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Grooming of ‘Arbitrary Traffic in SONET/WDM
R i n g s

Peng-  Jun Wan Liwu Liu Ophir Frieder

Abstract- SONET  add-drop multiplexers (ADMs)  are
the dominant cost in SONET/WDM rings. They can po-
tentially be reduced by optical bypass via-wavelength add-
drop multiplexers (WADMs)  and traffic grooming. While
many works have been done on the grooming of all-to-all
uniform traffic and one-to-all traffic,  the grooming of ar-
bitrarv trai3lc have not been studied vet. In this naner
we l&t  proves the NP-hardness of this-problem. We‘ then
presents two genera1 lower bounds on the minimum ADM
cost. After that we propose a two-phased algorithm. The
two subproblems in these two phases are both NP-hard.
Various approximation algorithms are proposed to each
subproblem, and their performances are briefly discussed.

I .  INTRODUCTION

Coupling wavelength division multiplexing (WDM)
technology [ 141 with synchronous optical network
(SONET)  rings [lo] is a very promising network architec-
ture that has attracted much attention recently [5]  [6]  [8]
[9]  [13] [15] [17].  In this network architecture, each WDM
channel carries a high-speed (e.g., OC-48) SONET  ring.
Each SONET  ring can further carry a number of low-
speed (e.g., OC-48) traffic streams. The number of the
low-speed streams that can be carried in a SONET  ring is
referred to as the trafic  granularity, denote by a param-
eter g. The key terminating equipments are wavelength
add-drop multiplexers (WADMs)  and SONET  add-drop
multiplexers (ADMs).  Each node is equipped with one
WADM. The WADM can selectively drop wavelengths at
a node. Thus if a wavelength does not carry any traf-
fic from or to, a particular node, the WADM allows that
wavelength to optically bypass the node rather than be-
ing electronically terminated. Thereby in each SONET
ring a SONET  ADM is required at a node if and only if
it carries some traffic terminating at this node. Therefore
the SONET/WDM  ring.architecture  can not only greatly
increase the capacity, thereby reducing the amount of re-
quired fiber and allowing for more graceful upgrades, but
also potentially reduce the amount of required SONET
ADMs.  As SONET  ADMs  typically cost on the order
of hundreds of thousands of dollars, eliminating SONET
ADMs  potentially represents a significant cost saving.

In general, the minimum ADM cost problem is to par-
tition the set of traffic demands into a number of groups
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such that each group can be carried in a single SONET
ring and the total ADM cost is minimized. Recent studies
on the traffic grooming in the SONET/ADM rings have
been focused on all-to-all traffic [5]  [S]  [13] [15] [17] [19]
and one-to-all traffic [8]  [II] [13] [18].  While the study
of these traffic is essential in the planning and design
of SONET/WDM rings, the traffic pattern after the de-
ployment of the SONET/WDM rings may become arbi-
trary. Thus the study of the grooming of arbitrary traffic-
becomes a necessity. In this paper we will address the
grooming of arbitrary traffic. Without loss of generality,
we assume that the demand of each traffic is of one unit,
e.g. OC-3, for otherwise it can be split into multiple sub- ,
traffics of unit demand. To simplify the study, we assume
that the routing of all traffic demands are predetermined.
Such an instance can be represented by a set A of m cir-
cular arcs in clockwise direction over a ring of n nodes,
and the traffic granularity g.

The remaining of paper is organized as follows. In Sec-
tion II, we prove the NP-hardness of the optimal groom-
ing of the arbitrary traffic for any fixed grooming gran-
ularity. In Section III, we present two lower bounds on
the minimum ADM cost for any grooming granularity.
In Section IV, we decompose the minimum ADM cost
problem into two subproblems, which both remain NP-
hard. Subsection IV-A and Subsection IV-B present vari-
ous approximation algorithms for these two subproblems.
Finally we conclude this paper in Section V.

II. CO M P U T A T I O N A L  CO M P L E X I T I E S

Let A be any set of circular arcs over a ring. With-
out loss of generality, we assume that each node in the
ring is one endpoint of some arc in A, for otherwise we
can remove this node and this removal does not affect
the ADM cost. Thus the ring size can be implied from
A. With these assumptions, an instance of the minimum
ADM problem is simply a set of circular arcs. We use
opt,(A) to denote the minimal number of ADMs  required
to support the set of traffic demands traffic granularity
g represented by A. A is said to be uniformly loaded
if the number of circular arcs passing through each link
is the same. In particular, if there are exactly L cir-
cular arcs in A passing through each link, A is said to
be L-u&for&y  loaded. The following theorem shows the
NP-completeness of the minimum ADM problem for any
fixed constant g.

Theorem 1: Let g be any fixed integer constant. For
any set of uniformly loaded circular arcs A, to find
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opt,(A) is NP-complete. However, this lower bound is in general very loose.
Proof: We will reduce the circular-graph coloring When no two circular arcs share the same source and

problem to the minimum ADM problem. The circular- des t ina t ion ,  we  can  deve lop  another  bound  by  ca lcu la t ing
arc  color ing problem has  been proven to  be  NP-complete the maximum  ADM efficiency, the maximal number of
in [3]. The proof in [3]  actually implies the following circular arcs that an ADM can carry out in average for
s t ronger  resu l t : any given traffic capacity of the wavelength. In the next

Given a L-uniformly loaded circular arcs A, to de- we will introduce a stronger result. We define the load of
tide  whether its corresponding circular arc graph is L- a set of arcs over a ring to be the maximal number of arcs
colorab le  i s  NP-Complete. that share a link. Given any two positive integers n and

Let A be any L-uniformly loaded circular arcs. N o t e g, let A(n,  g) denote the maximal number of different arcs
that the chromatic number of the circular-arc graph car- over a ring of n nodes whose load is c. Then the maximal
responding to A, denoted by x (il),  is at least L, and node efficiency over an n-node ring with link capacity g
x C-4 = L if and only if A can be partitioned into L is defined by
subsets  each of  which forming a  r ing.

We first consider the case that g = 1. Obviously,
optl(A)  1 IAJ,  and the equality holds if and only if A

A(n, g>
E(n,g) = -n ’

can be partitioned into L subsets each of which forming
a ring. Thus optl(A) = IAl if and only if x (A) = L. This and the maximal node efficiency with link capacity g is

implies that the minimum ADM problem is NP-complete defined by

when g = 1 even if the traffic demands are uniformly
loaded . E(g) = TF;  Eh 9).

-
Now we consider the case that g > 1. Let A’ be the

set of arcs obtained by making g copies of A. We show To illustrate the concepts, let’s look’the cases that the
that opt,(A’) = (A( if and only if x(A)  = L. Consider link capacity g is one or two. It’s obvious that when
any optimal grooming of A’. Each ADM can terminate 9 = 1y  ~~(~1 l) = n and thereby E(n, 1) = E(1) = 1.
at most 2g  arcs. As each arc is terminated by two ADMs, When g = 2, it’s easy to verify that
cumulatively there are 21A’I  = 2g(AI  arcs terminated by
all ADMs.  Hence

3n
A(n,2) =

opt,(A’) 1 y = IAl,
111

32,  _ 1  ii  E  s i
-5- -

and thereby E(2) = z.
and the equality holds if and only if each ADM termi- In general, we call a set of arcs to be a canonical set
nates exactly 2g  arcs. Noting that in each wavelength of arcs if it satisfies the following property: if an arc of
at most g arcs can cross over any link, each ADM ter- length e is in this set, then all arcs of length less than
minates exactly 2g  arcs if and only if there are exactly l? are also in this set. It’s easy to show that any set of

g copies of one arc between any neighboring ADMs  in a arcs over a ring can be transformed to a canonical set of

wavelength. Thus opt,(A’) = IAl if and only if each ag- arcs of the same cardinality over the same ring and with

gregated ring is g copies of a subset of A which forms a the same or less load. Thus there is always a canonical
ring. Therefore opt,(A’) = ]A(  if and only if A can be set of A(n,g) arcs over a ring of n nodes whose load is
partitioned into L subsets each of which forms a ring, or g. Such canonical set of A(n,g) arcs can be generated
equivalently x(A)  = L. This implies that the minimum in the following greedy manner: we first add all arcs of

ADM problem is NP-complete even if  the traffic demands length one, then we add all arcs of length two and so on
are uniformly loaded. n until we can not add all arcs of some length; in this case

we add as much arcs of such length as possible. Based
III. GENERAL LOWER BOUNDS on th is  greedy se lec t ion ,  we  ca lcu la te  the  A(n,  g),  E(n,  g)

In this section, we present some lower bounds on the and E(g) for any n and g in the next.

minimum ADM cost of any given set of traffic requests. The following lemma gives the load of the set of arcs

One straightforward lower bound can be derived in the Of  length  no more  than  Ic.
following way. Let gi and ri denote the total number Lemma 2: For any e 5 n - 1, the load of all arcs of

of circular arcs originating at and terminating at node i length no more than e over a ring of size n is v.
respectively. Then the node i must use at least Proof: For any k < n - 1, there are n arcs of length

[maxr,C)l
k. These n arcs of length k contribute a load of k to each
link. Thus the load contributed to each link by those nC
arcs of length at most e is

ADMs.  Hence the total ADM cost is at least e(e + 1)
i+2+...+e=2.

Wb  =
n
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Let ! be the largest integer satisfying that v 5 g. the maximal ADM efficiency, we have the following lower
If n 5 e + I, then the load of all n(n - 1) arcs over a ring bound on the minimal ADMs  required.
of size n is no more than g, and thereby Lemma 4: Let g be the transmission capacity of each

wavelength. Then the minimum ADM cost of any set of
A(n,  9) = n(n - l), traffic demands given by D different circular arcs is at
E(n,g)=n-l<e-1 where e is the largest integer satisfying

Now we assume that n > e + 2. If g = F, then the that w 5 9.
load of all ne  arcs of length at e over a ring of size n is
exactly g, and thereby IV. TW O-PHASED APPROACH

A(n,g) = ne,
E(n,q)  = e.

Due to complexity of the problem, we propose the fol-
lowing two-phased approach.
Generation of Primitive Rings: Partition the given

If g > w, then A(n,g) -
set of circular arcs into groups such that the circular arcs

T
ne  is equal to the maximal in any group do not overlap. Thus the circular arcs in

number o arcs of length I + 1 which contribute a load of each group can be arranged in a single ring, called as
no more than g - 9 to each link. The cumulative link a Primitive en9. The cost of each group (or primitive
load contributed by these arcs of length e + 1 is at most ring) is defined as the number of nodes appearing as the

As each arc of length e + 1 contributes a endpoints of the circular arcs contained in this primitive

unit load to e + 1 links, the total number of such arcais
ring, and the cost of a partition is defined as the sum of
the costs of the primitive  rings  wit&n this  partition. The

is then to find a valid partition with minimum

A(n,g)  - ne  5 Grooming of Primitive Rings: Group those primi-
tive rings into high-speed aggregated rings such that the

On the other hand, it’s obvious that number-of primitive rings in each aggregated ring is no
more than the traffic granularity 9. Each aggregated ring

Hence

A(n,g)-ne>  $
L J(

e(e  + I) is then assigned a unique wavelength or equivalently a
g-2 .

>
SONET  ring. As the size of each aggregated ring repre-
sents the ADM cost contributed by this aggregated ring,
the sum of the sizes of these aggregated rings are exactly
the total ADM cost required by the grooming. The ob-

,J  (g-  %p)
e jective is thus to find a grooming of a set of primitive

<A(n,g)Sn(&+2) rings with minimum ADM cost.

.] (8-v)  <E(n,g)<&+i.

This two-phased approach tries to minimize the cost of
the entire system by solving two individual optimization
problems. However, the combination of an optimal so-
lution in each phase, even if it could be found, does not

., when n is a multiple of fJ + 1, necessarily lead an overall optimal solution. In the next,
, n\ we briefly discuss the approaches to both phases.

In particular

A(n,  9) = n (&+i)~

Therefore

E(n,g) = & + f .

E(9)  =  $  +  f.

A. Generation of Primitive Rings

The optimal generation of primitive rings is essentially
the same problem studied in [7], which considers how to
assign wavelengths to a set of lightpaths to minimize the
total ADM cost. Both problems can be interpreted as the
minimum ADM cost problem when the grooming granu-
larity is one. From Theorem 1, it is NP-hard  in general.
A simple lower bound on the minimum ADM cost was

The next lemma summarizes the above discussion. derived in [7], which was later improved in [12] by the au-

Lemma 3: For any positive integer g, the maximal thors. Two heuristics were developed in .[7]:  Cut-First,

node efficiency is & + f where e is the largest integer and Assign-First. The former allows splitting of circu-

satisfying that 9 5 g.
lar arcs while and the latter does not. The original design
and analysis of Assign-First presented in [7]  contains

The maximal node efficiency provides an upper bound some bugs, which were fixed in[12].  In addition, three
on the maximal ADM efficiency. As the total number new greedy heuristics were proposed in [12]:  Iterative
of ADMs  required is at least the total traffic divided by Merging, Iterative Matching, and Euler Cycle De-
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composition. Their approximation ratios were shown to
be  at most f. Recently, another greedy algorithm called
Close Segment First was proposed in [2], whose ap-
proximation ration was shown to be between ,$ and c.
To describe the design of these algorithms, we first intro-
duce some terminologies.

We call  a sequence of circular arcs as  a chain of arcs,
or a chain in short, if the termination of each circular
arc (except the last one) is the origin of the subsequent
circular arc. For each chain c, the number of nodes in
c is referred to as the cost of c, and the number of arcs
in c is referred to the size  of c denoted‘.by [cl. A chain
c is said to be odd (or even) if its size is odd (or even
respectively). A chain is said to be close if the termina-
tion, of the last circular arc is also the origin of the first
circular arc, or open otherwise. If the circular arcs in a
chain do not overlap with each other, then the chain is
called as a segment. A chain which is not a segment c+
be split into a number of segments by walking along the
chain from some starting arc and generating a segment
whenever  there is an overlap. If the chain is open, the
first arc in the chain is chosen as the starting arc. If the
chain is close, any arc in the chain can be chosen as the
staring arc.

Given a set of primitive rings, its cost can be calculated
as follows. Each primitive ring can be treated as a col-
lection disjoint segments. As the cost of a close segment
is equal to the number of circular arcs inside the segment
and the cost, of an open segment is one plus the number
of circular arcs inside the segment, the cost of a primi-
tive ring is equal to the number of open segments plus
t‘he  total number of circular arcs in this primitive ring.
Conse&&y,  the cost of a set of primitive rings is equal
to the total number of open segments in all the primitive
rings plus the total number of circular arcs.

Based on this observation, two sets of primitive rings
would have the same cost if they contain the same number
of open segments. The optimal set of primitive rings must
contain the minimal number of open segments, and vice
versa. Thus  the optimal generation of primitive rings
can be solved in two phases: in the first phase, called
as segmenting phase, the circular arcs are grouped into
segments such that the number of open segments is as
few as possible; in the  second phase, called as coloring
phase, these segments are grouped into minimum number
of primitive rings. Note that the second phase is exactly
the well-studied circular-arc coloring problem [16].  The
second phase only affects the number of primitive rings,
but has no impact on the total cost of these primitive
rings. So we only have to consider the optimal segmenting
problem.

All t,he algorithms proposed in [12] and [2]  are all ap-
proxim,ation  algorithms for the optimal segmenting. Due
to the  space limitation, we briefly describe the designs of
Iterative ‘Merging, Iterative Matching and Close
Segment. First. In Iterative Merging, each segment
consists of one circular arc. At each iteration, one of
the following three possible operations is performed in

decreasing priority:
Operation 1. Merge two open segments into a close seg-
ment.
Operation 2. Split an open segment into two open seg-
ments and then merge one of them with another open
segment into a close segment.
Operation 3.
segment.

Merge two open segments into a larger open

Such iteration is repeated until no merging can be ob-
tained any more.

In Iterative Matching, initially each segment con-
sists of one circular arc. At each iteration, we construct
a weighted graph over the current set of segments as fol-
lows. There is an edge between two segments if and only
they do not overlap but share at least one endpoint. The
weight of an edge is the number of endpoints shared by
the two segments incident to this edge. We then find
the maximum weighted matching in the graph. The two
segments incident, to each edge in the obtained matching
are then merged into a larger segment. Such iteration is
repeated until no matching can be found any more.

The Close Segment First consists of two stages. In
the first stage, it finds as many close segments as possible.
In the second stage, it uses the iterative matching to ob-
tain as few open segments as possible from the remaining
circular arcs.

The details of their designs and performance analyses
can be found in [12] and [2].

B. Grooming of Primitive Rings

An instance of the optimal grooming of primitive rings
is the grooming granularity g, and a collection of primitive
rings represented by a collection of sets Al, AZ,  . . . , A,
from the universe (0, 1,. . . , n - l}. A solution is a par-
tition of the collection of primitive rings (or sets) into
groups of size at most g. A group of size k is referred to
as a k-group. If all groups in a partition are k-groups, the
partition is referred to as a k-grouping. The ADM cost
of each group is the cardinality of the union of its com-
ponent primitive rings in it, and the total ADM cost of a
grooming is thus the sum of the costs of the all groups.
The objective is to find an grooming with minimal total
ADM costs.

Two versions of Ring Grooming are considered. In re-
stricted ring grooming, the number of groups has to be
the minimum y

11
so as to minimize the wavelength re-

quirement. In unrestricted ring grooming, there is no con-
straint on the number of aggregated rings. However, one
can show that there is always existing an optimal unre-
stricted ring grooming in which at most one group con-
tains [f] or less primitive rings, and thus the number of
aggregated ring is at most, one plus twice the minimum.
In particular, when g = 2, there is one optimal unre-
stricted ring grooming which is also an optimal restricted
ring grooming.

It was shown in [l] that optimal restricted ring groom-
ing is NP-hard for any fixed g > 2. When g = 2, the
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optimal ring grooming can be solved in polynomial time.
The optimal solution is reduced to a maximum weighted-
matching. For any collection of sets II, its intersection
graph, denoted by G (lI), is a weighted complete graph
constructed as follows: the vertex set is II; the weight
of each edge (A, B) is equal to IA  il BI. A matching of
G (II) is also simply called as a matching of II. When
g = 2, any optimal res,tricted  grooming corresponds to a
maximum-weighted perfect matching of the given primi-
tive rings.

When g is a power of two and m modg = 0, we pro-
pose the following algorithm called iterative matching for
optimal restricted ring grooming. It consists of logg it-
erations. Let II1 be the, original sets. The i-th iter-
ation starts with Iii,  a 2”-‘-grouping of II,,  and finds
a maximum-weighted perfect matching of l&.  Then for
each edge in the obtained matching, the two sets incident
to the edge are merged. Thus the 6th  iteration outputs
a 2i-grouping  of II,,  denoted by &+I.  A trivial upper
bound on the approximation ratio of the iterative match-
ing is $. By more sophisticated analysis, the approxima-
tion ratio was shown in [l] to be exactly 1.5 when g = 4
and at most 2.5 when g = 8. In general, its approxima-
tion ratio was conjectured to be at most $  -t $.
The iterative matching can be extended to the case

that g is not a power of two. Even when g is a power
of two, we can still make some potential improvement.
For an example, if two sets have an empty intersection,
we can leave them alone so that each of them can poten-
tially be matched with some other sets in the future to
save some ADMs.  With such modification, the number
of original sets in each group, referred to as the group
size, might be different from each other. So in the sub-
sequent iteration, any two groups can be merged only if
the sum of their group sizes is no more than g. Another
observation is that when the maximum matching is zero,
further grouping can still be conducted in order to reduce
the number of wavelengths. The optimal grouping that
uses the minimal number of wavelengths can be formu-
lated into the well-known bin-packing problem, which is
an NP-complete problem but has many well-known ap-
proximation algorithms [4].

Based on above discussions, the general iterative
matching is described follows. The algorithm maintains
the group size for each group. At each iteration, a
weighted graph is constructed as follows. Each vertex
corresponds a current group, and there is an edge be-
tween two groups if and only if the their intersection is not
empty and the sum of their group sizes is no more than g.
The weight of each edge is then equal to the cardinality
of the intersection of the two groups incident to this edge.
If the edge set is not empty, we find a maximum weighted
matching in this weighted graph, and then merge the two
groups incident to each edge in the obtained matching.
The group size of each  g?oup  is updat.ed  accordingly. The
algorithm then starts the next iter&ib6:  If the edge set
is empty, we merge the groups by applying any approxi-
mation algorithm for the bin-packing problem to reduce
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V. C O N C L U S I O N

This paper addresses the traffic grooming of arbitrary
traffic in SONET/WDM  rings. We first proves the NP-
hardness of this problem. We then presents two general
lower bounds on the minimum ADM cost. After that
we decompose the minimum. ADM cost problem into two
subproblems. Both subproblems remains NP-hard. Vari-
ous approximation algorithms are proposed to each sub-
problem, and their performances are briefly discussed.
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