
On Scalable Information Retrieval Systems

(Invited Paper)

Ophir Frieder & David Grossman
Illinois Institute of Technology
{frieder, grossman}@iit.edu

Abdur Chowdhury

America Online
cabdur@aol.com

Abstract

Scalable information retrieval systems are crucial to

meeting the growing volumes of data. We describe work
done to facilitate scalability by reducing duplication,
providing integration with structured data, and
supporting integration and question answering via an
intranet mediator. All examples given are taken
directly from prior and on-going efforts in the IIT
Information Retrieval Laboratory in collaboration with
AOL and NCR.

1. Introduction

The development of scalable computerized
information retrieval systems is of concern since the
advent of computing and information processing. In the
computer science discipline, we are accustomed to
gradually varying definitions particularly as they pertain
to size and time. What was considered large ten years
ago is now considered constrained. For example, a
personal computer configured with a gigabyte of RAM
today is minimally configured whereas ten years ago
would be considered a dream. Thus, when addressing
the topic of scalable information retrieval systems, one
must bind the terms to current day dimensions.

 We begin by defining our scope. Information
retrieval is the identification of documents relevant to a
user’s query. Scalable information retrieval systems are
those systems that integrate significant volumes of data
whose sources of data generation are geographically
distributed. For us, scalability in terms of data volume
is on the order of the text data volume available on the
World Wide Web, currently approximated on the order
of tens of terabytes, and query processing rates of
thousands of queries per second.

AOL web search, for example, uses up to 50 different
sources for each query on their web service when
dealing with various queries. Additionally, query
volumes range from several queries per second to
thousands of queries per second for high volume
locations. Thus, two requirements must be made for
retrieval systems, first they must be scalable, and second

infrastructure must be provided to tie many different
collections of data together seamlessly.

In the remainder of this paper, we describe some of the
research problems encountered in developing a scalable
search service. In our context, a scalable search service
is a collection of data sources, in which a single user
interface is provided and multiple data sources are used
to bring users closer to the information needed in a
manner that best helps their information need. First, we
examine the duplicate data problem that search services
encounter as they integrate multiple data sources into a
single content source. Next, we examine the integration
of structured and unstructured data into a single
integrated search solution. Lastly, we examine the
combination of multiple sources of data (intranet
mediator) producing a single search service. All
examples given are taken directly from prior and on-
going efforts in the IIT Information Retrieval, some of
which are in collaboration with AOL and NCR.

2. Duplicate Document Detection

The data, simply by the nature of how and where they
are generated, are distributed. Furthermore, key
references (documents) are replicated across multiple
sites. For a general overview of the nature of distributed
information systems from a data engineering
perspective, please see [1]. In information retrieval
systems, replication of data poses several difficulties.
For starters, when users post queries to the system, they
wish to get unique answers; ten near-duplicate copies of
the same material is not meaningful to the user.

Duplicates also affect system performance. Document
relevance to a query is computed based on the
uniqueness of the terms comprising it, namely as a
function of the inverse document frequency (idf) of its
terms. The idf value of a term is computed as a function
of the inverse of the number of times a term appears in a
document collection. The fewer the documents
containing the term, the higher is its associated idf
value. (For further details on idf and other information
retrieval issues, please see [2].) Thus, if multiple copies
of a given document were to be maintained, terms that
should be considered unique, namely having a high idf

value, would not be evaluated as unique since they
appear in multiple documents. Finally, retrieving
multiple copies obviously increases the I/O, introducing
longer processing times. For all of these reasons,
duplicate elimination is necessary.

Our approach to duplicate elimination, originally
described in [3], is as follows. We read a document as
input, parse it, retain one copy of each term comprising
the document, remove some of the terms according to a
variation of idf threshold techniques, sort the terms in
Unicode ordering, and ultimately, create a single hash
value for the remaining list of terms representing the
document. All documents resulting in the same hash
value are deemed as duplicates.

The identification of duplicates is handled through
inserts into a tree or hash table. Any collisions of hash
values represent duplicates, and the document identifiers
are stored in that node of the tree or hash bucket. A
scan through the tree or hash table produces a list of all
clusters of duplicates, where a node contains more than
one document.

The overall runtime of our approach is (O(d log d)) in
the worst case where all documents (d) are duplicates of
each other and (O(d)) otherwise. We favorably
compared against all known duplicate detection
algorithms in terms of efficiency and accuracy. In all
experiments to date, this approach was more efficient in
terms of processing times and more accurate in terms of
determining duplicates and near-duplicates. This
approach is currently in commercial deployment at a
leading content provider.

Figure 1: Entity Diagram

Figure 2: Sample TREC Document

3. Integration

To reduce I/O thereby improve search speeds, all
search engines have at their core an inverted index, a
highly efficient read-only data structure that maps a
given term to a list of documents that contain the term.
We first describe our efforts that integrate data by

Figure 3: Relations that model the TREC document

term df idf
average 2265 1.08
closed 2208 1.08
exchange 2790 1.00
nikkei 234 2.07
points 1627 1.23
stock 2674 1.00
tokyo 725 1.58
up 12746 0.30
Wednesday 6417 0.60

docID termcnt term
28 1 nikkei
28 2 stock
28 1 average
28 1 closed
28 2 points
28 1 up
28 1 tokyo
28 1 exchange
28 1 wednesday

docID docname headline dateline
28 AP881214-0028 Stocks Up In Tokyo TOKYO (AP)

DOCUMENT

INDEX TERM

<DOC>
<DOCNO>

AP881214
0028 </DOCNO>

<HEAD>Stocks Up In Tokyo</HEAD>
<DATELINE>TOKYO (AP) </DATELINE>
<TEXT>
The Nikkei Stock Average closed at 29,754.73

points up 156.92 points on the Tokyo Stock Exchange
on Wednesday.

</TEXT>
</DOC>

Term DocumentIndex

modeling an inverted index as a relation. This
essentially treats data integration as a pure application of
the relational model. Since relational systems are
designed for structured data, mapping the inverted index
on to relations yields an integrated text and structured
data search engine. Subsequently, we describe recent
work on the development of an intranet mediator [4]
that is able to integrate data by leveraging existing work
on schema reconciliation.

3.1. Integrating Data
with the Relational
Model

Given the need to integrate
structured data and text in a
scalable fashion, we developed
a system named SIRE
(Scalable Information
Retrieval Engine) [5, 6]. SIRE
is the mapping of an inverted
index structure on to a set of
relations with a corresponding
set of relational scripts. An
entity-relationship diagram
(ERD) representing this
mapping of terms and
documents is shown in Figure
1. A given term can appear in
many documents, and one
document naturally has many
terms. Hence, there is a many-
many relationship between
terms and documents.

Each object in the ERD
corresponds to a relation from
the following three relations:

DOCUMENT (docID,

docname, headline, dateline)
INDEX(docID, termcnt,

term)
TERM(term, df, idf)

In Figure 2, we illustrate a

sample document, and in
Figure 3, we illustrate how this
document can be mapped onto
the three relations. The
DOCUMENT relation

contains metadata about the document such as the
dateline, headline, and document name. The TERM
relation has a tuple for each distinct term in the
collection with its corresponding term weights:
document frequency and inverse document frequency.
These weights are used by many information retrieval
systems. Other additional weights are easily
incorporated into this model.

The index relation models the inverted index. It
contains one entry for each element that would
ordinarily be stored in a posting list of the inverted
index. The posting list typically is a list of entries that
indicate which documents contain a given term, and
how often the term appears in the document. Here, a
tuple is stored in the INDEX relation.

Figure 4: Architecture

Using a relational approach to information retrieval
has multiple advantages since relational database
systems provide enhanced functionality such as security,
concurrency control, recovery, and parallel scalability
without requiring the re-development of such features
for the information retrieval domain. In fact, in terms of
scalability, major relational vendors are under
tremendous pressure to ensure that their implementation
is scalable, hence supports a parallel implementation.
The TPC-C and TPC-D benchmarks increase this
pressure as system performance is measured in a
publicly available forum.

Granted these benchmarks are short banking
transactions rather than information retrieval queries,
but the point is that significant engineering work is done
in the relational arena to provide good scalability. Our
prior experiments with this approach have shown a
speedup of 22-fold on an NCR machine configured with
24 processors [7]. Those efforts were in joint
collaboration with NCR. Additionally, efforts at the
University of Tokyo [8] demonstrated further scalability
using the SIRE approach on a 100+ node PC cluster,
and work at ETH-Zurich has shown that the SIRE
approach can be used to improve throughput for

document insertion and update as well as simple
retrieval [9]. NCR currently relies on an approach based
on SIRE for some of their commercial text processing
solutions.

3.2. Intranet Mediator

A mediator, an integration fabric for multi-source,
multi-format data, sits between users and data. In
response to a natural language question, the mediator
identifies appropriate sources to respond to the question,
accumulates the results, and ultimately ranks and
transmits them to the user. A search engine resembles a
mediator, but a search engine strictly focuses only on
unstructured data, typically text. In reality, however,
there are three broad types of data: structured (e.g.; data
stored in conventional relational database systems),
unstructured (text, video, audio), and semi-structured
(e.g.; XML). The IIT mediator is designed to interact
with all three high-level data-types – not simply
unstructured data. The high-level mediator architecture
is given in Figure 4.

The mediator consists of the following components:

Query Processor: The query processor takes a natural
language query and parses it into key grammatical
constructs such as subject, verb, and objects.

Figure 5: Sample Output Screen

Additionally, the query processor performs a part-of-
speech tagging operation on the query to identify the
most likely part of speech for each term in the query.
Finally, an entity tagger is used to identify top-level
semantic concepts, such as location, person, place,
organization, etc. in the query.

Level 0 Rules: These rules take the syntactic elements
in the query and existing metadata lists and identify
higher-level semantic concepts in the query. Consider a
course number like “CS 522”. This might be
recognized by the two character prefix “CS”, and then
the three digit sequence. A level 0 rule might be of the
form: If subject or object = [list of course prefixes] [3
digits] then subject or object = [COURSE_NUMBER].

Level 1 Rules: ‘Level 1’ rules take output from the
query processor and semantic concepts identified by
level 0 rules and map to one or more retrieval functions,
which are used to obtain the actual data that comprise
the answer to the query.

Retrieval Functions: These small functions contain the
code needed to actually retrieve data from a source.
These speak to the source in the language of the source
– a relational source will have SQL, and an XML source
might be sent XML-QL or some other XML query
language. One might note that the whole game of
retrieval from multiple heterogeneous sources is simply
one of taking the English query and, from it, choosing
the right retrieval functions. The idea is that the
combined efforts of the rules framework (both level 0
and level 1 rules) will enable the selection of the correct
retrieval functions.

Dispatchers: The various source-type dispatchers
handle the task of asynchronously invoking the
appropriate retrieval functions for the sources that have
been deemed appropriate to the query.

Results Manager: Once the set of matching retrieval
functions execute, their results are collected and
submitted to the results manager component for
unification, ranking, and duplicate removal. A sample
output screen is given in Figure 5.

Metadata Analyzers: The mediator also contains
analyzers that examine new input sources and identify
key aspects of the source. Currently our analyzers
anticipate that a source is the actual data. This will
likely be enhanced in the near future to accept a service
that allows access to data rather than the data itself.

4. Summary

Scalable search systems require the integration of
multi-type, geographically dispersed, highly-voluminous
data repositories into a single unified information portal.
We described several research efforts from the IIT
Information Retrieval Laboratory that address some of
the key issues associated with the design of scalable
search systems. Some of those efforts described are
now in daily use in several major commercial and
governmental information processing organizations.

5. References

[1] R. Shuey, D. Spooner, and O. Frieder, The Architecture of
Distributed Computer Systems: A Data Engineering
Perspective, Addison Wesley, ISBN 0-201-55332-5, 1997.

[2] D. Grossman and O. Frieder, Information Retrieval:
Algorithms and Heuristics, Kluwer Academic Publishers,
ISBN 0-7923-8271-4, 1998.

[3] A. Chowdhury, O. Frieder, D. Grossman, and M.
McCabe, “Collection Statistics for Fast Duplicate
Document Detection,” ACM Transactions on
Information Systems (TOIS), 20(2), April 2002.

[4] D. Grossman, S. Beitzel, E. Jensen, and O. Frieder, “IIT
Intranet Mediator: Bringing Data Together on a Corporate
Intranet,” IEEE IT PRO, January/February 2002.

[5] D. A. Grossman, O. Frieder, D. O. Holmes, and D.
C. Roberts, "Integrating Structured Data and Text: A
Relational Approach," Journal of the American Society
of Information Science, 48(2), February 1997.

[6] O. Frieder, A. Chowdhury, D. Grossman, M. C.
McCabe, "On the Integration of Structured Data and
Text: A Review of the SIRE Architecture," DELOS
Workshop on Information Seeking, Searching, and
Querying in Digital Libraries, Zurich, Switzerland,
December 2000.

[7] C. Lundquist, O. Frieder, D. Holmes, and D.
Grossman, A Parallel Relational Database Management
System Approach to Relevance Feedback in Information
Retrieval. Journal of the American Society of
Information Science, January 1999.

[8] K. Goda, T. Tamura, M. Kitsuregawa, A.
Chowdhury, and O. Frieder, “Query Optimization for
Vector Space Problems,” ACM Twenty-Fourth SIGIR,
New Orleans, Louisiana, September 2001.

[9] T. Grabs, K. Böhm, H.-J. Schek, “High-level
Parallelisation in a Database Cluster: a Feasibility Study Using
Document Services,” IEEE 17th International Conference on
Data Engineering (ICDE2001), Heidelberg, Germany, April
2001.

