
Exploiting Parallelism in Pattern Matching:
An Information Retrieval Application

VICTOR WING-KIT MAK, KU0 CHU LEE, and OPHIR FRIEDER
Bellcore

We propose a document-searching architecture baaed on high-speed hardware pattern matching
to increase the throughput of an information retrieval system. We also propose B new parallel
VLSI pnttern~matching algorithm called the Data Parallel Pattern Matching (DPPM) algorithm,
which serially broadcasts and compares the pattern to a block of data in parallel. The DPPM
algorithm utilizes the high degrw of integration of VLSI technology to attain very high-speed
processing through parallelism. Performance of the DPPM has hern rvafuatcd both analytically
and hy simulation. Based on the simulation statistics and timing analysis on the bardware
design, a search rate of multiple gigahytes per second is achievable using Z-run CMOS technol-
ogy. The potential performance of the proposed document-searching architecture is also analyzed
using the simulation statistics of the DPPM algorithm.

Categories and Snhject Dewriptorn: B.2.1 [Arithmetic and Logic Structured: Design
Styks--pnroiM: 13.7.1 [Integrated Circuits]: Types and Design Styles-algorithms impla-
mmfmi in hnrdwnr~, VLSI: C.1.2 [Processor ArchitectureRl: Muftiple Data Stream Architec-
turcs-S1.W): C.4 [Computer Systems Organizationl: Performance of Systems-dcaign stud-
ks, morleling trrhntques: E.5 [Datai: Files--sorting scorching; F.2.2 [Analysis of Algorithms
and Problem Complexityj: K:onnumerical Algorithms and Problems--poiirm mnlcilmg. snrt-
ins or& s~wrrhin~; I-I.3.3 [Information Storage and Retrievall: Information Search and
Rrtriwal-.wnrch prcicpns. sclcttion pmcens

General Terms: Algorithms. Design, Performance

Additional Iicy Words and Phrases: DPPM, pattern matcher

1. INTRODUCTION

Information retrieval is the recovery of documents that match a user’s query,
which consists of a set of search patterns combined via a set of operators. The
relevance of a document can be determined by the occurrences of the set of
search patterns defined in the query. With the continued growth of unformat-
ted, textual databases,’ it is important to reduce the amount of document
search time to support adequate response times. A common approach to

’ The legal database LexiR is estimated at ovw 125 GRytes of information [ZOl. It is reported that
information retrieval databases have been groaing at a rate of 2iiO.000 documents per year 191.

Authors’ addreswa: V. W. Mak and K. C. Lee. Bellcore, 445 South Street, Morristown, NJ
07960-1910: 0. Frieder, Department of Computer Science, George Mason University, Fairfax,
VA 22030.
Permission to copy without fcr all or part of this material is granted provided that the copies am
not made or distributed for direct commercial advantage. the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise. or to republish, requires a fee and:or ’
specific permission.
(; 1991 ACM 0734.204’7/91/0100-0052 $01.50
ACMTransactions onInformation Systems, Vol. 9. No. 1, January 1991, Pages 52-74.

Exploiting Parallelism In Pattern Matching . 5 3

document search, aimed at reducing the search time, is software indexing.
However, if word-level indexing is used, the storage overhead associated with
indexing may be as much as 300 percent [71. Changes in the database also
require substantial overhead in maintaining the indices.

Another approach used in reducing the retrieval time of relevant docu-
ments is the utilization of high-speed hardware filters to perform the
pattern-matching operations. This significantly reduces the need to maintain
the indices and simplifies updates to the database. Hardware filters can
support operations, such as arbitrary wild cards and searches for embedded
strings, that are infeasible with indices. Hardware filters are also suitable to
search and retrieve relevant documents on-the-fly from ever-changing infor-
mation sources transmitted through high-bandwidth optical fibers, such as
news articles and stock quotes. Because of the rapidly decreasing cost of
VLSI technology, compared to the design and maintenance of software sys-
tems and the increased availability of CAD tools, the exploitation of cus-
tomized hardware for information retrieval merits investigation.

In this paper we propose a document-searching architecture, based on
high-speed hardware pattern matchers, to increase the throughput of an
information retrieval system. The proposed architecture is comprised of a set
of customized document search engines (Data Parallel Pattern Matching
Engines, or DPPMEs) and a single master Processing Element (PE). An
information retrieval query is decomposed by the PE into basic match
primitives to be executed in the DPPMEs, while the query (a sequence of
operators) itself is evaluated at the PE using results from the document
search engines. The PE is similar to the query resolver as proposed in 1101.
By separating the operator and query complexity from the DPPMEs, the
complexity of the customized hardware is made independent of the complex-
ity of the query. This separation results in a simpler and hence more efficient
hardware implementation of the DPPMEs.

The PE instruction set is based on the text-retrieval machine instruction
set presented in [lo], but modified to be match-bused; that is, each instruction
is defined as a set of match conditions with a simple imposed control
structure. As the imposed control structure requires minimal computation
time relative to the amount of processing involved in searching the document
stream, we believe it can be implemented in software without significantly
affecting the system throughput.

Supporting a modular d&b- with a simple interface enables component
substitution. Thus, an implementation based on such a dexibm is easily
modified to incorporate algorithmic improvements and technological ad-
vances. The match-based interface proposed here adheres to the modular-
design principle.

Hardware pattern matchers have been previously proposed and imple-
mented [3, 4, 6, 8, 15, 17, 18, 21, 241 to speed up the time-consuming task of
document searching. Currently proposed searching rates have hovered at
roughly 20 MBytes per second [Zl]. This rate may be suff%ent to match the
I/O bandwidth of current disk technology (about 10 MBytes per second), but
is certainly inadequate for future optical disk transfer rate (estimated at
approximately 200 MBytes per second [ll) and semiconductor main memory

ACM Transactions on hformation Sy8trmn. Vol. 9. No. 1, January 1991.

54 * V. W. Mak et al.

bandwidth of supercomputers (as high as 1 GBytes per second). In this paper
we propose a new parallel VLSI algorithm called Data Parallel Pattern
Matching (DPPM) and a corresponding VLSI document search engine called
DPPME. The DPPM algorithm differs from most previous work in that it
serially broadcasts each character in the pattern and compares the pattern to
a block of data in parallel. The DPPM algorithm utilizes the high degree of
integration of VLSI technology to attain very high-speed processing through
parallelism. Based on simulation statistics and timing analyses of the hard-
ware design, a search rate of multiple gigabytes per second per DPPME is
achievable using Z-pm CMOS technology.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the proposed document-searching architecture. Section 3 first
reviews previous work in hardware document search engines, followed by the
description of the DPPM algorithm and a VLSI design of the DPPME.
Technology issues in implementing data broadcasting in VLSI are also
addressed in this section. Section 4 presents the performance evaluation of
both the DPPM algorithm and the proposed document-searching architecture
using DPPMEs. The DPPM algorithm has been evaluated both analytically
and by simulation on a text database. Using the simulation statistics of the
DPPM algorithm, the potential performance of the proposed document-
searching architecture is also analyzed. Finally, a summary is given at the
end of this paper.

2. THE PROPOSED DOCUMENT-SEARCHING ARCHITECTURE

The structure of the proposed document-searching architecture is comprised
of a single master Processing Element (PE) controlling a set of slave Data
Parallel Pattern Matching Engines (DPPMEs) (see Figure 1). A complex
query is decomposed by the PE into basic match primitives to be executed at
the DPPMEs. Each DPPME compares the document data stream against its
own assigned pattern and forwards the comparison results back to the PE to
be processed. Previously proposed text filters 13, 8, 241 evaluate an entire
query via integrated custom hardware. However, the ability to evaluate
complex queries requires complicated circuitry to support the state transition
logic and partial results communication for cascaded predicate evaluation.
Since the predicate evaluation and query resolution are decoupled from the
primitive pattern-matching operations, the complexity of an individual query
is retained at the PE level, and hence only simple comparator circuitry is
required for the DPPME to execute the pattern-matching operations.

As seen in Figure 1, multiple DPPMEs can read data from a single source
through a common broadcast bus. Each DPPME reads the data and compares
the assigned pattern to the input stream. If a match is detected, an interrupt
is issued to the PE. As will be explained in Section 3, each DPPME may
require different amounts of processing time for a block of data stream. Input
buffers are used in each DPPME to buffer up incoming data blocks so that all
DPPMEs can execute at approximately the same search rate.

The match-based PE instruction set and the corresponding match sequence
that implements each of the individual instructions are shown in Figure 2.
The instruction set in the described approach is based on the text-retrieval
ACM Transactions on Information Systems, Vol. 9, No. 1, Jnnof~ry 1991.

machine instruction set presented in I
implementation utilizing DPPMEs. The occurrence of multiple overlapped
copies of a search pattern in a given input string is permitted and is
supported by the instruction set. An instruction set prohibiting search-
pattern overlap is described in [51. In the instruction set presented here, the
leftmost column presents the actual instruction. A semantic description of
the instruction is provided in italics followed by the control structure imple-
menting the instruction.

For example, the dev := match(X) primitive is defined as follows. The
match primitive assigns dev the PE memory location where the DPPME
scanning for X stores its results. The match primitive blocks until either an
END-OF-D02 indication is detected or a match is found. The following
information is returned.

END-OF-DOG detected: dev.val = FALSE

dev.addr = I)EY.~JJ,T

Match detected:
where DEFALn,T = -(MAX-DOC-LENGTH+ 1).

dev.val = TR’L‘E
devaddr = address of the last character of X.

From the above definitions, whenever a new document is scanned, dev.val =
FALSE anddev.addr = DEFAULT.

In the instruction set, each num.&ered c&on is an atomic operation. All
subactions within an action, each separated by a semicolon, are enclosed
within a cobegin:‘coend pair and are performed concurrently, Actions are
separated by a period and executed serially. An action does not terminate
until all the subactions comprising an individual step terminate. Once a
pattern is assigned to a particular DPPME, the same DPPME is used
throughout the entire instruction to search for the given pattern. Thus,
throughout the execution of an instruction, invoking the same dev :=
match(X) primitive repetitively, always results in the same PE memory
location address being assigned to dev. Finally, the entire instruction
ACM Tnmnnrtions on Information Systems, Vol. 9, SO. I, dnnua~~ JWI.

56 *

A

AORB

A A N D B

A B

A?B

A.. .B

A.lLB

V. W. Mak et al.

Find any docwnent containing the atring A
1. devA := match(A).
2. if (devA.val)

then return TRUE else return FALSE.
Find any documeni coniainmg either of the sirings A or B
1. cobegin

devA := match(A);
devB := match(B)

coend.
2 . if (devA.val or devB.val)

then return TRUE else return FALSE.
Ftnd any docrment containing boih the strings A and B
1. cobegin

devA := match(A);
devB := match(B)

coend.
2 . if (devA.val and devE.val)

then return TRUE else return FALSE.
Find any documeni containing the string A immediately followed by the stting B
1. C := A B. /’ concatenate A and B */
2 . devX := match(C).
3 . if (devC.val)

then return TRUE else return FALSE.
Find any document containing string A followed by any chamcter followed by airing B
1. C := A#B. /* # is the don’t cam character “/
2 . devC := match(C).
3 . if (devX.val)

then return TRUE else return FALSE.
Find any document containing the string A followed either immediately or after an arbitnvy
number of characters by string B

1. devA := match(A).
2 . if (devA.val) then devE := match(B).
3 . if (devE.4)

then return TRUE else return FALSE.
Find any document containing the string A followed by string B within n chomcten
1. I&A := DEFAULT.
2 . cobegin

while (not devA.val) do

I devA := match(A).
if (devA.4) then la&A := devA.addr.

1;
while (not devE.w.1) do

1 devE := match(B).
if ((dev-B.addr - I;istA) < (n + length(B))

then return TRUE.

1
coend.

3. return FALSE.

Fig. 2. Master PE instruction set.

processing terminates for a given document once a return statement is
issued. Document addresses corresponding to TRUE results are recorded and
retrieved.

To evaluate an instruction, the PE allocates a DPPME per match compari-
son required by the instruction for the entire duration of the instruction. For
example, processing A OR B requires 2 DPPMEs. The documents are scanned
ACM Transactions on Information Systems, Vol. 9, No. 1, January 1991.

h., tho nDDMl?cx n-ce a match or an END-OF-DOC is detected, an inter-
led.

VJ “IA%. YL L I.A..4U. “&Al

rupt to the PE is issc
Using the unique device address of the signailing DPPME, the PE deter-

mines which match occurred and processes the match as shown in the
instruction set. The order of servicing interrupts is based on the block
address at which the match was detected; lowest address interrupts are
processed first. If a nonrelevant interrupt, such as match(B) prior to match(A)
in A.. . B, is detected, the PE disregards the interrupt, as it is currently
blocked at step 1.

Weighted boolean operations [ZOI are easily incorporated in the above
design. The PE receives a weighted boolean condition and parses the opera-
tion into substring match primitives; the associated weight of the operation is
indicated. The assigned weight is recorded, and the match patterns are
forwarded to the DPPMEs. Upon completion of the match operations, the PE
computes the final boolean result and associates the result with the stored
weight. We now focus on the DPPM algorithm and the corresponding DPPME
processor.

3. DATA PARALLEL PATTERN-MATCHING ENGINE

3.1 Previous Work in Hardware Pattern Matching

The pattern-matching problem is to find all occurrences of a p-character
pattern, P, constructed from a vocabulary of m distinct characters, in an
s-character data string, S. The pattern P may also contain don’t F(IW charac-
ters. For typical applications, p Q s and m * s. Since the size of the data
string is usually very large, sequential search via general-purpose processors
is prohibitively slow.

To expedite the search, numerous hardware-based solutions to pattern
matching have been investigated, and some are actually implemented [3, 4,
6, 8, 15, 17, 18, 21, 241. As fast software pattern-matching algorithms [2, 121
are based on finite state automata (FSA), hardware realizations of FSA
pattern matching were investigated by [81. FSA requires precompilation of
the patterns and processes the data string one character at a time. Although
precompilation of the pattern eliminates the need to compare each character
of the data string to every pattern character, the sequential character-at-a-
time processing severely limits the search rates of these systems.

Unlike the software and hardware FSA approaches, many hardware ap-
proaches 13, 4, 6, 241 use comparator arrays to perform pipelined pattern
matching directly without precompilation of the patterns. Multiple patterns
are compared concurrently to the data string to achieve higher throughput.
However, the search rate is still limited by the sequential processing of the
data string. Furthermore, in comparison with the software and hardware
FSA implementations, most of the comparator array approaches exhibit. a
significant amount of redundant comparisons. Redundancy can be classified
into physical redundancy and logical redundancy. Physical redundancy indi-
cates low utilization of hardware, while logical redundancy indicates the
number of comparisons that occur after a mismatch is identified.

ACM Transactions on Information Systems, Vol. 9, No. 1, January 1991.

58 * V. W. Mak et al.

In the systolic array approach [4], data and pattern characters are routed in
opposite directions. At any given clock cycle, only half of the cells in the
array can perform meaningful computation; therefore, half of the physical
hardware is actualIy wasted.

The cellular array approaches proposed by [31 and [241 avoid the problem of
physical redundancy; however, logical redundancy still exists. In these two
approaches, pattern characters are preloaded into the comparator cells. Each
character of the data string is broadcast into all cells serially. and compari-
son results are generated by all cells simultaneously. Through the control of
finite state automata, a match signal is propagated through an array of
control cells to the outside world. However, most of the comparisons between
the data string and the last few pattern characters are redundant because a
mismatch may have occurred among the first few pattern characters. Since
pattern-matching operations on text databases exhibit low selectivity,
comparisons beyond the first few characters of the pattern are usually
redundant.

To reduce the number of redundant. comparisons and to increase t.he degree
of effect,ive parallelism in the pattern-matching problem, both ALTEP 1151
and our DPPME utilize a data parallel, pattern serial scheme in which
pattern characters are broadcast and compared to a block of the dam string
in parallel. While ALTEP is a cellular processor optimized for regular
expression comparisons with microprogrammed control, DPPME is a VLSI
filter optimized for variable-length text processing with hardwired control.
The decoupling of query resolution from the primitive match operation
simplifies the structure of the DPPMX so t,hat it. can he implemented com-
pactly, and hence is more efIicient. A major issue in supporting pattern
matching for variable-length text using the dat,a parallel, pattern serial
scheme is in the handling of multiple partial matches crossing block bound-
aries. The DPPME has architectural support that provides an integrated and
efficient mismatch detection and partial-match propagation mechanism. This
is more efficient than using microprogrammed control to store the partial-
match positions into multiple registers, to scan for mismatch conditions, and
to issue anchor(O) instructions to the cellular array in multiple steps of
microinstructions.

3.2 The DPPM Algorithm

As in previous approaches [.3, 6, 241, the DPPM algorithm also uses a
comparator array to parallelize search operations. However, instead of seri-
ally broadcasting the data string characters to a comparator array containing
the pattern, the DPPM algorithm serially broadcasts the po,ttern characters
to a comparator array containing a block of the data string.

l,et S[I:nl be the data string of n characters to he searched and Fatll:pl be
the pattern of p characters. The data string is divided into blocks of b
characters each and searched a block at a time. Let BlkiI:bl be t,he current
data block of size b characters. Basically, the DPPM algorithm serially
broadcasts each pattern character to a block of the data string. If the pattern
character matches any of the characters in the block, the next pattern
character is broadcast in the next comparison cycle. If, at any cycle, no match

Pattern Data Elodc
I a b a d

Fig. 3. DPPM example.

Lln +hn .---+ -%ern character and the
iom the previous block, the data block is

YU Yllr b-Ic11” pc’

partial match is carried over f
discarded, and the search continues with the next block. A partial match
occurs when Pat[il, i < p, matches the last data block character Blk[bJ. This
partial-match information is stored and used in the next block to continue the
search by comparing Pat[i + 11 to the first data block character Blk[ll.

The DPPM algorithm can be best illustrated using a simple example.
Suppose a search for the pattern abed in the data string abndbbabcdee is
conducted. Figure 3 shows the operation of the DPPM algorithm using a
block size of 4. The first block, containing the characters abad, is first loaded
into the comparator array. When compared to the first pattern character n,
two matches are detected. The second pattern character b is then broadcast
and compared to the characters to the right of the matched characters in the
previous cycle, i.e., h is compared to the second and the fourth characters in
the block. Since a match is detected again at the second character, a
comparison of the third pattern character c with the third character in the
block is necessary. This time no match in the block is observed, so the
current block is discarded; and the search continues with the next block. This
early mismatch detection mechanism avoids broadcasting and comparing the
fourth pattern character d to the current block since this comparison is
redundant.

The next block contains the characters bhab. The pattern compares suc-
cessfully up to the second character h. At this point, the end of the block is
reached. There is a possibility that the pattern may span the block boundary.
DPPM remembers this partial-match information and continues the match in
the next cycle. Since there is no other match in the block, the current block is
also discarded.

ACM Trmmwtiom on Information Sydems, Vol. 9, No. 1, January 1991.

60 . V. W. Mak et al.

while i- End 01 Data String) do begin
&tNexttilock(Bik); -’
foreil i from 1 to b do Mask[i] := TRUE;
forall i from 1 to (p - 1) do \but[i] := FALSE;

i := 1;

while i 5 p do begin /* Comparison Cycle */
forall j from 1 to b do

Tb] := 34i~skjjj A (IX[i] V (Mkfi] = P&Ii]));
if (i < p) then Vout[i] := T:ll]
else begin /” i = p: Rrp~rl I\I~trh Found */

forall j from I to 1) do
if (Tb]) then Heporf Match at j;

break;
end;
if (@:i Tfil) then begin

/’ Prepare 34ask ior next comparison cycle */
forall j from 2 to b do

hlask~] := Tk-I::
Mask[l] := \‘in[i+l]:

i := i + 1;
end

eIse if (Vf=;+, Vinb]) then begin
/‘* Skip L’rmrcesiary Pnttcm Characters */
do i := i + 1 until (Vin[i]);
K%?k[l] := TRUE
forall j from 2 to b do Maskbj := FALSE;
end

else /* l‘:ariy out ‘/
break:

end;
forall i from 2 to p do Vin[i] := Vnnt[i-I];

end;

Fig. 4. Pseudocode of the DPF’M algorithm.

T h e t hird block contains the characters cdee. The first pattern character a
has no match with the block. At this point, DPPM recalls there was a partial
match in the previous block up to the second pattern character; therefore, it
jumps to the third pattern character c and continues the partial match from
the previous block. Finally, a hit or an occurrence of the pattern is detected
with the fourth pattern character d.

Although not shown in this example, the DPPM algorithm can also detect
multiple occurrences of the pattern even if they overlap, and no backtracking
is required to detect all occurrences.

Pseudocode of the control flow of the DPPM algorithm is shown in Figure
4. The description below follows closely with the pseudocode. DC[l:pl is a
bit-vector indicating the don’t CCLW positions in the pattern. DC[i] is set if
there is a don’t care at Patii]. Maskll:bl controls the activation of the
comparator array based on the results of the previous comparison cycle. If
Patlll matches Blkli] in the first comparison cycle, then Mask[i + 11 is set in
the next. comparison cycle, enabling the comparison between Pat[2] and
Blk[i + 11. T[l:bl holds the results of the comparator array. Vin[2:p] and
ACM Transactions on Information Systemn. Vol. 9. No. 1, January 1991.

Exploiting Parallelism in Pattern Matching - 61

TT*..+rl .I.. “I I.-‘= %e partial-match information from the mevious block““UWL.~ - A,, 11”LU w _

and the current block, respectively. Vi&l is set if there is a partial match in
the previous block up to and including the character Pat[i - 11. Vout[il is set
if there is a partial match up to and including the character Patlil in the
current block.

For each block of the data string, Mask is initially set to be all TRUE,
enabling all comparators for the entire block. Vout is initialized to be all
FALSE. Then, each pattern character Patlil, 1 s i 5 p. is serially broadcast to
the comparator array and compared to the entire data block. If i < p, the
broadcast character is not the last pattern character, and the comparison
result of Pat[i land Blk[b] is stored in Vout, so that any partial match can be
continued in the next block. If i = p, the last pattern character is broadcast,
so any match in the current comparison cycle indicates that an occurrence of
the pattern is found in the current block. The positions at which matches are
detected are reported. Since the last pattern character is reached, no further
comparison is necessary; and the current block can he discarded.

If Patlil, i < p, matches with any of the first (b - 1) characters in the data
block, the search continues with Patli + 11 for the current block. The compar-
ison result of Pat[il and Blklbl indicates only whether a partial match occm-s
in the current block and does not require further comparison in the current
block. If the search is continued with the current block, the Mask for the next
comparison cycle is formed by shifting the comparison results of the current
cycle. The first bit of the Mask is loaded from Vinli + 11 to continue any
partial match from the previous block.

If no match is detected with the first (b - 1) characters, the algorithm
checks to see if any partial match has to be continued for the rest of the
pattern characters, Pat[(i + l):pl. If so, the first pattern character found will
be broadcast in the next comparison cycle. In this case, only the first bit of
the Mask is set. If no partial match is carried over from the previous block,
the current block can be discarded.

With the use of Vin and Vout, partial match can be continued in the next
block without any backtracking of the data string. Since the algorithm is
independent of the block size, the search rate can be increased simply by
increasing the block size or the number of comparators. As a result, the
DPPM algorithm can efficiently utilize the high degree of integration of VLSI
technology to attain high-speed processing through parallelism.

3.3 VLSI Design Issues

The DPPM algorithm relies on VLSI technology to implement broadcasting
of pattern characters to many comparators simultaneously. Broadcasting
requires a large fanout as well as a long routing distance. It is therefore
important to understand whether data broadcasting can be implemented
effectively using current and emerging VLSI technology.

The first design issue is whether the necessary degree of fanout can be
achieved without introducing excessive delay. Using a block size of 1000,
each bit of a pattern character must be broadcast to 1000 gates. Using 2-pm
CMOS technology, a typical gate capacitance is 20 fF, so the total input
capacitance for 1000 gates is 20 pF. Assuming a typical gain factor of 50

ACM Transactions on Information Systema, Vol. 9. No. 1, January 1991.

t t
comparatw amy

and an output channel resistance of 10 K0, using the simplified
k&e1 presented in f25], it is possible to achieve a 1 ns delay for a buffering
stage with a fanout of 4. With 5 cascaded buffer stages to achieve a fanout of
1000, a total delay of 5 ns is possible. This estimate matches the circuit
simulation results using 2-pm CMOS technology very well. Using 2-pm
BiCMOS [13] technology, one BiCMOS gate can drive a load of 700 fF with
0.7 ns delay. This is equivalent to driving 35 gates in parallel. A fanout of
1000 can therefore be achieved in two cascaded buffer stages with a total
delay of only 1.4 ns.

Propagation delay due to long routing distances can be minimized by using
two layer metal routes. Since a large capacitive load is driven using multiple
stages of buffers, the propagation delay is dominated by the large input gate
capacitance and high output channel resistance of the previous stage; the
delay due to long metal runs can be ignored in the timing analysis 1251.

The above analysis shows that with the large fanout, capability of BiCMOS
technology, together with two-layer m&l routes, data broadcasting in the
DPPM algorithm can be implemented effectively. Even with Z-pm CMOS
technology, data broadcasting can still be implemented with a reasonable
propagation delay.

Figure 5 shows the circuit block diagram of the DPPM engine. Before the
actual search operation, the pattern, pattern length, and don’t core positions
are first. loaded into their corresponding registers. The data string is buffered
and read one block at a time to the block register. The comparator array
performs the actual comparison between the pattern character and the data
block. The results of the comparator array are ANned with the Mask to form

Exploiting Parallelism in Pattern Matching * 63

T. The DPPM engine integrates the mismatch detection and the partial-
match propagation mechanisms by combining the Vin register (partial-match
information from a previous block) with the old?‘ register (match results of
the previous comparison cycle) to form the mask for each comparison cycle.
The first bit of the Mask is from Vin[il, and the last (b - 1) bits are from the
first (b - 1) bits of T in the previous cycle. The last bit of T is stored into
Vout[il. Each time a new data block is read, the first (p - 1) bits of Vout are
loaded into the last 0, - 1) bits of Vin. The first bit of Vin is always set.

The sequence controller controls the operation of the DPPM engine by
generating the value i, which is used to index the pattern, don’t care, Vin,
and Vout. registers. By monitoring the values of T, the content of the Vin
register, and the pattern length, the sequence controller decides for each
cycle one of the following three actions:
(1) Compare the next pattern character with the current block.
(2) Jump to a pattern character to cont.inue the partial match from previous

block.
(3) Discard the current block and continue the search with the next block.
Step 1 is taken if this is not the last pattern character and the content of T is
nonzero (match(es) detected in the current cycle). If T is zero, t.hen the index
of the next pattern character to be used for comparison is determined by a
priority encoder that encodes the first nonzero bit in the Vin register after
masking off the first (i - 1) bits of the Vin register using a linear shift
register. Step 3 is taken if the last pattern character is reached or if T is zero
and there is no more partial-match propagation from the previous block
(early out).

The sequence controller also generates a lust character signal when the
last pattern character is reached. This signal is used by the hit detection
unit, which checks the values of T to report any hit in the search. The
priority encoder produces the encoded addresses for all hit positions in the
current block.

The critical path of the circuit is from the pattern register, through the
comparator and AND arrays, to the priority encoder. Using 2-pm CMOS, the
comparison cycle time is about 50 ns for a block size of 1000. This cycle time
includes the broadcasting delay of 6 ns. If 1.2.pm CMOS is used, the cycle
time will be approximately 33 ns. The chip area of the DPPM engine for a
block size of 128 is roughly 200 x 100 mi12.

Another important issue is to understand whether the I,/0 bandwidth of a
CMOS chip can sustain the gigabyteisec search rate of the DPPM engine.
Marcus llS1 has demonstrated, using 32 input pads, that a bandwidth of 5.44
Gb/s can be achieved using 1.2~pm CMOS technology. Even higher band-
width can be achieved by using advanced packaging technology that supports
higher I/O pin counts ill].

4. PERFORMANCE ANALYSIS

Performance of the proposed document-searching architecture depends on the
search rate achievable by the DPPMEs, which in turn depends on the
performance of the DPPM algorithm. In this section the DPPM algorithm is

ACM Transactions on Information Systems, Vol. 9, No. 1, January 1991.

analyzed both analytically and by simulation on a text database. Using the
performance results of the DPPM algorithm, the potential performance of the
proposed document-searching architecture is analyzed.

4.1 DPPM Algorithm

4.1.1 Analytical Modeling. Performance of the DPPM algorithm depends
on the block size used, the number of comparison cycles required per block,
and the cycle time of the hardware. The block size is a parameter chosen by
the designer of the system. The cycle time depends on the VLSI technology
used in implementing the DPPM algorithm. The number of comparison
cycles required per block depends on the probability of finding the pattern in
a block, and may be determined analytically or experimentally. In this
section an approximate analytical analysis of the performance of the DPPM
algorithm is presented. To simplify the analysis, a uniform distribution of
characters in both the data string and the pattern is assumed. We also
assume that the pattern does not contain any don’t care characters. Using an
approach similar to that in [181, the pattern-matching process is modeled as
the detection of random events.

With a block size of h, there are b independent comparisons of the pattern
with the data block, with each starting at a different location. Thus, partial
matches that span to the next block are considered to be part of the current
block. Let p be the pattern len&h and m the alphabet size of the character
set. Using the assumption of uniform distribution of characters, the probabil-
ity of not finding the pattern in each comparison is

1 p
n=l- -

(1m .

Assuming that not !dnding the pattern in one position of the data string does
not affect the probability of not finding the pattern at a different position,
then the probability of not finding the pattern for b consecutive comparisons
is

b=CUb= (l- (J-)‘i*.

Therefore, the probability of finding a pattern with length p in & consecutive
comparisons is

S(p)=l-@=l- (I- (k)‘i*.

6(p) converges quickly to zero as p increases. The average number of
comparison cycles per block is

p-1

c = 1 + zxIl h(i).

ACM Transaction on Information Systems, Vol. 9, No. 1, January 1991.

Exploiting Parelleliem in Pattern Matching 85

Let

I IO If.20 I coo 1c000

Block Size (Byte)

Fig. 6. Search rate of the DPPM algorithm using analytical results.

T be the comparison cycle time. The search rate at a block size of b, R,,
is defined as the number of data string characters that can be searched in one
second,

&
R,= -

CxT’
The speedup, S, of the DPPM algorithm is defined as

- Rh

shows the search
length of 6, Figure 6Using 50 ns as the comparison cycle time and a pattern I

rate of the DPPM algorithm at different block-sizes.
The alphabet size m, used in this case is 45, which corresponds to the case-
insensitive English alphabet, digits, and a few common symbols. When the
block size is one, the DPPM algorithm degenerates into a sequentia1 algo-
rithm with a search rate of approximately 20 MBytejsec. This search rate is
about the same as current state-of-the-art hardware pattern matchers. The
DPPM algorithm exhibits a high degree of parallelism; according to the
analysis, a multiple gigabytes per second search rate is achievable using a
block size of 1024.

4.1.2 Simulation Experiment. The analysis described in the previous sec-
tion is only a simplified model of the actual performance of the DPPM
algorithm. Exact analysis of the algorithm is difficult due to the following
two reasons:
(1) Different characters have different frequencies of occurrence. For in-

stance, in the English language, a, e, and s occur more frequently than q,
x, and z. The assumption of uniform distribution of characters in the data
string and the pattern is a simplification that may have a significant
effect on the accuracy of the analysis.

ACM Transactions on Information Systema. Vol. 9, No. 1. January 1991.

after
american

again
among

against
mother

almost
around

better business called
.,

children

characters. Chara
English language.
treat the occurren
as an independent

2 DPPM algorithm
1 text database. In

character is not independent of
cter groups like ing, th, and un occur frequently in the
This cross correlation property implies that we cannot

ce of a character in the input data string or the pattern
; random event; this complicates the analysis.

can be best evaluated by simulating its operation on a
such an environment we can estimate its performance

and gain insights into its behavior. The database chosen for this simulation
consists of the Associated Press wire news articles of August 2, 1988. The
total size of this database is 4.4 MByte. All uppercase characters in the
database were converted to lowercase; case-insensitive pattern matching was
used. The test patterns chosen for this simulation experiment were the 100
most frequently used words in American English that are at least five
characters long (see Table I) 1141. The pattern lengths vary from 5 to 10
characters with an average of 5.88 characters.

Figure 7 shows the average number of comparison cycles per block, C,
measured at different block sizes. Although the pattern characters are seri-
ally compared to the data block, early mismatch detection allows the algo-
rithm to search the next block as soon as a mismatch is detected. This feature
is especially effective at smaller block sizes where the probabilities of match-
ing the first few characters of the pattern are low. Without early mismatch
detection, C is equal to the average pattern length, in this case, 5.88. At
larger block sizes, the probability of finding the pattern in the block is
higher; thus the value of C also increases. As the block size is increased, the
value of C approaches the average pattern length asymptotically.
ACM Transactions on Information Systems, Vol. 9, No. 1. January 1991.

Block Size (Byte)

Fig. 7, Average number of comparisons per block.

IO

Exploit ing Parallelism in Pattern Matching . 67

4

.Ol
I IO iC0 I CC0 ICOOO

Block Size (Byte)

Fig. R. Search rates at different hlwks.

u sing 50 ns as the comparison cycle time. T, Figure 8 shou fs the search
rates R,, at different block sizes. Recall that increasing the block size
requires proportionately more comparators on chip. At a block size of 16, the
search rate is 212 MByte,‘sec. This rate matches the predicted optical disk
transfer rate of 200 MByte,‘sec [II. At a block size of 128, the search rate
reaches 1 GBytelsec. This rate is sufficient to handle the existing memory
bandwidth of supercomputers, as well as data input from optical-fiber trans-
mission systems in future communication networks.

Figure 9 shows the speedup. S, of the DPPM algorithm at different block
sizes. The DPPM algorithm is indeed scalable and allows exploitation of a
high degree of parallelism. Speedup can be obtained easily by increasing the
-:-,. ..Cl-L- J-L.. t...l.

ACM Trnnnnctions on Infmnntion Systems. Vol. 9, No. 1, January 1991.

I” ,“”

Block Size (Byte)

Fig. 9. Speedup of the DPPM algorithm.

I Y I II _ ._

Pattern Length

Fig. 10. C for all patterns at a block size of 128.

if the pattern is longer, more comparison cycles per blo
in testing the pattern against the data string. However,

DPPM algorithm as observed in this simulation
values of ?’ for all patterns at, a block size of 128.

Thiq indicates no strong correlation between the pattern length and C.
.

~ion’i-n%e~~I’PM
the pattern length is due to the early mismatch detec-

algorithm. Since most blocks can be discarded after the
frrc+ fnxrr rharnrt.ers. t,hr length of the pattern has very little effect on c.

,ensitive to the last few characters, or suffix, of the
re of 128, the patterns processes, processor, and

;%*&%~g re&ire essentially the same number of comparison cycles per

The algorithm is also ins
nnt,tern. Using a block si:.

block (see Table II).
ACM Trwwadions on Information Systems, Vol. 9, No. 1. Januw 1991.

Table II. Effect of

Pnttern

processnn
processinfi
processor

Different

ison cycle is necessary for the current data block, the performance of the
algorithm is very sensitive to the pattern pretax. yatterns starting wnn
frequently occurring prefixes (like th, st, and al) result in a higher number of
comparison cycles. Consider the following three pat.terns: onene, &queue,
and enqueue. Using a block size of 128, the DPPM i
different performance figures for the patterns (Table III). The

algorithm has very
pattern queue

searches the same database at twice the speed as the patterns &queue and
enqueue. To take advantage of this prefix-sensitivity property of the DPPM
algorithm, the search rate can be increased by modifying the pattern so that
it starts with a less common prefix. Instead of searching for the pattern
&queue, the search rate is increased by using queue instead. However, the
search result has lower precision since all occurrences of the patterns q2~crle
and enqueue will also be found.

tattern characters to
Instead of comparing the pattern characters serially to the data block as in

the DPPM algorithm, it is possible to compare multiple p
the data block with Multiple Pattern Multiple Data (MPMD). This approach
reduces the number of comparison cycles required per block, and thus results
in a higher search rate. However, MPMD requires more hardware compara-
tors for the same data block size since multiple pattern characters have to be
compared simultaneously. The additional comparators may also be used to
increase the block size of the DPPM algorithm, and thereby increasing the
search rate. So t.he design issue is this: Given the same number of compara-
tors, which of these two approaches (DPPM or MPMD) yields a higher search
rate?

Let the number of comparators used in both cases be K. The block size for
the DPPM algorithm is also k. The block size for the MPMD algorithm is
k :n, if n characters of the pattern are to be compared in parallel. If c
comparison cycles are required for a data block of size k ;!n. for the DPPM
algorithm, then the number of comparison cycles required for the MP&
algorithm, for the same block, is [cl n]

‘01. 9, No. 1, January 1~1.

Table IV. Compar ison o f the DPPM

comparison cycles, C, and search rates, R,, of both approaches, given the
same number of comparators when n is 2. Although the average number of
comparison cycles per block is lower in the MPMD algorithm, the overall
search rate is less than that of the DPPM algorithm. Comparing more than
one pattern character at a time does not make full use of the capacity of the
comparators. If the first pattern character fails, all comparators used for the
second pattern character are wasted. Using the extra comparators to increase
the data block size is more profitable than increasing the number of pattern
characters broadcast simultaneously in terms of the overall search rate.

We can now return to the document-searching architecture and evaluate
its potential performance, given the performance of an individual DPPME.

4.2 Document-Searching Architecture

To determine the information retrieval query-processing potential of the
proposed document-searching architecture, an analysis of the ratio of the
number of DPPMEs to the PE is required. Assume that the arrival process of
matches for each DPPME is Poisson distributed with a rate of X. Also,
assume that the arrival processes for all n DPPMEs in parallel are indepen-
dent with identical distributions; the total input arrival rate is then rzh. The
PE is modeled as an exponential server with a service rate of IL. Hence, we
can use an M/M/l model to analyze the potential performance of the pro-
posed architecture.

The utilization, p, of the PE is

Exploiting Parallelism in Pattern Matching - 7 1

Table V. Arrival Ratm of DPPM Entine

Block size x(X’)
.-~
1 2050
2 4 0 0 0
4 7 4 5 0
8 1 3 3 0 0

1 6 2 2 9 0 0
3 2 3 9 0 0 0
6 4 67300

1 2 8 118000
2 5 6 2 1 0 0 0 0
5 1 2 3 7 5 0 0 0

1 0 2 4 6 7 0 0 0 0

3 0

$
.r

$ 2 0 ..**...j.........................*.~

El

- P ~0.25
I - P =0.5

:
- p =0.75
- p =l.O

5 1 0 ..I

FE

2
2

0
IC IOC ICOO

Block Size
Fig. 11. Number of DPPM engines supported by a lO.MIPS PE for various values of PE
utilization, p.

The arrival rate of matches for each DPPME, X, is determined by the ratio of
the number of matches to the time required to search the entire database.
Using the simulation results of the Associated Press wire news article in the
previous section, the average number of matches for the 100 test patterns
used in the experiment is 472. The time required to search the entire
database is determined by the search rate measured for different block sizes,
as shown in Figure 8. Table V shows the values of h at different block sizes
using the simulation results in the previous section.

The service rate of the PE for each match depends on the type of instruc-
tion executed at the processor. A conservative analysis of the instruction set
in Figure 2 shows that about ten machine instructions are required to process
each match from the DPPME. Assuming that we have a lo-MIPS processor,
the service rate will then be lo6 sl.

Figure 11 shows the number of DPPMEs that a lo-MIPS PE can support at
different block sizes and utilization levels. At a block size of 64, a IO-MIPS

ACM Transactions on Information Systems. Vol. 9, No. 3, January 1991.

can tiupporc arJ0l.l
M/M/l queue, the a
service, is

Q-f-.
1-P

Hence, at a utilization of 0.75, the average queue length at the PE is 3.
Using this combination (eleven DPPM engines connected to a lo-MIPS
processor), the proposed architecture can process up to 11 pattern-matching
operations simultaneously at a search rate of 600 MByte’sec.

Fixing the number of DPPM engines at ten, Figure 12 shows the process-
ing rate requirement for the processor at different block sizes and utilization
levels. With advances in VLSI technology and RISC architectures, the pro-
cessing rates of microprocessors are increasing at an enormous rate. FiO-MIPS
RISC processors have recently been announced commercially by a number of
vendors. From Figure 12, a 50-MIPS PE can support 10 DPPM engines of
block size 128 in parallel at a utilization level of 0.25, with each DPPME
having a search rate of 1 GByte/‘sec. At a search rate of 1 GByte/sec, we can
search both the old and new testaments of the Bible in 5 msec, Webster’s
dictionary in 16 msec, and an entire volume of The Encyclopedia Brifannica
in 400 msec.

The above analyses show that by separating the operator and query
complexity from the DPPMEs, the proposed architecture can search docu-
ments at 1 GByte/sec using current VLSI technology. Because of the high
search rate supported by the DPPMEs, the system bottleneck is now shifted
from processing to disk K/O bandwidth: current disk technology cannot
deliver data at such a high rate. This problem can be solved partially by
using a large number of disks in parallel (disk farm), thus increasing the
total I/O bandwidth of the disk system. In the future, we will have to rely on
different storage technologies such as optical disk and holographic storage
systems. The high-performance optical disk reported in 1221 has a 40
ACM Trensactiona on Informetion System+, Vol. 9, No. 1. January 1991.

Exploiting Parallelism in Pattern Matching I 73

MByte/set transfer rate; and it was estimated that the transfer rate may
reach 200 MByte/set in future [l]. The XCC Bobcat II holographic storage
project 1191 proposed a 100 to 800 MByte ‘set transfer rate prototvpe using
3.dimensional holograms in photorefractive crystals, and projected”that a 60
GByteisec transfer rate is achievable using this technology-.

5 . S U M M A R Y

We have proposed a novel searchbincr architecture for information retriev31.
This architecture decomposes information retrieval instruction-processing
requirements from document-searching needs. Document searching is per.
formed via numerous parallel high-speed hardware pattern matchers. Al-
though any filter design can be utilized as a document processor, our analysis
is based on DPPME, a VLSI filter based on a parallel pattern-matching
algorithm we developed, called DPPM,

The proposed document-searching architect,ure has a modular structure
that. separates the operator and query complexity from the customized hard-
ware document search engines, resulting in simpler, and hence more efi-
cient, hardware implementation of the document search engine. Performance
of t.he DPPM algorithm was evaluated analytically and by simulation. The
results of the evaluation indicate that the algorithm has a high degree of
parallelism and that. a search rate of over 1 GByte,‘sec is achievable using
current VLSI technology. This search rate exceeds the memory bandwidth of
existing supercomputcrs and the projected transfer rate of-future opt,ical
disks, The algorithm is illso capnblt> of handling the very high bandwidth of
optical fiber transmission systems of the fnturr.

Using the detailed performance analysis of each DPPME, we analyzed the

expected system performance. As noted earlier, we estimate that-to fully
search The Enqclopedin Britnnnirn with a query of at most, ten patterns
takes roughly 400 mscc. This processing rate far exceeds current conven-
tional technology.

As the sizes of unformatted text databases rontinue to mow, it &comes
inevitable that even forming indices for text documents will require conoider-
able effort. It is possible that information retrieval systems employing para].
lel hardware filters, such as t.he one proposed here, will be used to remedy
this problem.

ACKNOWLEDGMENT

We would like to thank Gary Her] man. Sudhir Aggarwal. and Bill Mamfbl~
for their support in this project. We would also like to-thank Brian Coan
Jonathan Chao, Gita Gopal, Dik Lee, Will Leland, Anthonv McAuley ani
the anonymous reviewers for their comments on this pape;, which gr)eat]y
improved both its presentation and technical content.
REFERENCES

1. BERRY, P. B., AND '~OULLINOS, N. B. Optical techniques and data/knnwle,
chines. TEEE Comprm 20 f&t. X387), 59-70.

2. TOOTER, K. S., AXIJ MOORE;, J.
1977). 763-772.

A fast &ring srarrhing algorithm. Comman. AC&f 20 (Oct.

ACM fianmtionn on Information Systems, Vol. 9, No. I, January 19%.

74 - V. W. Mak et al.

3. CURRY, T., AND MUKHOPADHYAY, A, Realization of efficient non-numeric operations through
VLSI. In Proceedings ofthe VLSI ‘83 (1983). 327-336.

4 . FOSTER, M. J., AND KUNG, H. T. The design of special purpose chips. IEEE Computer 13
(Jan. 1980). 26-40.

5. FRIEDER, 0.. LEE, K. C., AND MAK, V. W. JAS: A parallel VLSI architecture for text
processing. IEEE Data Eng. I.2 (Mar. 1989), 16-22.

6. 1

7 .

8 .

9 .
10.

11.

12.

13.

14.

15.

1 6

1 7

1 8

1 9

2 0

HALAAS, A. A systolic VLSI matrix for a family of fundamental search problem. Integration
VLSI J. 1 (Dec. 1983), 269-282.
HASKIN, R. L. Special-purpose processors for text retrieval. IEEE Data Eng. 4 (Sept. 1981),
16-29.
HASKIN, R. L., AND HOLLAAR, L. A. Operational characteristics of B hardware-based pattern
matcher. ACM Trans. Database Syst. 8 (Mar. 1983), 15-40.
HOI.LAAR, L. A. Text retrieval computer. IEEE Computer 12 (Mar. 1979). 40-50.
HOLLAAR, L. A., SMITH, K. F., CHOW, W. H., EHRATH, P. A., AND HASKIN, R. L. Architec-
ture and operation of a large, full-text information-retrieval system. In Advanced Database
Machine Architecture. Prentice Hall, 1983, 256-299.
JOHNSON , R. Multichip modules: Next-generation packages. IEEE Spectrum 27, (Mar.
1990). 34-48.
KNUTH, D. E., MORRIS, J. H., JR., AND PRATT, V. R. Fast pattern matching in strings.
SIAM J. Comput. 6 (June 1977), 323-350.
KUBO, M., MAXIDA, I., MIYATA, K., AND OGIUE, K. Perspective on BiCMOS VLSI’s, IEEE
J. Solid-State Circuits 23 (Feb. 1988), 5-11.
KUCERA, H., AND NELSON-FRANCIS, W. Computational Analysis of Present-Day American
English. Brown University Press, Providence, RI, 1967.
LEE, D. Altep-A cellular processor for high-speed pattern matching. New Generation
Comput. 4 (Sept. 1986), 225-244.
MARCUS, W. A CMOS hatcher and banyan chip set for B-ISDN packet switching. IEEE J.
Solid-State Circuits SC-25, 6 (June 1990), 1426-1432.
MEAD, C. A., PASHLEY, R. D., BRITON, L. D., YOSHIAKI, T., AND SNADO, S. F., JR. 128.bit
multicomparator. IEEE J. Solid-State Circuits SC-11 (Oct. 1976), 692-695.
F'RAMANICK, S. Performance analysis of a database filter search hardware. IEEE Trans.
Cornpot. C-35 (Dec. 1986), 1077-1082.
REDFIELD, S., AND HESSELINK, S. Data storage in photorefractives revisited. In Proceedings
of the Conference on Optical Computing, vol. 963, 1988, 35-45.
SALTOS, G., Fox, E. A., AND Wu, H. Extended boolean information retrieval. Commun.
ACM 26 (Nov. 1983). 1022-1036.

21. SXEFIER, J. Super searcher. Popular Sci. 231 (Dec. 1987). 60-61.
22. SHULL, T. A., HOLLOWAY, R. M., AND CONWAY, B. A. NASA spaceborne optical disk

recorder development. In SPIE 899 Optical Storage Technology and Applications, 1988,
272-216.

23. STANFILL, C., AND KAHLE, B. Parallel free-text search on the connection machine system.
Commun. ACM 29 (Dec. 1986), 1229-1239.

24. TAKAHASHI, K., YAMADA, H., AND HIRATA, M. Intelligent string search processor to acceler-
ate text information retrieval. In Proceedings of the Fifih International Workshop on
Database Machines (Oct. 1987). 440-453.

25. WESTE, N., AND ESHRACHIAN, K. Principles of CMOS VLSI Design. Addison-Wesley, Read-
ing, Mass., 1985.

ACM Transactions on Information Systems. Vol. 9, No. 1, January 1991.

