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Abstract 
 
Scalable information retrieval systems are crucial to 

meeting the growing volumes of data.  We describe work 
done to facilitate scalability by reducing duplication, 
providing integration with structured data, and 
supporting integration and question answering via an 
intranet mediator.   All examples given are taken 
directly from prior and on-going efforts in the IIT 
Information Retrieval Laboratory in collaboration with 
AOL and NCR. 

1. Introduction 

The development of scalable computerized 
information retrieval systems is of concern since the 
advent of computing and information processing.  In the 
computer science discipline, we are accustomed to 
gradually varying definitions particularly as they pertain 
to size and time.  What was considered large ten years 
ago is now considered constrained.  For example, a 
personal computer configured with a gigabyte of RAM 
today is minimally configured whereas ten years ago 
would be considered a dream.  Thus, when addressing 
the topic of scalable information retrieval systems, one 
must bind the terms to current day dimensions.   

 We begin by defining our scope.  Information 
retrieval is the identification of documents relevant to a 
user’s query.  Scalable information retrieval systems are 
those systems that integrate significant volumes of data 
whose sources of data generation are geographically 
distributed.  For us, scalability in terms of data volume 
is on the order of the text data volume available on the 
World Wide Web, currently approximated on the order 
of tens of terabytes, and query processing rates of 
thousands of queries per second. 

AOL web search, for example, uses up to 50 different 
sources for each query on their web service when 
dealing with various queries.  Additionally, query 
volumes range from several queries per second to 
thousands of queries per second for high volume 
locations.  Thus, two requirements must be made for 
retrieval systems, first they must be scalable, and second 

infrastructure must be provided to tie many different 
collections of data together seamlessly. 

In the remainder of this paper, we describe some of the 
research problems encountered in developing a scalable 
search service.  In our context, a scalable search service 
is a collection of data sources, in which a single user 
interface is provided and multiple data sources are used 
to bring users closer to the information needed in a 
manner that best helps their information need.  First, we 
examine the duplicate data problem that search services 
encounter as they integrate multiple data sources into a 
single content source.  Next, we examine the integration 
of structured and unstructured data into a single 
integrated search solution.  Lastly, we examine the 
combination of multiple sources of data (intranet 
mediator) producing a single search service.  All 
examples given are taken directly from prior and on-
going efforts in the IIT Information Retrieval, some of 
which are in collaboration with AOL and NCR. 

2. Duplicate Document Detection 

The data, simply by the nature of how and where they 
are generated, are distributed.  Furthermore, key 
references (documents) are replicated across multiple 
sites.  For a general overview of the nature of distributed 
information systems from a data engineering 
perspective, please see [1].  In information retrieval 
systems, replication of data poses several difficulties.  
For starters, when users post queries to the system, they 
wish to get unique answers; ten near-duplicate copies of 
the same material is not meaningful to the user.   

Duplicates also affect system performance.  Document 
relevance to a query is computed based on the 
uniqueness of the terms comprising it, namely as a 
function of the inverse document frequency (idf) of its 
terms.  The idf value of a term is computed as a function 
of the inverse of the number of times a term appears in a 
document collection.   The fewer the documents 
containing the term, the higher is its associated idf 
value.  (For further details on idf and other information 
retrieval issues, please see [2].)  Thus, if multiple copies 
of a given document were to be maintained, terms that 
should be considered unique, namely having a high idf 



value, would not be evaluated as unique since they 
appear in multiple documents.  Finally, retrieving 
multiple copies obviously increases the I/O, introducing 
longer processing times.  For all of these reasons, 
duplicate elimination is necessary. 

Our approach to duplicate elimination, originally 
described in [3], is as follows.  We read a document as 
input, parse it, retain one copy of each term comprising 
the document, remove some of the terms according to a 
variation of idf threshold techniques, sort the terms in 
Unicode ordering, and ultimately, create a single hash 
value for the remaining list of terms representing the 
document.  All documents resulting in the same hash 
value are deemed as duplicates.   

The identification of duplicates is handled through 
inserts into a tree or hash table.  Any collisions of hash 
values represent duplicates, and the document identifiers 
are stored in that node of the tree or hash bucket.  A 
scan through the tree or hash table produces a list of all 
clusters of duplicates, where a node contains more than 
one document.   

The overall runtime of our approach is (O(d log d)) in 
the worst case where all documents (d) are duplicates of 
each other and (O(d)) otherwise.   We favorably 
compared against all known duplicate detection 
algorithms in terms of efficiency and accuracy.  In all 
experiments to date, this approach was more efficient in 
terms of processing times and more accurate in terms of 
determining duplicates and near-duplicates.   This 
approach is currently in commercial deployment at a 
leading content provider.   

 
 

 

Figure 1: Entity Diagram 

 

Figure 2: Sample TREC Document 

3. Integration 

To reduce I/O thereby improve search speeds, all 
search engines have at their core an inverted index, a 
highly efficient read-only data structure that maps a 
given term to a list of documents that contain the term. 
We first describe our efforts that integrate data by 

Figure 3: Relations that model the TREC document 

term  df idf
average 2265   1.08
closed 2208   1.08
exchange        2790     1.00
nikkei 234     2.07
points 1627     1.23
stock 2674     1.00
tokyo 725     1.58
up                 12746      0.30
Wednesday  6417      0.60

docID termcnt term
28 1 nikkei
28 2 stock
28 1 average
28 1 closed 
28 2 points
28 1 up     
28 1 tokyo 
28 1 exchange
28 1 wednesday

docID docname headline dateline
28 AP881214-0028 Stocks Up In Tokyo TOKYO (AP)

DOCUMENT

INDEX TERM

<DOC> 
<DOCNO> 

AP881214 
0028 </DOCNO> 

<HEAD>Stocks Up In Tokyo</HEAD> 
<DATELINE>TOKYO (AP) </DATELINE> 
<TEXT> 
The Nikkei Stock Average closed at 29,754.73 

points up 156.92 points on the Tokyo Stock Exchange 
on Wednesday. 

</TEXT> 
</DOC> 

Term DocumentIndex



modeling an inverted index as a relation.  This 
essentially treats data integration as a pure application of 
the relational model.  Since relational systems are 
designed for structured data, mapping the inverted index 
on to relations yields an integrated text and structured 
data search engine.  Subsequently, we describe recent 
work on the development of an intranet mediator [4] 
that is able to integrate data by leveraging existing work 
on schema reconciliation.  

3.1. Integrating Data 
with the Relational 
Model 

Given the need to integrate 
structured data and text in a 
scalable fashion, we developed 
a system named SIRE 
(Scalable Information 
Retrieval Engine) [5, 6].  SIRE 
is the mapping of an inverted 
index structure on to a set of 
relations with a corresponding 
set of relational scripts.  An 
entity-relationship diagram 
(ERD) representing this 
mapping of terms and 
documents is shown in Figure 
1.  A given term can appear in 
many documents, and one 
document naturally has many 
terms.  Hence, there is a many-
many relationship between 
terms and documents.     

Each object in the ERD 
corresponds to a relation from 
the following three relations: 

   
DOCUMENT (docID, 

docname, headline, dateline) 
INDEX(docID, termcnt, 

term) 
TERM(term, df, idf)  
 
In Figure 2, we illustrate a 

sample document, and in 
Figure 3, we illustrate how this 
document can be mapped onto 
the three relations.  The 
DOCUMENT relation 

contains metadata about the document such as the 
dateline, headline, and document name.  The TERM 
relation has a tuple for each distinct term in the 
collection with its corresponding term weights: 
document frequency and inverse document frequency.  
These weights are used by many information retrieval 
systems. Other additional weights are easily 
incorporated into this model.   

The index relation models the inverted index.  It 
contains one entry for each element that would 
ordinarily be stored in a posting list of the inverted 
index.  The posting list typically is a list of entries that 
indicate which documents contain a given term, and 
how often the term appears in the document. Here, a 
tuple is stored in the INDEX relation.  

Figure 4: Architecture 



Using a relational approach to information retrieval 
has multiple advantages since relational database 
systems provide enhanced functionality such as security, 
concurrency control, recovery, and parallel scalability 
without requiring the re-development of such features 
for the information retrieval domain.  In fact, in terms of 
scalability, major relational vendors are under 
tremendous pressure to ensure that their implementation 
is scalable, hence supports a parallel implementation.  
The TPC-C and TPC-D benchmarks increase this 
pressure as system performance is measured in a 
publicly available forum.   

Granted these benchmarks are short banking 
transactions rather than information retrieval queries, 
but the point is that significant engineering work is done 
in the relational arena to provide good scalability.  Our 
prior experiments with this approach have shown a 
speedup of 22-fold on an NCR machine configured with 
24 processors [7].   Those efforts were in joint 
collaboration with NCR.  Additionally, efforts at the 
University of Tokyo [8] demonstrated further scalability 
using the SIRE approach on a 100+ node PC cluster, 
and work at ETH-Zurich has shown that the SIRE 
approach can be used to improve throughput for 

document insertion and update as well as simple 
retrieval [9]. NCR currently relies on an approach based 
on SIRE for some of their commercial text processing 
solutions. 

3.2. Intranet Mediator 

A mediator, an integration fabric for multi-source, 
multi-format data, sits between users and data.  In 
response to a natural language question, the mediator 
identifies appropriate sources to respond to the question, 
accumulates the results, and ultimately ranks and 
transmits them to the user.   A search engine resembles a 
mediator, but a search engine strictly focuses only on 
unstructured data, typically text. In reality, however, 
there are three broad types of data:  structured (e.g.; data 
stored in conventional relational database systems), 
unstructured (text, video, audio), and semi-structured 
(e.g.; XML).  The IIT mediator is designed to interact 
with all three high-level data-types – not simply 
unstructured data.  The high-level mediator architecture 
is given in Figure 4.   

The mediator consists of the following components: 
 

Query Processor:  The query processor takes a natural 
language query and parses it into key grammatical 
constructs such as subject, verb, and objects.  

Figure 5: Sample Output Screen 



Additionally, the query processor performs a part-of-
speech tagging operation on the query to identify the 
most likely part of speech for each term in the query.  
Finally, an entity tagger is used to identify top-level 
semantic concepts, such as location, person, place, 
organization, etc. in the query.   
 
Level 0 Rules:  These rules take the syntactic elements 
in the query and existing metadata lists and identify 
higher-level semantic concepts in the query.  Consider a 
course number like “CS 522”.  This might be 
recognized by the two character prefix “CS”, and then 
the three digit sequence.  A level 0 rule might be of the 
form:  If subject or object = [list of course prefixes]  [3 
digits] then subject or object = [COURSE_NUMBER]. 
 
Level 1 Rules:  ‘Level 1’ rules take output from the 
query processor and semantic concepts identified by 
level 0 rules and map to one or more retrieval functions, 
which are used to obtain the actual data that comprise 
the answer to the query.  
 
Retrieval Functions:  These small functions contain the 
code needed to actually retrieve data from a source.  
These speak to the source in the language of the source 
– a relational source will have SQL, and an XML source 
might be sent XML-QL or some other XML query 
language.  One might note that the whole game of 
retrieval from multiple heterogeneous sources is simply 
one of taking the English query and, from it, choosing 
the right retrieval functions.  The idea is that the 
combined efforts of the rules framework (both level 0 
and level 1 rules) will enable the selection of the correct 
retrieval functions.  
 
Dispatchers:  The various source-type dispatchers 
handle the task of asynchronously invoking the 
appropriate retrieval functions for the sources that have 
been deemed appropriate to the query.  
 
Results Manager:  Once the set of matching retrieval 
functions execute, their results are collected and 
submitted to the results manager component for 
unification, ranking, and duplicate removal.  A sample 
output screen is given in Figure 5. 
 
Metadata Analyzers: The mediator also contains 
analyzers that examine new input sources and identify 
key aspects of the source.  Currently our analyzers 
anticipate that a source is the actual data.  This will 
likely be enhanced in the near future to accept a service 
that allows access to data rather than the data itself.   

4. Summary 

Scalable search systems require the integration of 
multi-type, geographically dispersed, highly-voluminous 
data repositories into a single unified information portal.  
We described several research efforts from the IIT 
Information Retrieval Laboratory that address some of 
the key issues associated with the design of scalable 
search systems.  Some of those efforts described are 
now in daily use in several major commercial and 
governmental information processing organizations. 
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