is more robust, agnostic to the choice of score
normalization, has only one parameter and outperforms Reciprocal
Rank Fusion [7]. Further, Convex Combination is also sample effi-
cient with only a small set of examples required to tune the fusion
parameter for the target domain [7].

These hybrid methods have a dense retrieval component and
hence have very high latency. Thus, the effectiveness comes with la-
tency overhead and across the approaches in literature high latency
remains an important issue to be looked at. The key difference in
our proposed method LexBoost is that the statistically significant
improvement is delivered without invoking dense method at query
time.
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Algorithm 1 LexBoost
Require: 𝑞 query, 𝐷 document corpus, 𝜆 fusion parameter, 𝑛 num-

ber of neighbors, 𝐺 Corpus Graph
𝑅 ← {}
𝑆 ← LexicalRetrieval(𝑞, 𝐷) ⊲ retrieve from corpus
for d in S do

𝑁 ← Neighbors(𝑑, top 𝑛 from 𝐺) ⊲ get neighbors

𝑠 ← 𝜆 · Lookup(𝑑, 𝑆) + 1 − 𝜆
𝑛
· ∑
𝑑𝑛𝑒𝑖𝑔ℎ∈𝑁

Lookup(𝑑𝑛𝑒𝑖𝑔ℎ, 𝑆)

𝑅 [𝑑] ← 𝑠 ⊲ save LexBoost doc score
end for

𝑅 ← Rank(𝑅) ⊲ rank docs

3 LEXBOOST

In LexBoost, we determine the final score of each document based
on the lexical score (e.g., BM25) of the document and the lexical
scores of its neighbors. The intuition behind the approach is derived
from the Cluster Hypothesis [17], which states that documents that
are near one another are likely to be relevant to the same query.
Consequently, we consider a document to be more relevant if its
nearest neighbors are also considered relevant. Since the network
of neighbors (i.e., the corpus graph) can be constructed offline, the
online costs of applying dense retrieval techniques are mitigated.

Thus, the insights come from dense retrieval method based sim-
ilarity but without any latency overhead during retrieval. Hence
we name our proposed approach LexBoost. We use Convex Com-
bination for fusion of the two scores given its effectiveness [7].
We define a 𝜆 ∈ [0, 1] parameter for fusion of the lexical method
score and dense method based insight from the corpus graph. 𝜆
parameter is tuned using a validation set for optimal results.

Equation 1 shows the scoring formulation of LexBoost. Here, 𝜆
weight is given to the lexical score of the document in consideration
and 1−𝜆 weight is given to the mean lexical scores of the neighbors.
In Equation 1, 𝑑1, 𝑑2, ..., 𝑑𝑛 ∈ 𝑁 is the set of 𝑛 nearest neighbors
to the document in the corpus graph. The final ranking of the
documents is established using the newly calculated LexBoost
score for each document.

LexBoost(𝑞, 𝑑, 𝐷) = 𝜆·score(𝑞, 𝑑)+1 − 𝜆
𝑛
·

∑︁
𝑑𝑛𝑒𝑖𝑔ℎ∈𝑁

score(𝑞, 𝑑𝑛𝑒𝑖𝑔ℎ)

(1)

Figure 2 depicts the system architecture of LexBoost. The corpus
graph creation using dense retrieval method is done at indexing
time and does not cause any latency overhead at retrieval. For ev-
ery user query, first BM25 scores are obtained for the complete
document corpus. Then as formulated in Equation 1, final Lex-
Boost score is assigned to each document as a combination of the
document score and mean neighbor score. LexBoost is formally de-
scribed in Algorithm 1. Here, Lookup() retrieves the precomputed
BM25 scores of the neighboring documents. Fusion parameter 𝜆
and number of neighbors to be considered 𝑛 are the two key hyper-
parameters of the proposed method. The algorithm clearly shows

that for each document, its score and neighbor scores are looked
up and then final score is calculated using Equation 1.

4 EXPERIMENT

Through extensive experimentation, we address the following re-
search questions:

RQ1: Does the neighborhood of a document in a corpus graph
provide comprehensive insights regarding relevance of the
document to the query?

RQ2: How does the neighbor score based ranking impact re-
trieval latency?

RQ3: Howdoes the effectiveness of the proposedmethod change
with increase in the number of neighbors 𝑛?

RQ4: Howdoes the effectiveness of the proposedmethod change
with variation in the fusion parameter 𝜆?

RQ5: Does the dataset construction method affect the perfor-
mance of the proposed method?

RQ6: Can the optimal fusion parameter be determined through
training samples?

We have released the code to reproduce our results for respective
research questions here1.

4.1 Datasets and Measures

To validate the significance of the proposed method through exper-
imentation, we use three publicly available benchmark datasets.
• TREC 2019 Deep Learning (Passage Subtask). This eval-
uation query set was made available for TREC 2019 Deep
Learning shared task [11]. The document corpus is derived
from MS MARCO [4]. It consists of 43 human-evaluated
queries with comprehensive labeling using four relevance
grades. This benchmark query set has on an average 215
relevance assessments per query.
• TREC 2020 Deep Learning (Passage Subtask). This eval-
uation query set was made available for TREC 2020 Deep
Learning shared task [12]. The document corpus is derived
from MS MARCO [4]. It consists of 54 queries with human
judgments from NIST annotators. This benchmark query
set has on an average 211 relevance assessments per query.
Similar to TREC DL 2019, this too has relevance judgements
on a four point scale.
• CORD19/TREC-COVID. Both clinicians and the public
has been searching for relevant and reliable information re-
lated to COVID-19 since the pandemic. TREC COVID is a
pandemic retrieval test collection built to create and test re-
trieval systems for COVID-19 and similar future events [40].
The document set used for this dataset is COVID-19 Open
Research Dataset (CORD-19) [41]. Relevance judgements for
the collection of 50 topics are determined by human annota-
tors with biomedical expertise.

4.2 Models and Parameters

We construct the corpus graph by identifying 16 most similar docu-
ments using dense retrieval method TCT-ColBERT-HNP [21]. Con-
structing the corpus graph is a one-time process at indexing-stage.

1https://github.com/Georgetown-IR-Lab/LexBoost
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The time complexity to build the corpus graph is O(𝑛2), while the
space complexity is O(𝑛). We consider 2, 4, 8 and 16 number of
closest neighbors (𝑛) for each document from the corpus graph for
experimentation. This choice is ideal as the impact of significant
variation in 𝑛 on LexBoost performance can be studied. Primarily,
the lexical retrieval method used to calculate initial score is BM25
[32]. We define 𝜆 parameter for fusion between initial BM25 scores
and mean neighbor BM25 scores and evaluate for 𝜆 from 0 to 1
at regular intervals of 0.05. To evaluate the robustness of the Lex-
Boost we also built corpus graph using TAS-B [15] and used it to
identify neighbors.

We determine and tune the value of fusion parameter 𝜆 for Con-
vex Combination through validation set given its sample efficiency
[7]. We use TREC DL 19 query set as a validation set for deter-
mining optimal value of 𝜆 parameter. Then, we use this value for
LexBoost on TREC DL 20 query set thus validating our optimiza-
tion approach. We also evaluate LexBoost with a wide range of 𝜆
values on all three datasets to understand the impact it has on the
nDCG, MAP and Recall evaluations.

4.3 Baselines and Implementation

To comprehensively study the performance improvements by Lex-
Boost we compare it with different baseline methods. BM25 is our
primary baseline. Further, we also considered PL2, DPH and QLD
lexical retrieval methods as baselines to show that LexBoost is
agnostic of lexical retrieval method used with it. As corpus graph
construction is performed while indexing, it limits the latency over-
head during retrieval. Hence, we can directly compare LexBoost
Retrieval results with BM25 output in terms of effectiveness. We
also show robustness of LexBoost by running experiments across
wide range of parameters listed in the above section. Fusion param-
eter 𝜆 and number of neighbors considered 𝑛 are the key hyper-
parameters. Additionally, we also compare LexBoost re-ranking
with traditional re-ranking and exhaustive dense retrieval.

5 RESULTS AND ANALYSIS

We now discuss results and their analysis with respect to our re-
search questions.

5.1 RQ1 and RQ2: Insights from corpus graph

and impact on retrieval

As evident in Table 1, Table 2 and Table 3, we evaluated results
across different datasets, a range of number of nearest neighbors
from corpus graph and varying the fusion parameter. We observe
statistically significant improvements in retrieval results across all
these combinations. Figure 4 shows these improvements graphi-
cally for TREC DL 19 and TREC DL 20 query sets. We evaluated
MAP, Recall at 1000 and nDCG at 10, 100 and 1000. Using Lex-
Boost on BM25, MAP improved from 0.3877 to 0.415 and from
0.3609 to 0.3933 on TREC DL 19 and 20 respectively. Similarly, us-
ing LexBoost on BM25, MAP improved from 0.2525 to 0.2950 on the
TREC COVID dataset. Further, we also observe that Recall@1000
improved from 0.7555 to 0.7922 and from 0.8046 to 0.8305 on TREC
DL 19 and 20 respectively. Similarly, using LexBoost on BM25,
Recall@1000 improved from 0.4429 to 0.5020 on the TREC COVID

Figure 3: Heat-Maps showing impact of variation in fusion

parameter 𝜆 and no. of neighbors 𝑛 on LexBoost.

dataset. Similarly, statistically significant improvements were ob-
served on nDCG@100 and nDCG@1000 with LexBoost across the
three datasets under consideration.

To test the applicability of LexBoost, we evaluated it over four
popular and effective lexical retrieval methods. As evident in Ta-
ble 4, LexBoost shows statistically significant improvements over
BM25, PL2, DPH and QLD baselines. Hence, we infer that LexBoost
is robust and can be applied over a wide range of lexical retrieval
methods. Additionally, we created the corpus graph using multiple
dense retrieval methods namely: TCT-ColBERT-HNP and TAS-B.
LexBoost shows statistically significant improvements using both
corpus graphs when evaluated on TREC DL 19 and 20 as evident
in Table 5. This shows that LexBoost is robust and agnostic to
the dense method used to build the corpus graph. Further, we eval-
uate re-ranking using LexBoost. Here, we use a dense retrieval
method on top of LexBoost to re-rank top 1000 documents. As
evident in Table 6, we observe statistically significant improve-
ments over traditional re-ranking pipelines. This experiment was
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Table 1: LexBoost on TREC DL 2019. † denotes statistically significant improvement (paired t-test: 𝑝 < 0.05). Highest values

denoted in bold. In LexBoost(k), k is the number of nearest neighbors.

𝜆 parameter Method MAP nDCG@10 nDCG@100 nDCG@1000 R(rel=2)@1000

BM25 0.3877 0.4989 0.5028 0.6023 0.7555

0.7

LexBoost(2) 0.3977 0.5074 0.5112 0.6158† 0.7802†

LexBoost(4) 0.4032† 0.5127 0.5151 0.621† 0.7847†

LexBoost(8) 0.4107† 0.5204 0.5224 0.6278† 0.7918†

LexBoost(16) 0.415
† 0.526 0.5283† 0.6332

†
0.7922

†

0.8

LexBoost(2) 0.4† 0.504 0.5142 0.6149† 0.7707†

LexBoost(4) 0.4047† 0.51 0.5204† 0.6189† 0.7724†

LexBoost(8) 0.4078† 0.5143 0.5199† 0.6215† 0.7796†

LexBoost(16) 0.413† 0.5251
†

0.5284
† 0.6277† 0.7784†

0.9

LexBoost(2) 0.3974† 0.503 0.5126† 0.6131† 0.764
LexBoost(4) 0.3994† 0.508 0.5146† 0.6162† 0.7696†

LexBoost(8) 0.4017† 0.5112 0.5146† 0.6159† 0.7705†

LexBoost(16) 0.4029† 0.5171 0.5184† 0.6188† 0.7699†

0.95

LexBoost(2) 0.3926† 0.4985 0.5086† 0.6088† 0.7611
LexBoost(4) 0.3946† 0.5015 0.5095† 0.6093† 0.7606
LexBoost(8) 0.396† 0.5052 0.5118† 0.6116† 0.7634†

LexBoost(16) 0.3958† 0.5091† 0.5117† 0.6104† 0.7616†

Table 2: LexBoost on TREC DL 2020. † denotes statistically significant improvement (paired t-test: 𝑝 < 0.05). Highest values

denoted in bold. In LexBoost(k), k is the number of nearest neighbors.

𝜆 parameter Method MAP nDCG@10 nDCG@100 nDCG@1000 R(rel=2)@1000

BM25 0.3609 0.4793 0.4984 0.5962 0.8046

0.7

LexBoost(2) 0.3726 0.4914 0.5069 0.6068 0.8311†

LexBoost(4) 0.3829† 0.5007 0.5185† 0.6123† 0.821†

LexBoost(8) 0.3897† 0.5135† 0.5229† 0.6175† 0.8247†

LexBoost(16) 0.3862† 0.5188† 0.523† 0.6152† 0.8241

0.8

LexBoost(2) 0.3757† 0.4992 0.5116† 0.6082† 0.8305
†

LexBoost(4) 0.3836† 0.504† 0.5191† 0.6143† 0.8303†

LexBoost(8) 0.3933
†

0.5225
†

0.5272
†

0.6218
† 0.8221†

LexBoost(16) 0.3846† 0.5158† 0.5214† 0.6144† 0.8215†

0.9

LexBoost(2) 0.3738† 0.4946† 0.5095† 0.6082† 0.8263†

LexBoost(4) 0.377† 0.5009† 0.5146† 0.6104† 0.8264†

LexBoost(8) 0.3797† 0.5033† 0.5177† 0.6114† 0.8181†

LexBoost(16) 0.3795† 0.5078† 0.5192† 0.6114† 0.8142†

0.95

LexBoost(2) 0.3695† 0.4899† 0.5075† 0.6044† 0.8171†

LexBoost(4) 0.3712† 0.4926† 0.5081† 0.6054† 0.8153†

LexBoost(8) 0.372† 0.4941† 0.5107† 0.6064† 0.8126†

LexBoost(16) 0.3717† 0.4957† 0.5114† 0.6058† 0.8084

conducted on TREC DL 19 and 20 using TCT-ColBERT-HNP and
TAS-B dense retrieval methods. Further, as evident in Figure 5 we
compare LexBoost re-ranking with exhaustive dense retrieval. We
do not consider exhaustive dense retrieval to be a baseline as it not
equivalent to LexBoost re-ranking from latency point of view. In
Figure 5, we notice that LexBoost re-ranking outperforms dense re-
trieval in MAP and show comparable performance in other metrics.

This result is important as LexBoost re-ranking is significantly
more efficient than exhaustive dense retrieval.

Most importantly, these improvements come with negligible ad-
ditional latency overheads. The corpus graph is built and neighbors
are identified while indexing the documents. Hence, LexBoost
enables to use dense retrieval based document similarity insights
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Table 3: LexBoost on TREC COVID. † denotes statistically significant improvement (paired t-test: 𝑝 < 0.05). Highest values

denoted in bold. In LexBoost(k), k is the number of nearest neighbors.

𝜆 parameter Method MAP nDCG@10 nDCG@100 nDCG@1000 R(rel=2)@1000

BM25 0.2525 0.6299 0.4821 0.4191 0.4429

0.4

LexBoost(2) 0.2645† 0.6472 0.4954 0.4319† 0.4584†

LexBoost(4) 0.2781† 0.6257 0.5035† 0.4471† 0.4810†

LexBoost(8) 0.2892† 0.6368 0.5162† 0.4578† 0.4915†

LexBoost(16) 0.2950
† 0.6408 0.5142† 0.4654

†
0.5017

†

0.5

LexBoost(2) 0.2691† 0.6490 0.4989† 0.4368† 0.4637†

LexBoost(4) 0.2813† 0.6337 0.5075† 0.4494† 0.4815†

LexBoost(8) 0.2901† 0.6402 0.5186† 0.4588† 0.4909†

LexBoost(16) 0.2943† 0.6432 0.5192† 0.4630† 0.4963†

0.6

LexBoost(2) 0.2717† 0.6528 0.5022† 0.4402† 0.4673†

LexBoost(4) 0.2815† 0.6367 0.5061† 0.4478† 0.4776†

LexBoost(8) 0.2881† 0.6310 0.5177† 0.4552† 0.4852†

LexBoost(16) 0.2909† 0.6483 0.5203
† 0.4581† 0.4878†

0.7

LexBoost(2) 0.2718† 0.6483 0.5053† 0.4396† 0.4659†

LexBoost(4) 0.2790† 0.6442 0.5083† 0.4449† 0.4720†

LexBoost(8) 0.2833† 0.6444 0.5163† 0.4496† 0.4762†

LexBoost(16) 0.2846† 0.6445 0.5182† 0.4509† 0.4788†

0.8

LexBoost(2) 0.2691† 0.6496 0.5048† 0.4365† 0.4612†

LexBoost(4) 0.2735† 0.6444 0.5041† 0.4388† 0.4639†

LexBoost(8) 0.2754† 0.6409 0.5093† 0.4408† 0.4657†

LexBoost(16) 0.2760† 0.6465 0.5089† 0.4424† 0.4677†

0.9

LexBoost(2) 0.2632† 0.6539 0.4978† 0.4302† 0.4539†

LexBoost(4) 0.2651† 0.6567
† 0.5027† 0.4312† 0.4552†

LexBoost(8) 0.2654† 0.6382 0.5019† 0.4317† 0.4566†

LexBoost(16) 0.2654† 0.6448† 0.4990† 0.4320† 0.4568†

effectively during retrieval limiting latency overheads addressing
RQ1 and RQ2.

5.2 RQ3: Robustness across number of

neighbors considered

As evident in Table 1, Table 2 and Table 3, we evaluated LexBoost
considering a range of nearest neighbors (2, 4, 8, 16) of the target doc-
ument from the corpus graph. Neighbors are the documents in the
corpus graph that are most similar to the target document. We ob-
serve statistically significant improvements irrespective of number
of neighbors selected - with a general trend of higher improvements
and better statistical significance with more neighbors in considera-
tion. Thus, the increasing number of neighbors under consideration
deliver better insights. Trends can be better understood with the
heat-maps shown in Figure 3. The left set of heat-maps is for TREC
DL 19 query set while the right set of heat-maps is for TREC DL 20
query set. The heat-maps depict combinations of fusion parameter
𝜆 and number of neighbors considered 𝑛. For each of the query
set we have five heat-maps for the five metrics we are evaluating.
Darker the shade of blue, better is the performance of LexBoost
for that specific combination in that metric. As evident in Figure

3, the general trend is - with increase in the number of neighbors
considered the performance improves. The bottom-most row in
each heat-map is for fusion parameter 𝜆 = 1 which is equivalent to
the baseline BM25. The significant improvements in performance
across the variety of number of neighbors considered is also clearly
evident by the drastic change in color between the bottom-most
rows and others. This establishes robustness across the number of
nearest neighbors considered from the corpus graph for LexBoost
- hence addressing RQ3.

5.3 RQ4: Robustness across variation in fusion

parameter 𝜆

The fusion parameter 𝜆 decides the role played by neighbors in
relevance of the target document to the user query. We evaluated
LexBoost for fusion parameter 𝜆 values from 0 to 1 at regular
intervals of 0.05 as can be seen in Figure 4. Here, the five plots are
for five metrics under consideration. Part of LexBoost curve above
respective baseline gives the range of 𝜆 parameter values leading
to improvement in performance. Further, some of the 𝜆 values
leading to highest improvements are evident in Table 1, Table 2
and Table 3. We evaluated for these values across three datasets
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nDCG at top 10, 100 and 1000 results

Mean Average Precision and Recall at first 1000 results

Figure 4: Validation based optimization for determination of fusion parameter 𝜆.

Table 4: LexBoost on MS MARCO TREC DL 20. † denotes
statistically significant improvement (paired t-test: 𝑝 < 0.05).
Highest values denoted in bold. In LexBoost(k), k is the

number of nearest neighbors. Top fusion parameter 𝜆 values

determined using TREC DL 19 query set.

Method 𝜆 MAP nDCG@1k R(rel=2)@1k

BM25 0.3609 0.5962 0.8046

LexBoost(16)
0.7 0.3862

†
0.6152

†
0.8241

0.8 0.3846† 0.6144† 0.8215†

0.9 0.3795† 0.6114† 0.8142†

PL2 0.3227 0.5609 0.7772

LexBoost(16)
0.7 0.3508

†
0.5874

†
0.8011

†

0.8 0.3464† 0.5823† 0.7940
0.9 0.3363† 0.5747† 0.7939†

DPH 0.3363 0.5704 0.7980

LexBoost(16)
0.7 0.3645

†
0.5970

†
0.8195

†

0.8 0.3638† 0.5951† 0.8123†

0.9 0.3532† 0.5855† 0.8052†

QLD 0.3580 0.5870 0.8125

LexBoost(16)
0.7 0.3987

†
0.6198

†
0.8347

†

0.8 0.3933† 0.6165† 0.8325†

0.9 0.3790† 0.6045† 0.8258†

Table 5: LexBoost on MS MARCO TREC DL 19 and 20. †
denotes statistically significant improvement (paired t-test:

𝑝 < 0.05). Highest values denoted in bold. In LexBoost(k)(cg),

k is the number of nearest neighbors and cg is the method

used to construct corpus graph. Corpus graph constructed

with HNP: TCT-ColBERT-HNP and TAS: TAS-B.

Method 𝜆 MAP nDCG@1k R(rel=2)@1k

DL 19

BM25 0.3877 0.6023 0.7555

0.7 0.4150
†

0.6332
†

0.7922
†

LexBoost(16)(HNP) 0.8 0.4130† 0.6277† 0.7784†

0.9 0.4029† 0.6188† 0.7699†

0.7 0.4147
†

0.6355
†

0.7896
†

LexBoost(16)(TAS) 0.8 0.4123† 0.6272† 0.7766†

0.9 0.4025† 0.6196† 0.7735†

DL 20

BM25 0.3609 0.5962 0.8046

0.7 0.3862
†

0.6152
†

0.8241

LexBoost(16)(HNP) 0.8 0.3846† 0.6144† 0.8215†

0.9 0.3795† 0.6114† 0.8142†

0.7 0.3966
†

0.6246
†

0.8284
†

LexBoost(16)(TAS) 0.8 0.3892† 0.6190† 0.8267†

0.9 0.3791† 0.6045† 0.8152†
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Table 6: Re-ranking using LexBoost on MS MARCO TREC

DL 19 and 20. † denotes statistically significant improvement

(paired t-test: 𝑝 < 0.05). Highest values denoted in bold. In

LexBoost(k)(m), k is the number of nearest neighbors and

m is the dense retrieval method used for re-ranking. Corpus

graph constructed with TCT-ColBERT-HNP. For m - HNP:

TCT-ColBERT-HNP and TAS: TAS-B.

Method 𝜆 MAP nDCG@1k R(rel=2)@1k

DL 19

BM25 » HNP 0.4643 0.6786 0.7555

0.7 0.4832
†

0.7005
†

0.7922
†

LexBoost(16)(HNP) 0.8 0.4768† 0.6933† 0.7784†

0.9 0.4728† 0.6887† 0.7699†

BM25 » TAS 0.4888 0.6842 0.7555

0.7 0.5070
†

0.7057
†

0.7922
†

LexBoost(16)(TAS) 0.8 0.4995 0.6982† 0.7784†

0.9 0.4971† 0.6946† 0.7699†

DL 20

BM25 » HNP 0.4696 0.6854 0.8048

0.7 0.4779 0.6967 0.8241

LexBoost(16)(HNP) 0.8 0.4763 0.6953† 0.8215†

0.9 0.4731† 0.6911† 0.8142†

BM25 » TAS 0.4878 0.6912 0.8048

0.7 0.4939 0.7023 0.8241

LexBoost(16)(TAS) 0.8 0.4933 0.7011† 0.8215†

0.9 0.4903† 0.6968† 0.8142†

and varying number of nearest neighbors. We observed statistically
significant improvements across a wide array of these combinations.
The trends are evident in more detail in the heat-maps shown in
Figure 3. On the y-axis for each heat-map the fusion parameter
𝜆 varies from 0.6 to 1. Darker the shade of blue - higher is the
performance of LexBoost for that combination. It is evident that
for a wide range of 𝜆 values significant improvements are observed.
Further, the two different query sets are in sync with respect to the
optimal 𝜆 value as evident in Figure 3. This shows effectiveness of
our proposed method LexBoost for a range of fusion parameter
values establishing robustness and hence addressing RQ4.

5.4 RQ5: Robustness across different datasets

under consideration

RQ5 is about LexBoostworking effectively across different datasets
and independent of dataset preparation methods. As evident in
Table 1, Table 2 and Table 3, we evaluated LexBoost across multiple
datasets with different construction mechanisms. MS MARCO v1
passage ranking dataset was constructed by taking union of top
passage lists for a large set of queries [36]. On the other hand,
TREC-COVID dataset uses documents from CORD-19 which is
a large set of scholarly articles about COVID [40]. In each case

Figure 5: Comparison of LexBoost Re-ranking with exhaus-

tive dense retrieval with TCT-Colbert-HNP and TAS-B on

TREC DL 2019 query set.

we found statistically significant improvements for a wide range
of combinations of fusion parameter 𝜆 and number of neighbors
considered. This shows robustness of LexBoost across different
datasets, hence addressing RQ5.

5.5 RQ6: Tuning and optimization for optimal

fusion parameter 𝜆

Figure 4 shows performance of LexBoost in five metrics, namely
nDCG@10, nDCG@100, nDCG@1000,MAP and Recall(rel=2)@1000
for varying fusion parameter 𝜆 values. This evaluation is done using
the TREC DL 19 and TREC DL 20 query sets. The points for the
curve have been plotted for value of 𝜆 from 0 to 1 at regular intervals
of 0.05. The BM25 baseline is shown by a flat line of the same color.
In Figure 4, it is evident that for a wide range of 𝜆 values LexBoost
leads to a better performance than the BM25 baseline. Further, we
also note that both the TREC DL 19 and TREC DL 20 curves are
in sync for all the five metrics in the respective graphs. This vali-
dates the effective use of training set in determining optimal fusion
parameter 𝜆 value - addressing RQ6.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We proposed LexBoost method which utilizes location of the target
document in the corpus graph to gain valuable semantic insights
from the neighboring documents along with their BM25 scores to
determine the final score to be assigned. The enrichment resulted
through semantic insights contributes to the increase in effective-
ness. LexBoost provides a mechanism of effectively utilizing dense
retrieval based similarity derived from the corpus graph with vir-
tually no additional latency overheads at query time. This shows
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statistically significant improvements in precision and recall. The
method is robust across number of neighbors considered, variation
in fusion parameter 𝜆 and multiple datasets. Overall robustness and
improvements with virtually no additional cost makes LexBoost
very impactful. LexBoost re-ranking also shows significant im-
provements over traditional re-ranking results. Further, LexBoost
re-ranking shows comparable performance to high-latency exhaus-
tive dense retrieval.

As a future work, LexBoost could be further extended for Cross-
Lingual Information Retrieval (CLIR) and Multi-Lingual Informa-
tion Retrieval (MLIR) settings. Additionally, the proposed approach
can be extended to scenario which has user history. Here, a joint
document-query graph can be built for stronger insights. We also
plan to evaluate LexBoost architecture on more efficiently built
graphs which use approximation methods for similarity calcula-
tions. We would like leave dynamic (runtime) tuning of fusion
parameter 𝜆 for the future work.
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