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Abstract
State-of-the-art approximate nearest neighbor (ANN) methods like
HNSW and LADR use document-document proximity graphs (also
known as corpus graphs) to identify relevant documents efficiently.
Complete graph construction latency (though built offline) has a
quadratic time complexity of the number of documents, which is a
major hurdle when scaling these methods. Graph approximations
are popular ways to reduce the computational cost of building
such corpus graphs. However, approximations come with a cost,
namely, a lower quality of corpus graphs. Hence, there is a prac-
tical need to understand the tradeoffs between a corpus graph’s
quality and its effectiveness when used with various ANN methods;
in other words, how ‘approximate’ can a corpus graph be while
maintaining strong retrieval effectiveness? We construct approxi-
mate (i.e. poorer quality) corpus graphs using various methods and
present extensive experiments that analyze the robustness and per-
formance of popular ANN methods on these graphs. Our analysis
is performed on multiple datasets, with different parameters and
various poor graph simulation strategies. We also analyze different
graph traversal approaches for robust and efficient retrieval across
graphs of poor quality. We conclude by addressing the utility of
these approaches at the billion-scale, practical scenarios by opti-
mizing graph construction and graph traversal stages. We show
that robust ANN methods like Adaptive LADR show statistically
equivalent performance on poor quality graphs while saving 33%
graph construction time.

CCS Concepts
• Information systems→ Information retrieval.
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1 Introduction
Information Retrieval (IR) systems answer user queries by providing
a ranked list of documents [36]. Both lexical and neural approaches
are commonly used. Lexical approaches compare terms appearing
in user queries and their synonyms with those appearing in doc-
uments to identify and score documents efficiently, while neural
approaches work on effective semantic representation independent
of the typical word-matching paradigm. Combinations of lexical
and neural approaches balance efficiency and effectiveness [20],
often relying on approximate nearest neighbor (ANN) methods.

A primary challenge in using ANN methods in billion-scale IR
scenarios [14] is the expense of a high graph construction time [28].
The quadratic time complexity of the number of documents makes
the graph construction process highly expensive even though it
is performed offline at the indexing stage [13]. For example, on
MS MARCO document corpus with 8.8 million documents, it takes
about 2 hours to build an exact (i.e. full-quality) nearest neighbor
graph on an NVIDIA RTX A6000 GPU. Given the quadratic time
complexity, at billion-scale, a multiplicative factor of 104 leads to
roughly 1000 days for graph construction. Thus, approximations
are usually used, leading to inexact (i.e., poorer-quality) graphs.

ANN search methods come with their own challenges related
to scalability and recall. The efficiency and effectiveness of graph-
based ANNmethods depend on the corpus graph quality and traver-
sal strategies. Thus, we investigate the robustness of graph-based
ANN search methods across parameters with respect to graph qual-
ity and graph traversal strategies and provide insights into efficient
graph construction and traversal for practical search applications.

Our contributions are as follows:
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• We evaluate the impact of graph quality on graph-based
ANN search approaches and observe that ANN methods
with informed seeding strategies are less susceptible to poor
graph quality.

• We provide a robustness comparison of graph-based ANN
approaches across poor graphs and establish the robustness
of LADR over HNSW.

• We study the tradeoff between ANN effectiveness and graph
construction latency and determine threshold graph con-
struction quality parameter resulting in acceptable ANN
effectiveness.

• We analyze the performance of LADR with different explo-
ration strategies across different graph qualities and observe
that Best First Search and A* are the strongest ANN heuristic
search strategies we explored.

2 Related Work
We briefly review related prior efforts, partitioning our review into
lexical, dense, and approximate nearest neighbor approaches.

2.1 Lexical Retrieval
Traditional IR approaches are more word-centric and dictionary-
centric. In these approaches, query terms are used to associate with
target documents according to their frequency in those documents
[27]. Lexical methods are known for their efficiency, as they use an
inverted index. The different weighting possibilities [33] resulted
in more effective variants of TF-IDF such as BM25 [30]. The efforts
continued to eliminate exact word matching and focused more on
relevance in the patterns. It led to machine learning-based IR, result-
ing in better performance, and overcome some of the limitations
posed by lexical approaches [31]. Subsequently, the dense and hy-
brid approaches tried to consider contextual insights in relevance by
learning semantic representations. They resulted in unprecedented
mileage on the effectiveness front.

2.2 Dense Retrieval
Semantic level constraints and the problem of vocabulary mismatch
restrict the performance of traditional lexical approaches. Neural
representations help IR approaches go beyond the words matching
paradigm by using text representations and embeddings. Thus, stan-
dard Bag-Of-Words (BOW) approaches are substituted by neural
approaches. There are interaction-based models and representation-
basedmodels [29]. Interaction-basedmodels focus on learning inter-
action between words in queries. On the other hand, representation-
based models learn an independent single-vector representation of
a query and focus on matching it with documents.

This resulted in different re-ranking pipelines to improve overall
IR efficiency [18]. In typical two-stage approaches, the first stage
tries to deliver efficient short listing of probable candidates while
the second one ranks these probable candidates in a more meticu-
lous manner using costlier approaches. Efficient token-based and
vocabulary-centric approaches, such as BM25 and effective dense
retrieval approaches, such as those based on BERT, paved the way
for two-stage retrieval to strike the balance between efficiency and
effectiveness [6]. The efficiency of lexical methods made them the
first choice for the retrieval of the initial set of documents, and the

effectiveness of dense methods is used to re-rank these results in
the second stage [19, 23, 35]. The effectiveness of dense IR meth-
ods comes with the cost of efficiency, as inverted index cannot be
used. This induced research interest in learning sparse represen-
tations for queries and documents using dense methods [8, 26].
Regularization-based learned-sparse models such as SPLADE are
effective and efficient, as they utilize the inverted index [7, 8, 17].

The need to perform dense retrieval efficiently led to Approxi-
mate Nearest Neighbor (ANN) approaches. Using ANN to reduce
the search space and establish first-stage candidate set leads to
effective and efficient end-to-end retrieval with high recall [24].
Challenges such as efficiency and scalability have raised the need
for models where most of the computation can be performed offline
i.e. at indexing time [26]. ANN search builds corpus graphs offline
and helps to address efficiency needs during retrieval.

2.3 Approximate Nearest Neighbor Methods
Nearest neighbor search looks for the vectors closest to the query
vector in focus. K-Nearest Neighbor is one of the popular informa-
tion search approaches. This approach relies on K-nearest neighbor-
ing documents from the query to retrieve the relevant results [2].
K-Nearest Neighbor search algorithm (K-NNS) performs well in the
case of low dimensionality but the complexity of such algorithms
restricts their applicability in large-dimensional spaces. To over-
come this issue, an approach of K-Approximate Nearest Neighbor
search (K-ANNS) is introduced [10]. This relaxes the most vital con-
straint of the exact search by allowing a small number of deviations
[21]. The scaling of algorithmic complexity and the unavailability
of global connectivity restrict the applications and accuracy of this
approach.

K-ANNS algorithms based on proximity graphs are popularly
known as Navigable Small Worlds (NSW) algorithms and help over-
come scalability limitations. These graphs are navigable because
they have logarithmic or polylogarithmic scaling of the number
of hops during greedy traversal with respect to network size [25].
Thus, ANN search relaxes exactness to obtain higher efficiency.
It uses vector compression and focuses on searching a relatively
smaller part of the database for user query [21]. ANN method pa-
rameters control the size of the database subset searched. The larger
is the subset, the higher is the effectiveness and latency. Approxima-
tion is exploited strictly under the premise of limited compromise
in quality [1].

2.3.1 Non-graph-based ANNmethods. The methods like tree-based
methods, hashing-based methods, and quantization-based methods
fall into the category of non-graph-based ANN IR methods [9].
A limitation of these methods is the need to check many nearby
cells for improved accuracy. This is because most non-graph-based
methods partition the space to answer ANNS queries. Later, they
index the resulting partitions. [9]. Unfortunately, indexing parti-
tions to evaluate neighbors to find the nearest neighbors of a given
query is always challenging and expensive. These issues with non-
graph-based methods are overcome by graph-based methods [22].
Graph-based methods exploit ‘neighbor-neighbor’ relationship in a
better way to approach the query efficiently [34].
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Figure 1: The flow for poor quality graph simulation using: a.) Random replacement strategy with Random, approximate, and
malicious nodes and b.) Using the HNSW graph with different ef_construction parameter values reduced from 40 to 10. NN
graph: Nearest Neighbor graph.

2.3.2 Graph-based methods HNSW and LADR. There is a trade-off
between effectiveness and efficiency in IR methods. ANN methods
help to achieve the best possible trade-off. Hierarchical Navigable
Small World graphs (HNSW) [25], Adaptive and Proactive Lexi-
cally Accelerated Dense Retrieval (LADR) [16] are some of the
state-of-the-art algorithms developed with this objective. A fully
graph-based incremental K-ANN search approach, HNSW, was
proposed to address the limitations in prior methods regarding
scalability and efficiency. The HNSW index includes multiple layers
of proximity graphs where each graph node represents a document
vector. HNSW uses K-ANN graphs and the connected neighbors
might not be the ground truth nearest neighbors [25]. Compared
to exhaustive dense retrieval, the HNSW-based approach results in
substantial latency reduction. HNSW uses random seed points for
final exploration with a dense approach. On the other hand, LADR
empowers dense retrieval models with bag-of-words based seeding
for informed exploration resulting in improved effectiveness [16].
It uses a lexical foundation to identify seed documents to get better
insight into potentially relevant documents. The ANN search for
relevant documents in the proximity graph starts from these seed
documents, leading to informed exploration of the search space.
LADR is a framework which can be tuned as per application. LADR
has two variants, namely Proactive LADR and Adaptive LADR.
Proactive LADR simply expands on the initial seed documents by
combining the seed documents and their nearest neighbors. On the
other hand, Adaptive LADR instead of simple exploration looks for
the neighbors of selected few top seed documents. This process is
repeated by exploring the neighbors of the top retrieved set until
it becomes stable. In general, in graph-based ANN, precomputed
document proximity graphs help to restrict search complexity and
retrieval-time computational needs. Further, methods like LexBoost
demostrate the use of corpus graphs to boost lexical retrieval with-
out the need of a dense reranker [15].

We investigate the performance of graph-based ANN IR meth-
ods HNSW, Proactive LADR, and Adaptive LADR with reference
to graph quality and graph traversal approaches. ANN search effi-
ciency and effectiveness are governed by the quality of the originat-
ing search node(s) and their neighbors. These neighboring nodes in
a corpus graph provide context, namely the relatedness, among the

nodes. Even though corpus graphs are constructed offline, the cost
is often prohibitively large in high-volume data scenarios. The mo-
tivation of this paper is to identify the optimal quality of graph and
the most suitable exploration approach. Further, the investigation
also aims to evaluate robustness of these approaches with refer-
ence to quality of graph, which is extremely crucial for practical
billion-scale applications.

3 Evaluation
To evaluate the performance of graph-based ANN IR methods, we
focused on graph quality and graph traversal.

3.1 Graph Simulation for Graph Quality
To simulate poor quality graphs, we use two different strategies.
One is node replacement strategy, and another is ef_construction
parameter-based strategy. Here, ef_construction parameter con-
trols the number of nearest neighbors considered while building
the graph using HNSW [22]. Here, ef stands for expansion factor.
Figure 1 depicts the flow for poor quality graph simulation using
a.) Random, approximate, and malicious node replacement and
b.) Using the HNSW graph with different ef_construction param-
eter values. This also mirrors real-world scenarios with missing
documents and indexing errors.

For poor graph simulation through node replacement, we used
the node replacement strategy in three different ways. In replace-
ment with a random node, a node from the corpus is randomly
sampled to replace the relevant node. In replacement with an
approximate similar node, a node almost similar to the existing
node is used for the replacement. In replacement with a mali-
cious node, a possible worst node is chosen, i.e., the node farthest
in relationship, for the replacement. This is done by considering the
distance in embedding space. In addition, to increase impurity, we
increase the percentage of nodes replaced. We evaluate the impact
of the degrading quality of graphs on ANN effectiveness.

In another experiment, graphs are simulated using HNSW with
different ef_construction values. In anHNSWgraph, ef_construction
value controls the dynamic list of nodes for constructing the graph.
This, in fact, determines the number of nearest neighbors considered
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when adding a new node. Hence, ef_construction value controls
the quality of graph. Higher ef_construction values improve the
quality of the graph. We reduced the ef_construction values from
40 to 10 in steps to simulate different poor quality graphs with dete-
riorating quality. These simulated poor-quality graphs are used for
experimentation to test the robustness of various ANN approaches
for standard performance measures. We use single-representation
dense retrieval model TAS-B [11] for indexing and graph building
across methods.

3.2 Graph Traversal
Graph traversal approach is an important component of ANN search
methods. Typically, ANN traversal techniques are adapted variants
of greedy search across layers [9, 32]. To investigate the impact
of graph traversal strategies, we adapted different graph traversal
approaches like Best First Search, Hill Climbing, and A* [5] to
analyze their impact on the performance of Adaptive LADR with
the changing quality of the graphs for each of them.

In the Best First Search approach, the best neighboring node
is picked to continue the hunt for the best node until the goal
state is reached. In the Hill Climbing search, the depth-first search
traversal is undertaken with selection of the next move based on
the neighborhood. In the A* search, the heuristic value is clubbed
with the cost incurred. Here, the cost incurred is a function of
the distance from the seed node. We adapted these approaches
for Adaptive LADR and evaluated their performance on graphs of
different qualities. In case of the Hill Climbing and Best First search,
the tie (multiple neighboring nodes have the same evaluation score)
is resolved by random selection of a node, but in case of the A*
search, node closer to the seed node is selected.

3.3 Datasets and Evaluations
We used two standard datasets, TREC DL 2019: TREC 2019 Deep
Learning (Passage Subtask) and TREC DL 2020: TREC 2020 Deep
Learning (Passage Subtask). These are the official evaluation query
sets used in the TREC 2019 [3] and TREC 2020 [4] Deep Learning
shared tasks. While TREC DL 2019 has 43 manually-judged queries
using four relevance grades (215 relevance assessments per query,
on average) TREC DL 2020 has 54 queries with manual judgments
(211 relevance assessments per query, on average). Annotations
for both aforementioned query sets were performed by National
Institute of Standards and Technology (NIST) annotators.

We evaluate using nDCG@10, nDCG@1000 and Recall@1000
for both TREC DL 2019 and 2020. The analysis is performed for
nDCG@1000 and Recall@1000. Since for many precision-oriented
tasks like Conversational IR, a few top results matter, we also eval-
uate nDCG@10 to compare robustness across degrading graph
quality.

3.4 Experiment
We evaluate the robustness of the state-of-the-art graph-based ANN
IR methods. We evaluate them with different input parameters and
their combinations with poor graph simulation strategies. We also
evaluate the performance of Adaptive LADR with different graph
qualities for different graph traversal strategies. We address the
following research questions:

RQ1: How do graph-based ANN IR methods perform on poor
quality corpus graphs simulated using node replacement
strategies?

RQ2: How do graph-based ANN IR methods perform on poor
quality corpus graphs simulated using HNSW with different
ef_construction parameter values?

RQ3: How do the number of neighbors and seed set size affect the
performance of LADR on poor quality graphs?

RQ4: How does the robustness of LADR compare to HNSW with
top results (nDCG@10) in consideration across different
graph qualities?

RQ5: What is the trade-off between graph-based ANN search ef-
fectiveness and graph construction latency?

RQ6: How does the graph exploration strategy affect the perfor-
mance of LADR across different graph qualities?

We have released the code to reproduce the results of our exper-
iments.1

4 Results and Analysis
We now discuss and analyse of the results of graph-based ANN
search robustness with reference to poor quality corpus graphs
across parameters. ANN effectiveness and graph construction la-
tency tradeoff is also established and analyzed. We also analyze
how graph-based ANN effectiveness varies with different heuristic
search-based graph traversal methods.

4.1 RQ1: Node replacement policy impact
This RQ focuses on the performance impact of node replacement
policy. We simulated poor quality corpus graphs using three re-
placement strategies, namely, replacement with a random node,
replacement with an approximately similar node, and replacement
with a malicious node. In steps, we increase the percentage of nodes
replaced with poor-quality nodes to evaluate the impact of degrad-
ing quality of graphs on ANN effectiveness. In Table 1, we show
the effectiveness of HNSW, Proactive LADR and Adaptive LADR
with changing graph quality through node replacement strategies.
nDCG@1k and Recall@1k are given for random, approximate, and
malicious node replacement strategies with varying parameters and
changing the percentage of nodes replaced. We conducted experi-
ments with 16 and 64 neighbors for Proactive LADR, and Adaptive
LADR. We used ef_search value of 16, 64 and ‘no space bounded
queue (nsbq)’ for HNSW experiments. ef_search controls the size
of candidate list considered during search process in HNSW.

From Table 1, we note that nDCG@1k and Recall@1k decrease
as the quality of the graphs degrades for HNSW. For Proactive and
Adaptive LADR however, the degrading graph quality leads to com-
paratively less decrease in nDCG@1k and Recall@1k irrespective
of node replacement strategies. On TREC DL 2019 query set, for
HNSW with no space bounded queue, nDCG@1k reduces to 0.179
from 0.649 and Recall@1k reduces to 0.137 from 0.742 with 80%
malicious replacement. For the same setting, in Adaptive LADR
with 64 neighbors, nDCG@1k reduces to 0.695 from 0.724 and Re-
call@1k reduces to 0.779 from 0.857. Similar trends are observed on
TREC DL 2020. Table 1 shows that LADR variants are more robust

1https://github.com/Georgetown-IR-Lab/Graph-Quality
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Dataset TREC DL 2019 TREC DL 2020

Metric nDCG@1k Recall@1k nDCG@1k Recall@1k

Method n Graph 0% 40% 80% 0% 40% 80% 0% 40% 80% 0% 40% 80%

HNSW

16
random 0.303 0.186 0.059 0.303 0.193 0.062 0.411 0.251 0.087 0.455 0.273 0.108
approx 0.303 0.199 0.101 0.303 0.204 0.105 0.411 0.272 0.119 0.455 0.285 0.149
malicious 0.303 0.187 0.064 0.303 0.179 0.048 0.411 0.263 0.099 0.455 0.282 0.092

64
random 0.535 0.333 0.100 0.579 0.364 0.103 0.544 0.336 0.121 0.631 0.385 0.144
approx 0.535 0.354 0.197 0.579 0.391 0.241 0.544 0.359 0.169 0.631 0.410 0.250
malicious 0.535 0.340 0.144 0.579 0.341 0.114 0.544 0.360 0.142 0.631 0.392 0.123

nsbq
random 0.649 0.403 0.118 0.742 0.468 0.135 0.673 0.410 0.135 0.792 0.482 0.159
approx 0.649 0.426 0.253 0.742 0.505 0.336 0.673 0.449 0.234 0.792 0.512 0.350
malicious 0.649 0.420 0.179 0.742 0.429 0.137 0.673 0.457 0.172 0.792 0.498 0.148

Proactive
LADR

16
random 0.728 0.714 0.692 0.847 0.813 0.774 0.730 0.716 0.696 0.878 0.852 0.819
approx 0.728 0.712 0.706 0.847 0.816 0.801 0.730 0.713 0.707 0.878 0.849 0.836
malicious 0.728 0.712 0.697 0.847 0.819 0.778 0.730 0.713 0.700 0.878 0.854 0.823

64
random 0.725 0.709 0.690 0.850 0.808 0.776 0.731 0.716 0.695 0.889 0.859 0.818
approx 0.725 0.707 0.706 0.850 0.814 0.810 0.731 0.713 0.709 0.889 0.855 0.840
malicious 0.725 0.706 0.695 0.850 0.816 0.779 0.731 0.713 0.699 0.889 0.863 0.827

Adaptive
LADR

16
random 0.729 0.712 0.691 0.860 0.812 0.778 0.739 0.719 0.696 0.903 0.861 0.819
approx 0.729 0.709 0.701 0.860 0.817 0.793 0.739 0.719 0.709 0.903 0.863 0.840
malicious 0.729 0.709 0.697 0.860 0.819 0.779 0.739 0.719 0.698 0.903 0.871 0.818

64
random 0.724 0.712 0.694 0.857 0.823 0.779 0.735 0.719 0.696 0.904 0.869 0.823
approx 0.724 0.709 0.704 0.857 0.826 0.812 0.735 0.717 0.710 0.904 0.863 0.846
malicious 0.724 0.710 0.695 0.857 0.833 0.779 0.735 0.717 0.703 0.904 0.873 0.832

Table 1: Retrieval effectiveness of ANN methods across graphs of different qualities simulated using ‘replacement’ strategy.
n is the ANN method parameter. For HNSW n is ef_search and for LADR variants n is the number of neighbors. In random
replacement, we replace the nodes in the graph randomly from the document corpus. In approx replacement, we use the 128𝑡ℎ
ranked neighbor for replacement. In malicious replacement, we use the farthest document from the corpus for replacement.
0%, 40% and 80% replacement results are shown above. Statistically equivalent values in each row are denoted in ‘bold’ using
TOST p<0.05. 0% replacement implies that the original high quality graph is used. With an increase in the percentage of nodes
replaced (graph degradation) we can observe a decrease in both nDCG@1k and Recall@1k for both HNSW and LADR variants.
But LADR result degradation is lower compared to that of HNSWmaking it more robust.

than HNSW when evaluated on poor graphs simulated using node
replacement strategy addressing RQ1.

4.2 RQ2: HNSW-based (ef_construction) poor
quality corpus graph impact

We simulate poor quality corpus graphs using HNSW with dif-
ferent ef_construction values. Table 2 shows the effectiveness of
HNSW, Proactive LADR and Adaptive LADR across different qual-
ity graphs simulated using HNSW with different ef_construction
parameter values. nDCG@10, nDCG@1k and Recall@1k results
are shown across ef_construction and ANN parameter values. The
ef_construction values are reduced from 40 to 10 to construct dif-
ferent poor quality graphs. As we reduce the ef_construction value,
nDCG@1k results are compromised in the case of both HNSW and
LADR variants. However, a lower impact on LADR variant results
is observed. These trends hold on both TREC DL 2019 and TREC DL
2020 query sets. Similarly, Recall@1k decreases for both HNSW and
LADR variants as we reduce ef_construction, but LADR variants
are more robust than HNSW.

For TREC DL 2019, when ef_construction value is reduced from
40 to 10, nDCG@1k for HNSW (nsbq) reduces to 0.466 from 0.671

while Recall@1k reduces to 0.467 from 0.782. On the other hand,
in the same setting, nDCG@1k for Adaptive LADR (64 neighbors)
reduces to 0.716 from 0.729 while Recall@1k reduces to 0.832 from
0.856. Similar trends are observed on TREC DL 2020. The majority
of the nDCG@1k and Recall@1k results produced with low-quality
graphs for both LADR variants are statistically equivalent. Table
1 and Table 2 together show that the impact on the results and
the trend of change in performance remain the same regardless
of the poor graph simulation strategies. Further, LADR variants
are more robust than HNSW on poor graphs simulated by varying
ef_construction value addressing RQ2.

4.3 RQ3: Impact of the seed set size and number
of neighbors

This RQ evaluates the impact of the size of the seed set and the
number of neighbors considered on the robustness of the method
for poor quality graphs. We perform a grid search by varying the
seed node set size and number of neighbors in order to analyze the
performance of Proactive and Adaptive LADR for different poor
quality graphs. Figure 2 shows a heat map depicting nDCG@1k
and Recall@1k over various combinations of the above parameters
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Dataset TREC DL 2019 TREC DL 2020

Setup ef construction value

Metric Method n 40 30 20 10 40 30 20 10

nDCG@10

HNSW

16 0.505 0.473 0.440 0.269 0.659 0.589 0.497 0.218
32 0.579 0.491 0.482 0.311 0.659 0.631 0.549 0.254
64 0.611 0.569 0.545 0.354 0.680 0.634 0.600 0.360
nsbq 0.671 0.669 0.674 0.579 0.681 0.681 0.681 0.612

Proactive LADR 16 0.713 0.707 0.710 0.705 0.688 0.693 0.690 0.684
64 0.708 0.711 0.713 0.706 0.688 0.690 0.688 0.684

Adaptive LADR 16 0.710 0.707 0.713 0.708 0.685 0.689 0.689 0.684
64 0.711 0.708 0.710 0.701 0.685 0.687 0.689 0.683

nDCG@1k

HNSW

16 0.481 0.448 0.364 0.165 0.649 0.550 0.451 0.144
32 0.577 0.486 0.425 0.206 0.679 0.629 0.521 0.187
64 0.614 0.567 0.515 0.238 0.700 0.645 0.584 0.275
nsbq 0.671 0.663 0.645 0.466 0.700 0.696 0.682 0.532

Proactive LADR 16 0.722 0.717 0.714 0.706 0.719 0.722 0.720 0.710
64 0.723 0.723 0.723 0.716 0.728 0.729 0.726 0.718

Adaptive LADR 16 0.729 0.723 0.723 0.712 0.728 0.730 0.721 0.710
64 0.729 0.727 0.729 0.716 0.727 0.730 0.729 0.719

Recall@1k

HNSW

16 0.536 0.486 0.374 0.141 0.759 0.624 0.505 0.119
32 0.659 0.534 0.447 0.193 0.805 0.730 0.600 0.163
64 0.707 0.633 0.564 0.221 0.836 0.752 0.677 0.255
nsbq 0.782 0.762 0.738 0.467 0.848 0.843 0.829 0.584

Proactive LADR 16 0.840 0.833 0.819 0.805 0.865 0.868 0.858 0.843
64 0.845 0.841 0.842 0.826 0.887 0.889 0.880 0.867

Adaptive LADR 16 0.854 0.847 0.836 0.813 0.883 0.885 0.864 0.846
64 0.856 0.855 0.856 0.832 0.890 0.893 0.890 0.868

Table 2: Retrieval effectiveness of ANN methods across graphs of different quality created using HNSW with different
ef_construction values. Lower the ef_construction value poorer is the quality of graph. n is the ANN method parameter.
For HNSW, n is ef_search and for LADR variants, n is the number of neighbors. Statistically equivalent values in each row
are denoted in ‘bold’. For both HNSW and LADR variants, results degrade with reduction in ef_construction value. However,
LADR results are more robust than HNSW and hence witness lower impact. Both Proactive and Adaptive LADR show statistical
equivalence in all cases with 64 number of neighbors.

Method Graph n TREC DL19 TREC DL20

Proactive
LADR

exhaustive 16 88.14% 89.07%
64 86.74% 88.33%

HNSW 16 88.37% 91.67%
64 85.81% 88.70%

Adaptive
LADR

exhaustive 16 85.35% 89.26%
64 85.12% 88.15%

HNSW 16 85.35% 89.82%
64 84.65% 87.78%

Table 3: Percentage of documents in the top ten results that
are a part of BM25 seed set. Our analysis considered both
exhaustive (exact neighbors) and HNSW-based graphs. n is
the number of neighbors considered. In both cases, approx-
imately 80 to 90% of documents are part of the BM25 seed
documents. Further, we note that the percentage is slightly
greater when the number of neighbors lower.

for the TREC DL 2019 query set. Our evaluations were conducted
on graphs simulated using HNSW for ef_construction values of

40 and 10. Here, we vary the number of seeds from 200 to 1000
at intervals of 200 and number of neighbors in 8, 16, 32, 64. The
darker the shade of blue, the higher the effectiveness in terms of
both nDCG@1k and Recall@1k. For the high quality corpus graph
(ef_construction=40) for Proactive LADRwith 64 neighbors, a lower
number of seeds leads to higher effectiveness.

In Figure 2, we observe that on the high quality graph (i.e.
ef_construction=40), seed size of 200 and 64 neighbors leads to
nDCG@1k of 0.735 and Recall@1k of 0.858. In all other cases for
both Proactive and Adaptive LADR, the general trend is that with
increasing number of seeds and neighbors, the effectiveness in-
creases. For example, in Adaptive LADR when we increase seed
size from 200 to 1000 and neighbors from 8 to 64, nDCG@1k in-
creases from 0.675 to 0.729 on high quality graph while it increases
from 0.622 to 0.716 in poor quality graph (ef_construction=10). In a
similar setting, for Adaptive LADR, Recall@1k increases from 0.760
to 0.849 for high quality graph while it increases from 0.674 to 0.832
in poor quality graph. From these results we infer that the trends
across seed set size and number of neighbors remain the same for
both poor and high quality graphs. We also note that the result
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Figure 2: Comparison of Proactive and Adaptive LADR ef-
fectiveness on high quality (ef_construction=40) and poor
quality (ef_construction=10) graphs across grid search with
seed size in [200, 400, 600, 800, 1000] and number of neigh-
bors in [8, 16, 32, 64]. We evaluate and analyze nDCG@1k
and Recall@1k across parameter combinations on TREC DL
2019 query set. In the above heat map, we observe a general
trend of improving effectiveness with increasing seed set
size and number of neighbors. Further, we also note lower
effectiveness for poor quality graphs.

values for poor quality graphs when compared with respective
values from high quality graphs are lower as expected.

4.4 RQ4: Robustness of LADR as compared to
HNSW across graph quality for top
(nDCG@10) results

This RQ evaluates the change in nDCG@10 effectiveness across
poor quality graphs and analyzes ANN method design aspects

Figure 3: nDCG@10 vs PercentageReplacement formalicious
node replacement to simulate poor quality graphs. DL19:
TREC DL 2019 query set, DL20: TREC DL 2020 query set.
Proactive and Adaptive LADR evaluated with 64 neighbors.
HNSWevaluatedwith ‘no space bounded queue’ setting. Drop
in nDCG@10 for HNSW and robustness of LADR variants
with increasing percentage replacement are clearly evident.

contributing to the performance. We also analyze the impact of the
number of neighbors considered in Proactive and Adaptive LADR,
and ef_search parameter in HNSW on the top results. The quality
of top results (nDCG@10) with respect to the percentage of nodes
replaced is depicted in Figure 3 for HNSW, Proactive LADR, and
Adaptive LADR on both TRECDL 2019 and 2020 query sets. For both
LADR variants, regardless of the datasets, there is no performance
compromise despite increasing percentage replacement. For HNSW
however, there is a clear drop in performance with an increasing
percentage of replacement. As evident in Figure 3, nDCG@10 even
after 80% node replacement is 0.710 and 0.704 for Proactive and
Adaptive LADR with 64 neighbors, respectively. Although it is
0.703 at 100% replacement for both LADR variants. On the other
hand, nDCG@10 for 80% replacement for HNSW (nsbq) drops to
0.290 from 0.653. These results are for the TREC DL 2019 query set.
This primarily sheds light on the minimal degradation in LADR
performance regardless of poor graph quality.

Table 2 also shows nDCG@10 results for HNSW, Proactive LADR
and Adaptive LADR for various parameter values. Across graphs of
different qualities (ef_construction values from 40 to 10), Proactive
and Adaptive LADR yields statistically equivalent results as shown
in bold. On the other hand, for HNSW the drop in nDCG@10 is
higher with a statistically significant drop for ef_construction value
of 10 from 40 further supporting robustness of LADR variants over
HNSW.

Table 3 shows the percentage of documents in the top ten results
that are part of the BM25 seed set. In the case of Proactive LADR,
irrespective of the graph construction strategy, approximately 85 to
89% of the documents in the top 10 results come from the seed nodes
for TREC DL 2019 and approximately 88 to 92% of the documents
in the top 10 results come from the seed nodes for TREC DL 2020.
Similarly, for Adaptive LADR around 84 to 86% for TREC DL 2019
and 87 to 90% for TREC DL 2020 of the documents in the top 10



SIGIR-AP 2025, December 7–10, 2025, Xi’an, China Hrishikesh Kulkarni, Sean MacAvaney, Nazli Goharian & Ophir Frieder

nDCG@1k and Recall@1k results for the MS Marco document corpus with reference to Graph Construction Latency

Figure 4: nDCG@1k (left) andRecall@1k (right) results for theMSMarco document corpuswith reference to GraphConstruction
Latency (in seconds). Here, the nearest neighbor graphs of different qualities have been simulated using the popular HNSW
based simulation with different ef_construction parameter values 10, 20, 30, 40. With increase in graph construction latency,
better quality graphs are created leading to better nDCG@1k and Recall@1k results. Also, Adaptive LADR leads to better results
with the same graph when compared to Proactive LADR as expected. From the plots, we can infer that graph construction can
be tuned to make retrieval more efficient while maintaining acceptable loss in effectiveness.

results are from seed nodes. This shows that for LADR variants, the
seed nodes play an important role for the top results, especially for
lower values of the number of neighbors. These trends are observed
in both the TREC DL 2019 and 2020 query sets. The robustness
in the top 10 results of the LADR variants can be attributed to
the mechanism of considering BM25 seed documents that have a
prominent presence at the top, as evident in Table 3. This underlines
the utility of LADR for precision-oriented applications where only
the top results are consequential; thus, the robustness of LADR
with reference to the nDCG@10 results addresses RQ4.

4.5 RQ5: The trade-off between ANN
effectiveness and graph construction latency

After establishing the robustness of the graph-based ANN IR meth-
ods Proactive and Adaptive LADR regardless of graph quality, we
analyzed the savings in graph construction costs. This RQ focuses
on analyzing the effectiveness and graph construction latency trade-
off. Query-time latency remains unaffected across graphs of differ-
ent qualities. Figure 4 shows the nDCG@1k and Recall@1k versus
graph construction latency for Proactive and Adaptive LADR. As
seen in Figure 4, there are significant savings in terms of graph
construction time with a poor quality graph without greatly com-
promising effectiveness. The major leap of improvement in effi-
ciency is observed while going from ef_construction value of 40
to 20. Especially, Adaptive LADR with 64 neighbors leads to no
decrease in Recall@1k and nDCG@1k when ef_construction value
is reduced from 40 to 20. This comes with a 899-second (33%) de-
crease in graph construction latency. Similar trends are observed
for Proactive LADR (64 neighbors) with no decrease in nDCG@1k
and decrease by 0.03 in Recall@1k when ef_construction value is
reduced from 40 to 20 while saving 899 seconds (33%) in graph
construction time. We recommend ef_construction values between

20 and 30 for efficient graph construction while maintaining robust
performance.

Further reducing ef_construction value (20 to 10) leads to even
more efficient graph construction but also results in a reduction
in effectiveness. For example, Adaptive LADR with 64 neighbors
saves an additional 703 seconds (25.9%) while suffering 0.013 and
0.024 reduction in nDCG@1k and Recall@1k, respectively. Thus,
there is a clear trade-off between graph construction latency and
effectiveness. The recommended parameters can help practition-
ers tune the construction methods for their specific applications.
Optimal performance is observed for ef_construction values in the
range of 20 to 30 addressing RQ5.

4.6 RQ6: Graph exploration strategies
RQ6 focuses on the analysis of the graph-based ANN search results
with reference to different graph exploration policies. Three heuris-
tic search and exploration approaches, namely Best First Search,
Hill Climbing Search, and A* search, are adapted and implemented
for exploration in the case of Adaptive LADR. Figure 5 shows the
performance of LADR (nDCG@1k and Recall@1k) on the TREC DL
2019 and TREC DL 2020 query sets. The Best First Search method
and the A* Search method have comparable results for nDCG@1k
for both the TREC DL 2019 and TREC DL 2020 query sets. A similar
trend is observed for Recall@1k. On TREC DL 2019, for Adaptive
LADR with 64 neighbors, when the ef_construction value is re-
duced to 10 from 40, nDCG@1k reduces to 0.716 from 0.729 for
the Best First Search strategy. While for A∗, nDCG@1k reduces to
0.723 from 0.741 under the same settings. Similarly, for the Best
First Search, Recall@1k reduces to 0.832 from 0.849 and for A∗, Re-
call@1k reduces to 0.825 from 0.860. For both of these approaches,
there is a slight reduction in performance for poor-quality graphs
constructed when the ef_construction value is reduced to 10. How-
ever, the use of Hill Climbing Search results in lower performance
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nDCG@1k and Recall@1k results on TREC DL 2019 dataset for Best First Search, A* and Hill Climbing heuristic search methods in Adaptive
LADR across poor and high quality graphs

nDCG@1k and Recall@1k results on TREC DL 2020 dataset for Best First Search, A* and Hill Climbing heuristic search methods in Adaptive
LADR across poor and high quality graphs

Figure 5: nDCG@1k and Recall@1k results on TREC DL 2019 and 2020 for Best First Search (BeFS), A* and Hill Climbing (HC)
heuristic search methods in Adaptive LADR. ef_construction = 40 is used to simulate high quality graph while ef_construction
= 10 is used to simulated poor quality graph. n =16 and 64 are parameters for respective heuristic search methods. We observe
higher effectiveness of BeFS and A∗ when compared with HC. Further, we also note that HC is more robust to poor quality
graphs than the other two heuristic search methods.

across query sets. This can be attributed to the depth-first nature of
the Hill Climbing Search which is counterintuitive to the Cluster-
ing Hypothesis [12]. Interestingly, the impact on the performance
due to the graph quality is negligible for Hill Climbing Search as
compared to the two other search approaches under consideration.
In the same setting as above, for the Hill Climbing search strategy,
nDCG@1k reduces to 0.674 form 0.68 while Recall@1k reduces to
0.772 from 0.774. The robustness here is a result of depth first nature
not making most out of the clustering hypothesis and hence is less
affected by graph quality. Figure 5 provides a detailed performance
analysis of poor graph qualities with reference to the impact of
graph exploration strategies addressing RQ6.

5 Discussion and Conclusion
Graph-based ANN search methods in IR like HNSW, Proactive
LADR and Adaptive LADR try to strike a balance between effec-
tiveness and efficiency. The quality of the graph and its efficient
exploration are the two pillars of the success of these approaches.
We presented a detailed investigation and extensive evaluation on
this front. We simulated graphs of varying qualities using different

approaches. We demonstrated the use of different node replace-
ment approaches and different ef_construction values (through
HNSW) to simulate graphs with deteriorating qualities. The study
was carried out to evaluate the robustness of graph-based ANN
search methods. We conclude that Proactive LADR and Adaptive
LADR are robust to a great extent, regardless of the quality of
the graph. Using both LADR variants, we can achieve statistically
equivalent effectiveness even in the case of compromised poor-
quality graphs, especially for top results (nDCG@10) while saving
up to 33% of graph construction time. However, that is not the case
for HNSW, where effectiveness deteriorates significantly with a
reduction in graph quality. Moreover, the effectiveness of LADR
variants is not impacted much by the graph traversal method. A*
and Best First Search deliver higher performance as compared to
the Hill-Climbing Search. The depth-first nature of Hill Climbing
with the constrained locality information restricting the selection
of neighbors is the striking reason for its low performance.

Finally, our efforts also establish the utility of LADR in case of
unavailability of good quality graphs in real-life scenarios with a
predominance of faulty agents and poor signals.
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