
The Design of PIRS, a Peer-to-Peer Information

Retrieval System

Wai Gen Yee and Ophir Frieder

Database and Information Retrieval Laboratory
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
yee@iit.edu, ophir@ir.iit.edu

Abstract. We describe the design of PIRS, a peer-to-peer information
retrieval system. Unlike some other proposed approaches, PIRS does
not require the centralization of data onto specially designated peers. It
is therefore applicable to a larger environment. We explain our design
decisions, analyzing its benefits and potential shortcomings. We then
show that PIRS significantly improves over search performance found in
todays P2P file sharing systems.

1 Introduction

Many of today’s peer-to-peer (P2P) file sharing systems were initially conceived
as successors to Napster, which was used primarily for the exchange of music. As
such, they are designed to allow simple annotation of files, including the artist
and song title.

As long as a file’s metadata are well-known, searches are simple. A query
matches a file if its terms are substrings of the metadata’s terms. For example,
consider two instances of the same song, annotated by the terms “Smashing
Pumpkins 1979,” and “Pumpkins Greatest Hit 1979,” respectively. A query for
a query “Smashing Pumpkins Greatest Hits” (which likely refers to the song)
will not return either instance.

This problem illustrates a limitation of P2P search: It requires the user to
know the exact metadata associated with an instance of the file to perform
a successful search. This is problematic for the naive user, who is unaware of
annotation conventions, or for a user not looking for a particular song, but for a
particular type of music (e.g., “songs from bands from Chicago”). This problem
is exacerbated by the fact that many song files are automatically annotated
using Web databases, such as freedb.org. Such annotation results in the identical
annotation of all copies of a particular song, and gives users disincentives to make
their own annotations.

The goal of this paper is to describe how information retrieval (IR) can help
alleviate this problem in a P2P environment. In our analysis, we spend some time
describing the characteristics of P2P systems, and the degree to which existing



P2P systems possess them in Section 2. In Section 3, we informally describe the
P2P file sharing model. We describe the design of PIRS, our P2P IR System,
in Section 4, and present some experimental results in Section 5. In Section 6,
we discuss PIRS’s compatibility with other work, as well as the future of P2P
IR. We make concluding remarks and discuss future work Section 7.

2 Limits of Current Work in P2P Information Retrieval

2.1 Characteristics of P2P Systems

As described in [1], P2P systems are characterized by low maintenance over-
head, improved scalability and reliability, synergistic performance, increased au-
tonomy, privacy, and dynamism. P2P systems are inexpensive to maintain and
have good scalability because they use the full resources of all participants, who
function as both clients and servers. They are more reliable, because the fail-
ure of any one peer does not disable the entire system. They offer synergistic
performance because peers can utilize resources (e.g., data, CPU cycles, disk
space) that are underutilized by others. They are dynamic, allowing peers to
autonomously join and leave the system, and thereby changing the types of
resources offered. They offer privacy because P2P networks lack central authen-
tication servers. P2P systems are therefore ideal in environments populated by
many autonomous users with dynamic needs and surplus resources.

These characteristics distinguish P2P systems from previous technologies,
such as distributed computing, and ad-hoc communication. Distributed com-
puting refers to computing on a platform where resources are located on many
physically distinct locales. Unlike P2P systems, these resources may be highly in-
tegrated and interdependent. Ad-hoc communication refers to a communication
platform in which a client can automatically join an existing network. Ad-hoc
networking deals with the lower-level communication infrastructure on which
P2P systems can be built. P2P computing is therefore a unique paradigm that
creates new possibilities for information technologies.

2.2 The Limits of Information Retrieval Using Web Search Engines

The Internet offers a medium by which everyone can easily gather, and share
information. Today, the dominant paradigm for sharing information is via the
Web. Organizations set up Web servers that host Web sites where they can pub-
lish information. Individuals also have a chance to publish information through
personal Web pages or blog pages. To access this information, users simply type
in the appropriate URL into a Web browser.

There is a gap, however, in bringing together information publishers and
consumers–how exactly does one find the appropriate URL that points to desired
information? Today, this gap is bridged by Web search engines, such as Google.
A consumer enters some relevant terms into Google, which returns heuristically-
defined best matches.



The problem with relying on Google to find published data is that publishers
must wait for Google to crawl their Web pages before they appear in any search
results. Because crawling occurs only periodically, material published today will
not be found for some time. Another problem is that Google caches indexed
content. Once this happens, publishers lose control over the dissemination of
their material [2]. Furthermore, the results returned by search engines can be
suspect. For example, rankings can be influenced by commercial interests [3].
Finally, centralizing query services limits the scalability and reliability of the
search engine: A single server can only index so much content (Google claims to
index slightly more than 4 billion Web pages, which is considered only a small
fraction of those available), and also is a single point of failure. A more relevant
example is Napster, whose centralized architecture made it easy prey for legal
attacks.

Recent P2P file sharing systems that focus on file transfer, such as BitTorrent
[4] suffer from the same problems as Web search engines. BitTorrent is different
from Gnutella in that the former focuses on download performance, whereas
the latter focuses on search. BitTorrent allows a client to download a single
file from multiple sources simultaneously, thereby improving performance, and
distributing load. However, it relies on Web search engines to provide search
capabilities for shared content, and therefore has all the problems discussed
above.

P2P systems solve many of these problems. Because queries are sent directly
to data sources, results are up-to-date and reflect the currently available data.
Upon receipt of results, the peer can use custom algorithms to rank them. This
eases their perusal as users have more trust in their rankings. Finally, there is
no single point of failure with P2P systems. A query likely returns results even
with the failures of multiple nodes [5].

2.3 Current Peer-to-peer Information Retrieval Systems and their
Limits

Work on P2P information systems has focused on either bandwidth efficiency, or
the development of unifying data models. The PeerSearch system [6] is built on
top of the CAN routing infrastructure [7]. CAN places content in a P2P network
based on its hash value. PeerSearch proposes to create a distributed index, which
is partitioned and similarly placed on a network. This deterministic placement
of content improves bandwidth efficiency by constraining the way a query is
routed. (The original version of Gnutella, in contrast, floods queries over the
network [8].) In [9], the authors take a similar approach. They assume a hybrid
networking architecture where some the peers that are deemed more reliable and
capable act as servers. These servers, besides routing queries, also store metadata
statistics, such as term frequencies, that are used by traditional IR algorithms.

Other systems, such as Edutella [10] and PeerDB [11] propose data models
that standardize the way data and services are published and queried.

While these systems have much potential, they are limited due to the con-
straints that they put on the infrastructure and applications. The PeerSearch



system works best in an environment where peers are reliably connected to the
Internet. This is necessary because shared content is centralized in certain peers
based on their hash values. The loss of a peer results in the loss of all its associ-
ated content or the transfer of massive quantities of data. Furthermore, it takes
control of data placement out of the users’ hands. These characteristics violate
the principles of P2P systems that are described in Section 2.1. A solution to this
problem is to replicate content by applying multiple hash functions on content.
This is problematic as well, because it increases both the amount of data every
peer must maintain and network traffic as well. Notably, no work we know of has
been done on P2P information retrieval in highly dynamic environments where
peers frequently join and leave the network.

Edutella and PeerDB focus more on standards than on information retrieval.
Standardization, however, tends to raise the bar for entry into a network because
it forces users to do more work to publish content. This has the effect of limiting
the amount of data that are published, thereby reducing the network’s overall
usefulness [12].

Note that it is not our goal to be purists in P2P system design. The popularity
of Napster (in terms of market impact and user satisfaction) demonstrates that,
under certain conditions, there is no need. At the same time, pure P2P systems
were shown to have scalability problems [13], which can be alleviated by the
use of a hybrid architecture [14]. However, the fact that a system works without
being purely P2P does not mean that it might not work better if it were so.

3 Model

In a typical file sharing model, each peer (which we may refer to as a client
or a server, depending on the context) maintains a set of shared files (or data

objects). Each file is annotated with a set of metadata terms, contained in a
descriptor. The particular terms contained in a descriptor of an instance of a file
is user-tunable.

Users create queries to find files in the P2P system. A query is a metadata
set that a user thinks best describe a file. These queries are routed to reachable
peers. (Queries generally do not reach all peers due to network conditions or
details of the routing protocol.) Returned are pointers to instances of files that
match the query, and the file’s metadata set. The matching criterion is for all
the query terms to be substrings of some term of the file’s metadata set.

Users study the returned metadata sets to decide on the file to download.
Once the user makes her selection, she downloads the file by selecting its asso-
ciated file pointer. The client follows the pointer, downloads the file, and then
becomes a server for an instance of that file.

Note that although our discussion uses music file sharing as an application,
it also applies to other applications. For example, an HTML document is also a
file that can analogously be annotated with metadata in the form of META tags.
The terms in the META tags can be tuned independent of the “content” of the
HTML document.



4 The Design of PIRS

4.1 Goals

Our goal is to design a P2P IR system that focuses on client behavior and is fully
distributed. The system must make little or no assumptions about the underly-
ing communication infrastructure and the behavior of servers (i.e., other peers).
For example, CAN routing and PeerSearch (mentioned above in Section 2) tac-
itly assumes that the network is stable and servers are reliable. Consequently,
although these systems have potentially excellent performance, violating either
of these assumptions results in the loss of either queries or data. In this light,
these systems tend to fall somewhat between the categories of distributed and
P2P systems.

A system that does not make assumptions about the communication infras-
tructure and behavior of peers avoids these problems. The obvious questions to
ask therefore are:

1. How well would such a P2P IR system work? For example, IR requires global
statistics about the available data for effective ranking. In a highly dynamic
environment, such statistics are hard to yield. Furthermore, even if such data
were available, would it be possible to implement IR ranking functions in a
P2P application? The question here is about performance in terms of query
result quality as well as computational complexity.

2. Could such a system adapt to changes in system conditions? Making no as-
sumptions in designing a P2P system may be too conservative an approach.
In some cases, the network and peers are capable and reliable. Can the P2P
system take advantage of this condition, if available? Gnutella’s Ultrapeer
architecture demonstrates adaptability; it conserves bandwidth given a sta-
ble environment, but also works (albeit less efficiently) in an unstable one
[14].

Our goal is to answer these two questions. To do this, we describe the design
of PIRS. In doing this, we highlight the complexities of applying IR techniques
to a P2P environment.

4.2 Overview

PIRS is designed to combine the search capabilities of information retrieval sys-
tems with the dynamic network management of P2P systems. It works by man-
aging metadata in such a way as to gradually increase the variety of queries that
can be answered for a given file. This is done by adapting the annotation of
a particular file to match query patterns. PIRS accomplishes its goals in three
ways:

1. Metadata collection (Section 4.3) - Collect as much metadata as possible
for a shared file, using various means. Increasing the amount of metadata
increases the likelihood that a query will find matches. For simplicity, the
size of the metadata set is generally limited in size, thus a decision must be
made as to which metadata to maintain.



2. Metadata distribution (Section 4.4) - Heuristically replicate metadata from
other peers when downloading a file. By sharing metadata from multiple
peers, the variety of queries that can be matched for a given file increases.
Again, the client must decide on a limited set of metadata to maintain.

3. Metadata use (Section 4.5) - Utilize IR techniques to rank results, disam-
biguating them, and thereby improving the likelihood of a correct download.

The processes of metadata collection, distribution, and use work together
to improve the search capabilities of PIRS. Ostensibly, they can work indepen-
dently to improve search, but with diminished benefits. For example, IR ranking
functions alone can be incorporated into Gnutella, without PIRS’s metadata
distribution techniques.

By design, PIRS is simple to incorporate into many existing P2P protocols.
This is a consequence of its functionality being concentrated on client behav-
ior, and its independence from networking infrastructure. Many existing P2P
protocols focus on aspects of query routing, which is independent of PIRS’s
functionality. Consequently, PIRS can be built on top of many of today’s pop-
ular P2P file sharing applications, such as Gnutella and FastTrack. We discuss
this in more detail in Section 6.

PIRS Versus Other P2P IR Systems The major difference between PIRS
and other P2P IR systems is that PIRS treats metadata as a dynamic resource
that should be managed collectively by all peers. Effective management of meta-
data improves query result quality. The inspiration of this work stems from the
notion that, from a client’s perspective, the P2P network is a repository of files,
each of which is described collectively by a body of metadata. The better a file’s
body of metadata describes the file, the easier the file should be to find.

Current P2P IR systems do not have this perspective. They treat each down-
load as an individual transaction, without regard to how it (the download) affects
the file’s body of metadata. The download of a file generally also results in the
replication of that file’s metadata from a particular server. The downloading
client becomes an additional server for the file, but with marginal benefit, be-
cause the clients it serves are exactly those which the original server serves. The
additional server’s role in the network is largely redundant.

4.3 Metadata Collection

Metadata collection is the process by which a file is annotated with identifying
terms. We now describe how metadata collection is typically done in commercial
P2P systems. We also describe a unit of metadata that PIRS exploits for good
performance.

Metadata terms are directly used for query matching. It is therefore impor-
tant to build into PIRS effective means of annotating files. One of these means
includes creating an easy to use user interface, which encourages users to add
metadata. Other means include automatic annotation via metadata foraging and
the use of intrinsic file characteristics.



Recent versions of P2P file sharing systems offer templates that help a user
annotate certain types of files, such as audio files, using special application-
specific fields [15]. These templates structure metadata, potentially increasing
the query matching possibilities.

Much metadata are also automatically foraged from Internet sources. For
example, when wav files are ripped from commercial compact disks, the rip-
ping software automatically collects ID3 metadata (e.g., title, artist) [16] for
it from Web sites such as freedb.org. Other metadata are intrinsic to the file.
Such metadata include the size of the file, its filename, and the last time it was
accessed. Making these metadata available for querying requires some simple
programming.

Finally, some systems automatically derive useful metadata from the intrinsic
characteristics of the file. BitTorrent, for example, generates a unique hash key

(e.g., an SHA-1 hash [17]) for each file, which can simplify its search and be a
means of validating the file’s contents [4]. A hash key can also be used to group
files that are returned by queries.

PIRS uses a file’s hash key for validating and grouping files. Such use of
the hash key has not been universally adopted. LimeWire’s Gnutella groups by
filename, file type, and file size [18]. BearShare and eDonkey only use hash keys
to authenticate files.

One problem with requiring all files to be annotated with a hash key is its
computational cost. This problem has been acknowledged by BearShare, which
claims that computing keys in a background process takes only 25% of a CPU’s
cycles [19]. Hash keys can also be computed while a file is being downloaded,
extracted (if it is compressed), or ripped. Piggybacking these processes amortizes
the cost of computing the hash key.

Maintaining a hash key for files also does not hurt PIRS’s compatibility with
existing P2P file sharing systems. It would be treated as another generic unit of
metadata by a peer that did not realize its significance.

4.4 Metadata Distribution

Metadata distribution is the process by which peers exchange metadata with
each other in order to describe a file. In this process, each peer does just a
little work to better collectively describe shared data. This process complements
metadata collection in building an effective body of metadata for each shared
file.

Metadata distribution is crucial for two reasons. First, if metadata are not
distributed among multiple nodes, then the system may become vulnerable. If
all metadata were concentrated on a single node (e.g., as with Napster), the
system becomes unusable if that node becomes unreachable. This vulnerability
violates a basic principle of P2P systems.

Second, data that are not distributed properly could leave correlations in
term occurrences, which limit the degree of query matching. For example, assume
there are two metadata ripping systems for song files: one extracts the album
name (denoted t1) and the song’s track number (t2), and the other extracts the



album’s label (t3) and year (t4). If files were only annotated using these two
rippers, then a query, {t1, t3} would not return any results due to the matching
criterion.

PIRS distributes metadata in a way that avoids this problem. During a query,
it groups all metadata for each unique file in the results. When a user selects a
file, metadata are heuristically replicated from the file’s group onto the client.
Grouping of unique files is straightforward, as each result is assumed to contain
the file’s hash key. The heuristics we consider for metadata replication include:

– Server terms (server) - The client selects the metadata that exist on the
single server from which it downloads. This is the solution that is commonly
used in today’s P2P file sharing systems. It is notable for its simplicity.

– Most frequent terms in the group (mfreq) - The client selects the terms
that occur most frequently in the group. The justification for this approach
stems from the assumption that, because these terms appear so much, they
are strongly associated with the file, and therefore most likely to occur in
queries.

– Least frequent terms (lfreq) - The client selects the terms that occur least
frequently in the group. The usefulness of this approach is that these terms
help distinguish this file from others. It also balances out the term distribu-
tion.

– Random terms (rand) - The client randomly selects terms from the group,
maximizing the number of term combinations.

– Random terms based on freq (wrand) - The client randomly selects terms
from the group weighting more frequently occurring terms proportionately
higher. Like rand, this technique also increases the number of term combi-
nations, but gives preference to more commonly occurring terms.

In the last four techniques, mfreq, lfreq, rand, and wrand, the client selects
metadata terms until it reaches a system defined limit.

These metadata distribution techniques are an improvement over the current
technique of replicating metadata from a single server. They increase the variety
and sizes of metadata sets, and thereby should improve their ability to accurately
describe a file. The effects they have on the states of bodies of metadata vary,
however, and a goal of the PIRS project is to examine their effects of query
results quality.

4.5 Metadata Use

IR style ranking in P2P systems is difficult, due to certain characteristics of
P2P systems. For example queries are short and peers are unreliable. PIRS acts
a testbed for both traditional and P2P-specific ranking functions. Specifically,
we use PIRS to determine the dependence of ranking functions on metadata
distribution techniques.

We consider five ranking functions. Some of these techniques are classical IR
techniques, and some are unique to P2P file sharing:



– Group size (gsize) - The number of results in a group. A large GS indicates
that either a particular file has large support for satisfying a query, or that
the file is generally popular, and is therefore something desirable anyway.

– Term frequency (tf) - Counting the number of times query terms appear in a
file’s metadata. Terms that occur frequently in metadata sets likely represent
the contents of the file.

– Precision (prec) - Dividing TF by the total number of terms in the group.
Precision adjusts for problems with TF caused by large metadata sets.

– Cosine similarity (cos) - Cosine similarity maps group descriptors and the
query to vectors. It ranks highest the groups with the descriptor vectors that
have the highest cosine similarity to the query vector.

We implemented other ranking functions, such as term frequency with in-
verse document frequency (tf/idf from [20]). Tf/idf, however, requires some
modification, because global information on the number of documents in which
each term appears, required by tf/idf, does not exist in P2P systems. We in-
stead approximate document frequency by the number of query results in which
a term appears. Since tf/idf is another variation of vector space model ranking,
of which cos is a representative, and its performance is not much different, we
do not further discuss it.

4.6 Implementation Issues

Due to the distributed nature of a P2P system, query results arrive at clients
asynchronously, over a period of time. The client must be able to display these
results and update their rankings in real-time.

PIRS groups each of the N results in O(log N) time using the hash key.
It also updates rankings for all results within O(N 2) time, depending on the
ranking function. While this complexity is a current upper bound, it is within the
O(N2 log (N)KM) complexity of grouping of Limewire’s Gnutella [18], where K

and M are grouping similarity metrics. More details about the implementation
of grouping and ranking in PIRS are posted on the authors’ Web sites.

5 Experimental Results

We now demonstrate the effect that metadata distribution and ranking have
on query result quality via simulation. We measure performance by the number
successful queries (i.e., those that lead to the download of the desired data
object) that the clients perform. We do not consider traditional IR metrics, such
as precision and recall. Precision measures the percentage of correct results to a
query, and is irrelevant because, in our model, the user requests a specific data
object, and any replica of the desired data object will satisfy her. For the same
reason, recall, the percentage of possible results returned, is also irrelevant in
our model.



5.1 The Simulator

The design of our simulator is based on observations and analyses of P2P file
sharing systems. In the event that relevant design parameters are unavailable,
we borrow from work on done on Web information systems and IR.

The major objects in our simulator are terms, data objects, peers, and
queries. The universal set of terms T that can describe a data object is finite,
and each term is assigned a relative access probability based on the accepted Zipf
distribution [21]. A random number of terms from T are assigned to each data
object’s (Fi) universal term subset (Ti) based on the initial Zipf distribution.
The terms of each data object’s universal term subset are then reassigned prob-
abilities according to a Zipf distribution to diversify term usage, as described in
[22]. For example, a term that is rarely associated with one data object need not
be so for another. We call the set of probabilities that terms will be associated
with a data object the data object’s natural (term) distribution.

We also make the generally unrealistic assumption that terms are indepen-
dent. For example, the occurrence of “Britney” in a descriptor is independent of
the occurrence of “Spears”. This is incorrect in general, but is common practice,
as it simplifies the simulation environment without making it trivial. Note, how-
ever, that this term independence assumption is not unique to our work. Such
an assumption is heavily relied upon in the probabilistic information retrieval
model in IR.

Each data object is also associated with an access probability, according to a
Zipf distribution. This conforms to the access patterns observed for Web objects
that were described in [23]. Observations of data object frequency in a P2P

system also suggest a high access skew [24].
Initially, a random number of copies of each data object are instantiated,

each with a subset of its universal term subset in its descriptor. These copies are
assigned to random clients.

There are a fixed number of peers and a fixed number of data objects in the
system. At each iteration of the simulation, a random peer is chosen to download
a random data object based on the data object’ access probability distribution.
To do this, the peer generates a query of random length containing a subset of the
data object’s universal term subset. We assume that length distributions follow
those of Web search engines, and use the empirical distribution described in [25].
Personal observations of queries in LimeWire’s query monitor window seems to
corroborate this assumption. Each term in the query is randomly chosen based
on the data object’s natural term distribution.

The query is routed to a random subset of servers. We do not send the query
to all servers because, in practice, only a subset of them is reachable at any time
[24]. The servers return results that fulfill the matching criterion (Section 3) to
the client.

Client Behavior If more than one group forms in response to a query, then
the client ranks the groups. The highest ranked group is selected for download.
Although, in general, the user may be equally likely to select any one out of the



first few highest ranked groups, all else being equal, we can generally assume
that she will select the one that is highest ranked.

We say that the query is successful if the desired data object is ranked first
and downloaded. In an unsuccessful query, either the incorrect group is ranked
first and downloaded, or there are no results.

Once the data object is downloaded, the user has a probability of manually
annotating the data object with some personally chosen terms. These terms
are randomly chosen from the data object’s universal term subset, based on
the natural term distribution. This is the only way that the variety of terms
that exists in the system for a data object can increase beyond what exists at
initialization. If the user downloads the incorrect data object, then she may
mis-annotate it in this step, leading to incorrect metadata for the data object.

After this is done, the client heuristically copies some of the chosen group’s
metadata into the replica’s descriptor, with the constraint that only a limited
number of terms may be copied. The data object is then available for other peers
to find in subsequent iterations of the simulation.

We do not model freeriders or malicious users. Freeriders are users who down-
load, but do not upload data objects. Since they do not contribute any metadata
to the system, they do not affect the results. Malicious users are those who may
contribute misleading metadata for data objects to the system. These users may
affect the rankings, but only marginally. Rankings are based on the aggregate
metadata of a group of users, not on the metadata of an individual.

Parameter Value or Range

Number of peers 1000
Number of data objects 1000
Number of terms in universal set 10000
Number of terms in the universal set of a data object 100-150
Maximum descriptor size for a data object on a peer (terms) 20
Number of terms in initial descriptors 3-10
Number of replicas of each data object at initialization 3
Probability that a peer is reachable 0.5
Probability of client adding metadata 0.05
Number of Terms Added by client 1-5
Query length 1-8, dist from [25]
Number of queries 10000
Number of trials 50

Table 1. Parameters Used in the Simulation.

The parameters we use in the experiments are shown in Table 1. The size
of the simulation is scaled down to reveal any convergences in the results more
quickly. More significant than the scale of the simulation are the relative values
of each parameter, such as the total number of possible terms for a data object,
versus the number of terms with which each data object is initially annotated.
These numbers are based on observations from other studies [26, 24], as well as



personal observations. For example, song data objects that appear on Gnutella
networks typically have about three or more types of information associated with
them from ID3 data: artist, song name, album name, track number, etc. This is
reflected in the Number of terms in initial descriptors parameter.

We performed fifty trials with each set of parameters and report the aver-
age results. The 95% confidence intervals generally were well within 4% of the
reported mean–the results are statistically significant. However, to simplify the
presentation of the main results, we do not present them.

0

200

400

600

800

1000

1200

1400

server rand wrand mfreq lfreq

Metadata Dist. Technique

S
uc

ce
ss

fu
l Q

ue
rie

s

arrival
tf
prec
gsize
cos
average

Fig. 1. Number of Successful Queries vs. Metadata Distribution Technique for Multiple
Ranking Functions.

5.2 Results for Various Combinations of Metadata Distribution and
Ranking

We see that gsize is the best ranking function regardless of metadata distribution
technique in 1. This is somewhat surprising, considering its simplicity. Gsize
works relatively well because only the correct data object will likely contain all

query terms, and thereby satisfy the matching criterion. Other data objects’
descriptors may be near-misses. Cos does a distant second best. It does poorly
because the matching criterion does not return an unbiased sample of results; all
results contain all query terms. It therefore cannot discriminate between relevant
and irrelevant very well. Finally, prec and tf are subject to the same problems
they have in traditional IR; they are highly influenced by large metadata sets or
by noise.

We also see that the metadata distribution techniques that randomize the
metadata (rand and wrand) do best on average. Furthermore, the combination



of rand and gsize do the best. However, no ranking function in combination
with wrand outperforms gsize with lfreq. The reason that lfreq does better
than wrand in this case is that lfreq is better at increasing the total number
of terms in the body of metadata for a data object. Wrand replicates common
terms, introducing a skew. Descriptor space is therefore occupied by repetitions
of common terms. Lfreq, in general, replicates terms that do not occur fre-
quently. It therefore has the effect of replicating every term in the long run.
This larger body of metadata is in this sense more descriptive, resulting in more
relevant results for a query. Besides gsize, the best performing ranking function
using wrand is cos. This is expected, because cos requires term frequencies to
be skewed in order to work correctly. Lfreq, by comparison, does worse with
cos, because it results in uniform distributions of terms in bodies of metadata.

Server and mfreq do poorly because they fail to mix the metadata dur-
ing distribution. Server simply replicates a single server’s descriptor. Mfreq
replicates terms that have already been frequently replicated. This does little to
increase the variety of descriptors that describe a data object.

6 Discussion

6.1 Compatibility with Existing Technologies

A feature of PIRS is that it is compatible with Gnutella. A PIRS peer inter-
acts with others via message passing. These messages are in standard Gnutella
format, and no special messages are required. Furthermore, no special architec-
tures are required by PIRS. PIRS simply allows peers to create and respond to
queries in a way that is transparent to standard Gnutella peers. A PIRS peer
can therefore readily integrate itself into an established P2P file-sharing system.

In a similar vein, PIRS can also take advantage of optimizations designed for
Gnutella-like P2P systems. Routing optimizations, such as shortcuts [27] and
Ultrapeers [14] are available. Search optimizations, such as specially designated
index nodes are also possible [9]. In the latter case, although special index nodes
improve the quality of search results, they do not obviate the need for metadata
distribution and client-side ranking of results.

6.2 The Outlook for Peer-to-Peer Information Retrieval

P2P file sharing system vendors have been actively pursuing new markets. Kazaa,
for example, has adapted its networks for content distribution for media com-
panies, online dating with MatchNet, and voice-over-IP telephony with Snype
[28]. These new applications will surely bring new users into the area.

Other industry trends seem to indicate that P2P information retrieval will be
a strategic technology in the near future. Google is currently working on Puffin,
a desktop search tool that helps users find information stored on their desktops
[29]. Whether this is a counterattack to Microsoft’s Longhorn [30] strategy or
not, it signals a new focus on harnessing the information stored on desktops.



P2P file sharing has been a consistently active Internet activity for the last
several years. This condition shows no sign of weakening, despite recent legal
actions by the recording industries [31]. As the user base and variety of P2P ap-
plications grows, PIRS and other P2P search tools will only gain in significance.

7 Conclusion

P2P file sharing is a popular activity among Internet users, and shows little signs
of slowing down. As volumes of data grow, so does the need for good IR to sort
through the results. PIRS, our P2P IR system is one solution. It is compatible
with current P2P file sharing systems, but more powerful.

PIRS is flexible, as P2P systems should be. Unlike other work in P2P IR,
it allows for unpredictable user behavior, and makes no assumptions about the
underlying network. As a dynamic system, it also escapes some of the problems
that exist when using centralized systems, such as Web search engines; data can
be made available much quicker.

PIRS is unique in that it allows users to tune the ways in which a client
distributes metadata. It treats the metadata that exist in all instances of a data
object in the system as a collective description of the data object. With improved
descriptiveness, query results improve in quality.

PIRS also includes various ranking functions. Our simulation results show
that the effectiveness of ranking somewhat depends on the metadata distribution,
and that the correct combination can improve performance from 15% up to 90%.

We are currently considering the relationship between the matching criterion
and ranking functions. The current matching criterion is based on conjunctive
queries. Although this economizes on bandwidth consumption, it may reduce
the quality of queries results. We are considering the effect of alternatives, such
as disjunction. We will focus on server-side responses to queries.

References

1. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard,
B.: Peer-to-peer computing. Technical Report HPL-2002-57, Hewlett-Packard
Laboratories, Palo Alto (2002)

2. Noguchi, Y.: Online search engines help lift cover of privacy. Washington Post
(2004) Feb. 9, 2004.

3. Hansell, S.: Yahoo to charge for guaranteeing a spot on its index. New York Times
(2004) Mar. 2, 2004.

4. Cohen, B.: Bittorrent home page. (Web Document) bitconjurer.org/BitTorrent.

5. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393 (1998)

6. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In: Proc. ACM SIGCOMM. (2003)

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. ACM SIGCOMM. (2001)



8. LimeWire, LLC: Gnutella protocol 0.4. Web Document (2004)
www9.limewire.com/developer/gnutella protocol 0.4.pdf.

9. Lu, J., Callan, J.: Content-based retrieval in hybrid peer-to-peer networks. In:
Proc. ACM Conf. on Information and Knowledge Mgt. (CIKM). (2003) 199–206

10. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmr,
M., Risch, T.: Edutella: A p2p networking infrastructure based on rdf. In: Proc.
World Wide Web Conf. (2002)

11. Ng, W., Ooi, B.C., Tan, K., Zhou, A.: Peerdb: A p2p-based system for distributed
data sharing. In: Proc. IEEE Intl. Conf. on Data Eng. (ICDE). (2003)

12. Google, I.: Simplicity and enterprise search. Technical report, Google, Inc. (2003)
13. Ritter, J.: Why gnutella can’t scale. no, really. Web Document (2001)

www.darkridge.com/∼jpr5/doc/gnutella.html.
14. Singla, A., Rohrs, C.: Ultrapeers: Another step towards

gnutella scalability. Technical report, Limewire, LLC (2002) rfc-
gnutella.sourceforge.net/src/Ultrapeers 1.0.html.

15. Thadani, S.: Meta information searches on the gnutella network. (Web document)
www.bearguru.com/kb/articles/metainfo searches.htm.

16. Nilsson, M.: Id3v2 web site. Web Document (2004) www.id3.org.
17. of Standards, N.I., Technology: Sha1 version 1.0. Web Document (1995)

www.itl.nist.gov/fipspubs/fip180-1.htm.
18. Rohrs, C.: Search result grouping {in gnutella}. Technical report, LimeWire (2001)

www.limewire.org/project/www/result grouping.htm.
19. Free Peers, Inc.: Bearshare technical faq. Web document (2004)

www.bearshare.com/help/faqtechnical.htm.
20. Grossman, D., Frieder, O.: Information Retrieval: Algorithms and Heuristics. Num-

ber ISBN 0-7923-8271-4. Kluwer Academic Publishers (1998)
21. Knuth, D.E.: The Art Of Computer Programming. Second edn. Volume 3:Sorting

and Searching. Addison-Wesley Publishing Company (1975)
22. Schlosser, M.T., Condie, T.E., Kamvar, S.D.: Simulating a file-sharing p2p net-

work. In: Proc. Wkshp. Semantics in Peer-to-Peer and Grid Comp. (2003)
23. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic: evidence and

possible causes. IEEE/ACM Trans. Networking 5 (1997) 835–846
24. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer

file sharing systems. In: Proc. Multimedia Computing and Networking (MMCN).
(2002)

25. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Proc. ACM
Conf. Middlware. (2003)

26. Ripeanu, M., Foster, I.: Mapping the gnutella network: Properties of large-scale
peer-to-peer systems and implications for system design. In: Intl. Wkshp. on P2P
Sys. (IPTPS). Number 2429 in LNCS (2002)

27. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient content location using interest-
based locality in peer-to-peer systems. In: Proc. IEEE INFOCOM. (2003)

28. CBC: The future. CBC/Radio-Canada (2004)
www.cbc.ca/disclosure/archives/040309 swap/future.html.

29. Markoff, J.: Google moves toward clash with microsoft. New York Times (2004)
May 19.

30. Microsoft, Inc.: Longhorn development center. Web Document (2004)
msdn.microsoft.com/longhorn/.

31. Reardon, M.: Oops! they’re swapping again. CNET News (2004)


