
Collection Statistics for Fast Duplicate
Document Detection

ABDUR CHOWDHURY, OPHIR FRIEDER, DAVID GROSSMAN,
and MARY CATHERINE McCABE
Illinois Institute of Technology

We present a new algorithm for duplicate document detection that uses collection statistics. We com-
pare our approach with the state-of-the-art approach using multiple collections. These collections
include a 30 MB 18,577 web document collection developed by Excite@Home and three NIST collec-
tions. The first NIST collection consists of 100 MB 18,232 LA-Times documents, which is roughly
similar in the number of documents to the Excite@Home collection. The other two collections are
both 2 GB and are the 247,491-web document collection and the TREC disks 4 and 5—528,023
document collection. We show that our approach called I-Match, scales in terms of the number of
documents and works well for documents of all sizes. We compared our solution to the state of the
art and found that in addition to improved accuracy of detection, our approach executed in roughly
one-fifth the time.

1. INTRODUCTION

Data portals are everywhere. The tremendous growth of the Internet has
spurred the existence of data portals for nearly every topic. Some of these por-
tals are of general interest; some are highly domain specific. Independent of the
focus, the vast majority of the portals obtain data, loosely called documents,
from multiple sources. Obtaining data from multiple input sources typically
results in duplication. The detection of duplicate documents within a collection
has recently become an area of great interest [Shivakumar and Garcia-Molina
1998; Broder et al. 1997] and is the focus of our described effort.

Typically, inverted indexes are used to support efficient query processing
in information search and retrieval engines. Storing duplicate documents af-
fects both the accuracy and efficiency of the search engine. Retrieving duplicate
documents in response to a user’s query clearly lowers the number of valid re-
sponses provided to the user, hence lowering the accuracy of the user’s response
set. Furthermore, processing duplicates necessitates additional computation

This work was partially supported by the National Science Foundation under the National Young
Investigator program.
Author’s address: Information Retrieval Laboratory, Illinois Institute of Technology, 10 West
31st Street, Chicago, IL 60616; email: abdur@ir.iit.edu; ophir@cs.iit.edu; grossman@iit.edu;
mcatherm@comcast.net.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1046-8188/02/0400–0171 $5.00

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002, Pages 171–191.



172 • A. Chowdhury et al.

without introducing any additional benefit. Hence, the processing efficiency of
the user’s query is lowered.

A problem introduced by the indexing of duplicate documents is potentially
skewed collection statistics. Collection statistics are often used as part of
the similarity computation of a query to a document. Hence, the biasing
of collection statistics may affect the overall precision of the entire system.
Simply put, not only is a given user’s performance compromised by the
existence of duplicates, but also the overall retrieval accuracy of the engine is
jeopardized.

The definition of what constitutes a duplicate is unclear. For instance, a
duplicate can be defined as the exact syntactic terms, without formatting dif-
ferences. Throughout our efforts however, we adhere to the definition previ-
ously referred to as a measure of resemblance [Broder et al. 1997; Heintze
1996]. The general notion is that if a document contains roughly the same se-
mantic content it is a duplicate whether or not it is a precise syntactic match.
When searching web documents, one might think that, at least, matching URL’s
would identify exact matches. However, many web sites use dynamic presenta-
tion wherein the content changes depending on the region or other variables.
In addition, data providers often create several names for one site in an at-
tempt to attract users with different interests or perspectives. For instance,
www.fox4.com, onsale.channel9.com, and www.realtv.com all point to an adver-
tisement for real TV.

While the previous examples are for web documents, the same holds true
for other collections where multiple document sources populate a single doc-
ument collection. The National Center for Complimentary and Alternative
Medicine (NCCAM), part of the National Institutes of Health [NIH 2000]
supports a search engine for medical data whose inputs come from multiple
medical data sources. Given the nature of the data, duplicates are common.
Since unique document identifiers are not possible across the different sources,
the detection of duplicate information is essential in producing non-redundant
results.

A previously proposed solution is the digital syntactic clustering (DSC) algo-
rithm and its super shingle (DSC-SS) variant [Broder et al. 1997]. While these
algorithms are commonly used, they have efficiency problems. One reported
run took ten CPU days to process a thirty million-document collection [Broder
et al. 1997]. Additionally, DSC-SS and DSC are known to perform poorly on
small documents. Given that the average size of a document on the web is
around 4 KB [Giles and Lawrence 1999; Lawrence and Giles 1998], working
with small documents is imperative.

Our algorithm, called IIT-Match or I-Match for short, filters documents based
on term collection statistics. Our results show that I-Match is five to six times
faster than the DSC-SS algorithm. Furthermore, we show that I-Match does not
ignore small documents and places each document into at most one duplicate
set. Hence, I-Match increases accuracy and usability. Other approaches place
potentially duplicate documents in multiple clusters. Hence, it is harder for a
user to detect the actual duplicates. Finally, the sets of duplicates we detect are
usually ‘tighter’ than DSC because we require an ‘exact match’ for the terms

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 173

remaining after our filtration process. However, like other approaches, we still
identify non-exact duplicates.

2. PRIOR WORK

We partition prior work into three categories: shingling techniques, similar-
ity measure calculations, and document images. Shingling techniques, such
as COPS [Brin et al. 1995], KOALA [Heintze 1996], and DSC [Broder et al.
1997], take a set of contiguous terms or shingles of documents and compare the
number of matching shingles. The comparison of document subsets allows the
algorithms to calculate a percentage of overlap between two documents. This
type of approach relies on hash values for each document subsection and filters
those hash values to reduce the number of comparisons the algorithm must per-
form. The filtration, therefore, improves the runtime performance. Note that
the simplest filter is strictly a syntactic filter based on simple syntactic rules,
and the trivial subset is the entire collection. We illustrate later why such a
naive approach is not generally acceptable. In the shingling approaches, sub-
documents rather than whole documents, are compared, thus each document
may produce many potential duplicates. Returning many potential matches
requires vast user involvement to sort out potential duplicates, diluting the
usefulness of the approach.

To combat the inherent efficiency issues, several optimization techniques
were proposed to reduce the number of comparisons made. One approach
was to retain only a portion of the shingles. That is, the approach either re-
moved frequently occurring shingles [Heintze 1996] or retained only every 25th
shingle [Broder et al. 1997]. This reduction, however, hinders the accuracy.
Since no semantic premise is used to reduce the volume of data, a random de-
gree of ‘fuzziness’ is introduced to the matching process resulting in relatively
non-similar documents being identified as potential duplicates. Even with the
performance-improving technique of removing shingles occurring in over 1000
documents and keeping only every 25th shingle, the implementation of the
DSC algorithm took 10 CPU days to process 30 million documents [Broder
et al. 1997].

The DSC algorithm has a more efficient alternative, DSC-SS, which uses
super shingles. This algorithm takes several shingles and combines them into
a super shingle. This results in a document with a few super shingles rather
than many shingles. Instead of measuring resemblance as a ratio of match-
ing shingles, resemblance is defined as matching a single super shingle in two
documents. This is much more efficient because it no longer requires a full
counting of all overlaps. The authors, however, noted that DSC-SS does “not
work well for short documents” so no runtime results are reported [Broder
et al. 1997].

Approaches that compute document-to-document similarity measures
[Buckley et al. 1999; Sanderson 1997] are similar to document clustering work
[Salton et al. 1975] in that they use similarity computations to group poten-
tially duplicate documents. All pairs of documents are compared, that is, each
document is compared to every other document and a similarity weight is

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



174 • A. Chowdhury et al.

calculated. A document to document similarity comparison approach is thus
computationally prohibitive given the theoretical O(d2) runtime, where d is
the number of documents. In reality, these approaches only evaluate docu-
ments with an overlap of terms. Thus, the actual runtime is data dependent
and difficult to predict accurately.

To further examine this class of duplicate or clustering approaches, we ex-
amine the mechanics of their term selection and weighting to cluster or com-
pare documents for similarity. Typically, most of these document processing
systems use an inverted index to efficiently retrieve documents containing a
given index term. Various techniques exist that select the terms that are re-
trieved from the inverted index, how these terms are analyzed and manipu-
lated, and how a similarity measure is computed [Salton et al. 1975; Singhal
et al. 1996; Robertson et al. 1999; Kwok 1996]. Independent of the particular
techniques chosen, the final computed weight is then used to sort the retrieved
documents.

The basic hypothesis of similarity measure similar document detection ap-
proaches is that two documents are similar if the similarity measure of one
document to the other is high. Therefore, for each document, a similarity score
is obtained between the document and all other documents in the collection.
This means that the entire posting list for each term in each document must
be retrieved. This approach of using the document as a query, thus cluster-
ing on those results sets, is computationally infeasible for large collections or
dynamic collections since each document must be queried against the entire
collection. Sanderson used a variation on this where the terms are selected via
a relevance feedback algorithm [Sanderson 1997; Rocchio 1971], which used
IDF (inverse document frequency) to weight which terms would be used for
the original query/document. Each term queried against the inverted index
must retrieve all the documents for the posting list to be analyzed. For large
collections, where a common term may occur in millions of records, this is com-
putationally expensive. For term selection approaches the cost is significantly
less, but still requires at least the same number of I/O operations as the num-
ber of terms selected via the relevance feedback algorithm. Our approach is
based on eliminating these I/O costs and still finding duplicate documents as
efficiently as possible.

Finally, research for image duplicate detection is addressed in [Kjell et al.
1994; Scotti and Lilly 1999]. While these are approaches to find duplicate data,
the techniques and issues are image processing, rather than document process-
ing and thus are not examined or addressed in this paper.

3. ALGORITHM

Our motivation is to provide a duplicate detection algorithm that can scale
to the size of the web and handle the short documents typically seen there.
Furthermore, we seek to place each document in only one set of potential dupli-
cates. The degree of similarity supported should be sufficiently loose to identify
non-exact matches but tight enough to assure that true duplicates are detected.
Last, the approaches and algorithms discussed here are addressed to finding

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 175

Fig. 1. Restrictiveness of techniques.

duplicate documents not plagiarism or similar problems; thus, the similarity
threshold is considerably higher.

In Figure 1, we illustrate the relative restrictiveness of different algorithms.
DSC-SS is the loosest approach because it only requires one super shingle to
match. Shingling is tighter because a percentage overlap in the remaining shin-
gles is required. However, shingles and DSC-SS are very sensitive to adjust-
ments in shingle size and thresholds. We drew a dotted line to indicate that
these may be adjusted in such a way that shingling would be the less restric-
tive. Syntactic filters are the most restrictive because they leave most of the
terms in the document representation. Thus, documents must be very close to
an exact match to resemble. The I-Match approach strikes a balance between
parsing and the previously described existing techniques.

I-Match does not rely on strict parsing, but instead, uses collection statis-
tics to identify which terms should be used as the basis for comparison. An
inverse document frequency weight is determined for each term in the collec-
tion. The idf for each term is defined by tx = log (N/n), where N is the num-
ber of documents in the collection and n is the number of documents contain-
ing the given term. The use of idf collection statistics allows us to determine
the usefulness of terms for duplicate document detection. It was previously
shown that terms with high collection frequencies often do not add to the se-
mantic content of the document [Grossman et al. 1993; Smeaton et al. 1997].
Our approach hinges on the premise that removal of very infrequent terms or
very common terms results in good document representations for identifying
duplicates.

We input a document, filter the terms based on collection statistics (and other
simple parsing techniques) and compute a single hash value for the document.
All documents resulting in the same hash value are duplicates. We use the
SHA1 algorithm [NIST 1995] for our hash, using the ordered terms in the doc-
ument as input and getting <docid, hashvalue> tuples as output. The ordering
of terms is critical to detect similar documents that have reordered the para-
graphs. The SHA1 hash algorithm is used because it is designed to be very fast
and is good for messages of any length. It is designed for text processing and is
known for its even distribution of hash values.

SHA1 produces a 20-byte or 160-bit hash value. By using a secure digest
algorithm, we reduce the probability of two different token streams creating the

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



176 • A. Chowdhury et al.

same hash value to P (2−160). We insert each <docid, hashvalue> tuple into a tree
requiring processing time on the order of (O(d log d )). Other efficient storage
and retrieval data structures such as a hash table could be used as alternatives,
which would give a complexity of (O(d )). The identification of duplicates is
handled through the inserts into the tree or hash table. Any collisions of hash
values represent duplicates and the document identifiers are stored in that node
of the tree or hash bucket. A scan through the tree or hash table produces a list
of all clusters of duplicates, where a node contains more than one document.
Pseudocode for the algorithm is as follows.

1. Get document.
2. Parse document into a token stream, removing format tags.
3. Using term thresholds (idf), retain only significant tokens.
4. Insert relevant tokens into unicode ascending ordered tree of unique tokens.
5. Loop through token tree and add each unique token to the SHA1 [NIST

1995] digest. Upon completion of token tree loop, a (doc id, SHA1 Digest)
tuple is defined.

6. The tuple (doc id, SHA1 Digest) is inserted into the storage data structure
based on SHA1 Digest key.

7. If there is a collision of digest values then the documents are similar.

The overall runtime of our approach is (O(d log d )) in the worst case where
all documents are duplicates of each other and (O(d )) otherwise, where d is the
number of documents in the collection. All similar documents must be grouped
together. That is, the corresponding document identifiers must be stored as a
group. In the most extreme case, all of the hash values are the same (all the
documents are similar to each other). In such a case, to store all the document
identifiers together in a data structure (tree) requires (O(d log d )) time. Typi-
cally, however, the processing time of our approach is O(d ) time.

The calculation of idf values can be approached with either of two methods.
The first is with the use of a training collection to produce a set of terms idf
tuples before the deduplication work occurs. Since term idf weights change
slightly as collection sizes grow, this is an acceptable solution [Frieder et al.
2000]. A second approach is to run two passes over the documents, where the
first pass calculates the idf weights of the terms, and the second pass finds
duplicates with the I-Match algorithm. This approach would increase the ac-
tual run time of the algorithm, but the theoretical complexity would remain
unchanged.

Our time complexity is comparable to the DSC-SS algorithm, which gener-
ates a single super shingle if the super shingle size is large enough to encompass
the whole document. Otherwise, it generates k super shingles while we gener-
ate only one. Since k is a constant in the DSC-SS timing complexity, the two
algorithms are theoretically equivalent. I-Match, however, is more efficient in
practice.

The real benefit of I-Match over DSC-SS, however, is not the timing im-
provement but the fact that small sized documents are not ignored. With
DSC-SS, it is quite likely that for sufficiently small documents, no shingles are

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 177

Fig. 2. I-Match-Doc. Document thresholds based on NIDF values.

identified for duplicate detection. Hence, those short documents are not consid-
ered even though they may be duplicated. Given the wide variety of domains
for which duplicate document detection may be used, for example, document
declassification, email traffic processing, and so on, neglecting short documents
is a potentially serious issue.

4. I-MATCH RESULTS

We implemented the DSC, DSC-SS and I-Match algorithms in the IIT Advanced
Information Retrieval Engine (AIRE) system [Chowdhury et al. 2000]. To test
our algorithm, we implemented a variety of filtering techniques based on var-
ious thresholds. Figure 2 graphically illustrates several I-Match thresholding
techniques. In Figure 2, the shaded regions are discarded term regions. The next
section describes, in detail, the different thresholding techniques. We partition
the description of our experimentation into the following sections: experimental
layout, syntactic one-pass approaches, quality of duplicate sets found, handling
of short documents, runtime performance, and effects on the average precision
and recall.

4.1 Experimental Layout

We experimented with two filtration techniques based on collection statistics:
I-Match-Doc and I-Match-IDF. I-Match-Doc filters the unique terms of a given
document by idf value to reach a specified percentage of the original unique
terms of the document. The non-filtered terms are used to create the hash value.
For instance, 75% of the document might be reached by removing the 25% of
the terms with the lowest idf values (most frequent terms). Another example
retains 50% of the original unique tokens of the document by removing 25% of
the terms with the lowest idf and 25% of the terms with the highest idf (least
frequent). Thus, a percentage in terms of the number of unique terms of the
original document will always remain, except for extremely small documents.
That is, a document containing less than four unique tokens would be filtered
if we wanted to keep less than 25% of the original document.

The I-Match-IDF filtration technique filters terms based on normalized IDF
values. The term IDF values are normalized across the collection so that they
fall within a 0 to 1 interval. For each document, an IDF cut-off is used, thus
any term above or below a certain idf value is removed from the terms used to
create the hash.

For each approach, we calculated the number of documents that were com-
pletely filtered, that is, were not evaluated due to the removal of all tokens.
We calculated the average distinct terms before and after filtration and the

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



178 • A. Chowdhury et al.

Table I. Experimental Collections

Collection Number of
Collection Name Size Documents
Excite@Home Web 30 MB 18,577
NIST LA Times 100 MB 18,232
NIST Web 2 GB 247,491
NIST TREC disks 4 & 5 2 GB 528,023

average number of terms in each document pre and post filtration. We counted
the number of duplicate clusters found with each approach. We evaluated each
duplicate set found and counted how many of documents within the cluster
matched on the evaluation technique and how many of those did the title
or URL match. Therefore, if a document was found to have a duplicate and
both documents had either an identical title or URL then it was counted as
a duplicate-title, otherwise it was counted just as a duplicate. We evaluated
the number of unique documents in our collection, so a document cluster was
counted only once. Lastly, we noted the time to evaluate the collection. We
tracked the following for each approach and each collection.

—Number of documents filtered by the approach
—Pre/Post average number of unique terms per document
—Pre/Post average number of terms per document (document size)
—Number of document clusters found
—Number of duplicates found with the same URL/Title
—Number of duplicate documents found with just the duplicate approach
—Processing time

We now describe the various thresholding values used. We ran experiments
of the I-Match-Doc approach with thresholds of 10, 20, 30, 40, 50, 60, 70, 80,
and 90% of the most common terms and the inverse of the least common terms,
totaling 18 experiments. We ran the LOW and HIGH filters first, filtering the
lowest X percentage, and the highest X percentage, based on idf value. Then
we filtered the edges of the document—the most frequent and least frequent
terms, keeping the middle ones, 20%, 40%, 60% and 80%. Finally, we filtered
the middle of the document, keeping only the most and least frequent terms,
inner 20%, 40%, 60%, and 80%, 8 more experiments.

The I-Match-IDF filters use cut-off thresholds to filter any word above and
below certain normalized idf values. For the DSC-SS variant algorithm experi-
ments, we collected document sizes both pre and post filtration, and the timing
results. Document size information was used to see how sensitive these types
of algorithms are to smaller documents. The DSC-SS runs used super shingle
sizes of 2, 4, 5, 10, 15, 20, 25, 50, 75 and 100 shingles where each shingle was
10 terms. The DSC experiments used thresholds of 0.5, 0.6, 0.7, 0.8 and 0.9.
Table X contains the notation description of the I-Match experiments.

We used four document collections, as shown in Table I. Each collection was
chosen to test particular issues involved with duplicate detection. The first is
an 18,577-web document collection flagged as duplicates by Excite@Home. The

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 179

Excite@Home document collection was produced from ten million web docu-
ments gathered through crawling the World Wide Web. These documents were
then filtered by the Excite@Home engineers to include only those documents
thought to be ‘duplicate.’ The collection contains 18,577 documents, each of
which is suspected of having a duplicate web document within the collection.
Many URLs are in the collection repeatedly because of multiple spider inputs.
This collection is approximately 30 megabytes in size. The Excite@Home col-
lection is highly duplicated. Thus, as better approaches are used, the greater is
the percentage of the collection found as duplicate.

The second is an 18,232-document Los Angles Times collection. A subset of
the entire LA Times collection provided by NIST, this subset was selected to
roughly mirror the Excite@Home collection in terms of the number of docu-
ments, but to be comprised of significantly longer documents. We synthesized
the collection and used the LA Times subset as a ground truth data collec-
tion. That is, we inserted known duplicate documents into the collection and
analyzed the performance of the various approaches in finding the inserted
duplicates.

The third and fourth collections are likewise from NIST and are the TREC
web and ad-hoc collections. The NIST web collection is a subset of a backup of
the web from 1997 that was used in the TREC web track for TREC 7 and 8. This
collection was chosen as a representation of a larger standard web collection to
show the scalability of the I-Match algorithm. The NIST Web collection is used
to test the run time performance of DSC, DSC-SS and I-Match approaches.

The TREC disks 4–5 are chosen as a second document collection of 2 giga-
bytes to see what effects duplication has on the average precision and recall.
Since this collection has standard query and judgment results, it is a good
collection to see if duplication has an effect on the end result sets. The NIST
TREC collection is used to test the effects of duplication on known relevance
judgments.

Unfortunately, there is no available absolute body of truth or a bench-
mark to evaluate the success of these techniques. Thus, it is difficult to get
any type of quantitative comparison of the different algorithms and thresh-
olding techniques. This is not likely to change in the near future. As docu-
ment collections grow, the likelihood of judgments of duplicates being made is
small; therefore, the best that can be hoped for is to provide fast efficient tech-
niques for duplication detection that can be passed on to analysis for further
evaluation.

4.2 Syntactic Filtration

The most obvious way to identify duplicate documents is to directly hash the en-
tire contents of a document to a unique value. This type of approach finds exact
matches by comparing the calculated hash value with the other document hash
values. A simple hash of the entire document is not resilient to small document
changes, like an additional space added to a document, the addition or deletion
of the word “the,” a stem change to a term, or the replication of a sentence
or paragraph. Because of these reasons, hash values are not commonly used

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



180 • A. Chowdhury et al.

for duplicate document detection. However, they are used to see if a particular
document has changed.

We experimented with various filtration techniques to improve the resilience
of the direct hash approach to small document changes. If a simple filtra-
tion technique based on strictly syntactic information is successful then fast
duplicate and similar document detection could be achieved. We had to eval-
uate this basic approach prior to considering the use of more sophisticated,
collection dependent, hence computationally expensive, filtration techniques.

We experimented with five filtering techniques that removed all white spaces
from a document, and created a list of unique tokens to hash.

—sw – Stop word filtration
—tg5 – Terms less than 5 characters in length
—tl25 – Terms greater than 25 characters in length
—nosc – Terms with special characters
—stem – Stemming

All permutations of the filtration techniques were investigated. We used the
571-stop-word list used by many participants of the Text Retrieval Conference
and available on the SMART information retrieval site [SMART FTP 2000]. For
word length filters, we removed all the words less than the average word length
[Baeza-Yates and Ribeiro-Neto 1999], five, in the length> 5 (tg5) filter. To filter
very long words, we arbitrarily selected 25 as the cutoff for the length> 25 (tl25)
filter. For stemming, we used the Porter stemming algorithm [Porter 1980].

The effect of filtering tokens on the degree of duplicate document detection is
shown in Table II. We used the Excite@Home collection because the collection is
fully duplicated. Therefore, the percentage of duplicates found is an evaluation
metric of the effectiveness of the filter. Also shown in the table, is the percent-
age of terms retained after each filtering technique. Generally speaking, as we
show in Table II, the higher the filtration, the greater the degree of detection.
While several of the filtration techniques do find 88% of the collection, the du-
plicates they find are near or exact matches and a maximum number of unique
documents of 2038. In contrast, I-Match for this same collection detects 96.2%
duplication and a maximum number of unique documents of 568. Clearly the
lower the maximum number of unique documents, the better is the detection
capability.

Our simple filtering techniques reduced the list of tokens used to create
the hash. By eliminating white spaces and only keeping unique tokens, many
small document changes are eliminated. Keeping only unique tokens eliminates
movement of paragraph errors, stemming removes errors caused by small token
changes, and stop word removal removes errors caused by adding or removing
common irrelevant tokens, in terms of semantics. We found that removing to-
kens containing ‘special characters’ (i.e./, -,=, etc.) performed the best in terms
of removing tokens from documents.

These syntactic filtration techniques are very fast, however, the degree of
duplication they detect is limited. Such approaches detect only near or exact
duplicates and do not find documents with small differences, like an updated

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 181

Table II. Syntactic Experiments

Percentage of Percent Found as Unique Documents
Original Lexicon Duplicates Found in Collection

nothing 100.0% 62.2% 7017
sw 99.9% 62.2% 7017
tg5 93.2% 62.4% 6966
sw,tg5 93.2% 62.4% 6966
tl25 60.1% 82.4% 3253
sw,tl25 60.1% 82.4% 3253
tg5,tl25 53.4% 82.7% 3199
sw,tg5,tl25 53.4% 82.7% 3199
nosc 9.5% 87.4% 2214
nosc,sw 9.4% 87.4% 2197
nosc,tg5 7.0% 88.0% 2048
nosc,tg5,sw 6.9% 88.0% 2043
nosc,tl25 9.5% 87.4% 2214
nosc,tl25,sw 9.4% 87.4% 2197
nosc,tl25,tg5 7.0% 88.0% 2048
nosc,tl25,tg5,sw 6.9% 88.0% 2043
stem 80.4% 62.2% 7014
stem,sw 80.4% 62.2% 7014
stem,tg5 78.2% 62.4% 6963
stem,sw,tg5 78.2% 62.4% 6963
stem,tl25 41.2% 82.4% 3248
stem,sw,tl25 41.2% 82.4% 3248
stem,tg5,tl25 39.0% 82.7% 3192
stem,sw,tg5,tl25 39.0% 82.7% 3192
stem,nosc 6.9% 87.4% 2211
stem,nosc,sw 6.9% 87.4% 2194
stem,nosc,tg5 5.2% 88.0% 2045
stem,nosc,tg5,sw 5.2% 88.0% 2039
stem,nosc,tl25 6.9% 87.4% 2211
stem,nosc,tl25,sw 6.9% 87.4% 2194
stem,nosc,tl25,tg5 5.2% 88.0% 2045
stem,nosc,tl25,tg5,sw 5.2% 88.0% 2038

date string or different URL. Therefore, simple filtration techniques such as
these do not suffice, and efforts such as DSC, DSC-SS, and I-Match merit further
investigation.

4.3 Duplicate Sets

For the task of “remove all duplicates from this collection,” it is helpful to get
a list of duplicate document sets so that one from each set can be retained and
the rest removed. Imagine getting, instead, many different lists of duplicates,
where one document may be in many lists. This is essentially what DSC and
DSC-SS return. The DSC-SS algorithm creates a duplicate document set for
each super shingle that exists in at least two documents. Thus, each document
(if it matches more than one super shingle) may appear in multiple document
lists. For example, given documents D1, D2, D3 and D4 with super shingles
as follows: D1 contains super shingle A. D2 contains super shingle A and B.

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



182 • A. Chowdhury et al.

Fig. 3. Differing documents.

D3 and D4 contain super shingle B. The resulting sets of duplicates include
{D1, D2} (from super shingle A), {D2, D3, D4} (from super shingle B).
Now all of the clusters must be scanned to get a list of duplicates for D2.
In contrast, I-Match places each document in one and only one duplicate
document set.

Consider two documents that match all text except in one small portion
as shown in Figure 3. Perhaps a name and an address for a regional contact
are changed. It is likely that DSC-SS would identify these two documents as
duplicates because the small section that differs may not be represented at all
in the selected shingles, or a super shingle exists without a shingle from this
section. I-Match will group these together as duplicates only if all terms in the
differing section were filtered. This is quite likely with the name and address
example because names are generally very infrequent across the collection, the
numbers are removed in parsing, and state names are generally very common
across the collection. On the other hand, if any word in the differing section is
kept, the two documents are not matched.

To find the best performing I-Match approach, we contrived a set of duplicates
to test the various approaches with a known test set of duplicate documents
inserted into an existing collection. We computed the average document length
for the test collection. We then chose ten documents from the collection, that
were the average document length. These documents were used to create a
test duplicate document collection. Each document is used to create 10 test
duplicate documents. This is achieved by randomly removing every ith word
from the document. In other words, for every ith word, pick a random number
from one to ten. If the number is higher than the random threshold (call it
alpha) then pick a number from 1 to 3. If the random number chosen is a 1
then remove the word. If the number is a 2 then flip it with a word at position
i+ 1. If it is a 3, add a word (randomly pick one from the term list). Last, these
duplicate documents are inserted into the collection.

We then ran the I-Match thresholding techniques, DSC, and the DSC-SS with
the creation of a super shingle for every 2 and 4 shingles on the LA Times sub-
collection, looking for the new test duplicate documents. We found two I-Match
filtration techniques to be very effective, I-Match (Doc-L-90 and IDF-L-10).
Doc-L-90 takes only terms with the highest IDF values, that is, very infrequent

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 183

Table III. Documents Found Ratio

Found Ratio
Document DSC DSC-SS-2 DSC-SS-4 DOC-L-90 IDF-L-10
LA123190-0013 27.3% 0.0% 18.2% 36.4% 63.6%
LA123190-0022 54.5% 63.6% 18.2% 100.0% 100.0%
LA123190-0025 27.3% 0.0% 0.0% 90.9% 100.0%
LA123190-0037 18.2% 18.2% 0.0% 90.9% 100.0%
LA123190-0043 36.4% 0.0% 0.0% 90.9% 90.9%
LA123190-0053 18.2% 45.5% 45.5% 90.9% 100.0%
LA123190-0058 45.5% 18.2% 0.0% 90.9% 81.8%
LA123190-0073 54.5% 0.0% 0.0% 100.0% 100.0%
LA123190-0074 0.0% 0.0% 0.0% 90.9% 100.0%
LA123190-0080 27.3% 18.2% 0.0% 54.5% 63.6%
Average 30.9% 16.4% 8.2% 83.6% 90.0%

Table IV. Document Clusters Formed

Num Clusters
Document DSC DSC-SS-2 DSC-SS-4 DOC-L-90 IDF-L-10
LA123190-0013 9 11 9 9 7
LA123190-0022 6 7 9 3 2
LA123190-0025 9 11 11 4 3
LA123190-0037 10 10 11 4 1
LA123190-0043 8 11 11 2 2
LA123190-0053 10 9 9 3 2
LA123190-0058 7 10 11 3 3
LA123190-0073 6 11 11 3 3
LA123190-0074 11 11 11 2 1
LA123190-0080 9 10 11 8 9
Average 8.5 10.1 10.4 4.1 3.3

terms, and only the 10% most infrequent terms are used for each document.
The second approach (IDF-L-10) uses only the terms with normalized idf values
of 0.1 or greater, thus very frequent terms in the collection are removed. In the
following tables, we present the data obtained in our evaluation of the different
approaches.

As shown, both I-Match approaches yield a significantly higher percentage
of detection than either DSC or either of the DSC super shingle approaches.
Furthermore, as expected, the super shingle approaches declined in the per-
centage detected, as the super shingle size increased. The DSC performance
was better than both super shingle approaches.

The most effective I-Match techniques retain the highest idf valued terms
from a document either as a percentage or as a normalized value. We produced
10 duplicate documents for 10 test documents, thus creating 11 known duplicate
documents for each cluster. In Table III, we show the percentage of the total
document duplication found for each approach. Both I-Match approaches find
a greater duplication percentage for all test cases.

In Table IV, we illustrate that the I-Match techniques yield a smaller number
of document clusters than any of the shingling techniques. We know, by design,

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



184 • A. Chowdhury et al.

Fig. 4. Super shingle size vs. documents dropped.

that for each document the actual number of clusters to be formed should ideally
be 1 since besides the original document, the other ten copies are simply slight
modifications of the original. Therefore, a perfect similar document detection
algorithm would generate one cluster per document. As shown, the I-Match
configurations result in an average number of clusters per document of approx-
imately 3 to 4. DSC and the super singling variants are significantly worse,
ranging from 8 to 10 clusters.

Last, false positives were examined. The result sets from all runs were ana-
lyzed for false positives; a false positive was flagged if the duplicate detection
algorithm clustered a different document other than the known duplicates. No
false positives were detected with the I-Match approaches while the DSC re-
ported two false positives and DSC-SS runs, one false positive. While this is
not a high percentage, the reduced effectiveness of the DSC approach for clus-
tering duplicates, and a higher rate of false positives may be issues for specific
applications.

4.4 Short Documents

While DSC-SS is more efficient than DSC, it has known deficiencies with short
documents. To evaluate how often DSC-SS completely ignores a document, we
ran the algorithm against the Excite@Home duplicate document collection and
the NIST LA Times collection. As presented in Figure 4, for the Excite@Home
document collection, DSC-SS ignored over 6,500 documents for a super shingle
size of two. As for the LA Times collection, DSC-SS ignored over 1,200 doc-
uments. In comparison, DSC ignored 5052 and 636 documents, respectively.
I-Match, in the worst case, ignored only four documents.

In Figure 4, we illustrate the increase in the number of documents ignored
as the number of shingles used to create a single super shingle increases.

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 185

Table V. DSC-SS Short Document Filtration

Super Shingle Size Documents Ignored Percentage Filtered
100 220073 88.92%
75 209928 84.82%
50 189071 76.40%
25 133614 53.99%
20 112703 45.54%
15 86288 34.87%
10 54212 21.90%
5 22257 8.99%
4 16805 6.79%
2 6528 2.64%

Table VI. Post Average Document Size

Super Shingle Size Post Avg Doc Size
100 9860
75 8123
50 6109
25 3833
20 3389
15 2963
10 2575
5 2272
4 2225
2 2140

The more shingles used to make a super shingle, the more documents are
ignored.

We then ran DSC-SS algorithm against the 2 GB NIST collection with super
shingle sizes of 100, 75, 50, 25, 20, 15, 10, 5, 4 and 2 shingles. In Table V, we
once again show that the greater the super shingle size, the more documents
ignored, thus validating our prior results using the LA Times and Excite@Home
collections. In Table V, we also illustrate the percentage of the collection
filtered.

The I-Match algorithm uses various term filtration techniques based
on collection statistics to filter terms. We conducted 52 different filtration
experiments. For most I-Match runs, only about 150 documents were filtered
(less than .06% of the collection). Since our best filtration techniques take
only a percentage of the document, only documents with a couple of unique
terms are ignored. The only I-Match thresholding technique to filter a sub-
stantial percentage of documents, filters based on IDF values, retaining only
a normalized IDF value of 0.9 or greater. This technique keeps less than
50% of the collection, similar to a DSC-SS of 50. In spite the degree of fil-
tering, no I-Match thresholding technique dropped any significant number of
documents. That is, the greatest number of documents dropped was 143 out
of 247,491.

As the super shingle size increases, the average size of a document that
survives the filtration process increases. In Table VI, we present the average

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



186 • A. Chowdhury et al.

Table VII. Duplicate Processing Time

Algorithm Mean Time Std Deviation Median Time
DSC 595.4 4.3 593.5
DSC-SS 587.6 18.5 587.1
I-Match 96.9 33.4 82.6
Syntactic 5 N/A N/A

number of tokens per document retained after super shingling. The average
token size is about six characters in length. The sizes of the documents are
presented as the number of terms. Thus, multiplying by six [Baeza-Yates and
Ribeiro-Neto 1999] estimates the average size of a document. This sub-collection
of the web has slightly higher document sizes than the 4 K sizes reported in
[Giles and Lawrence 1999]. This shows us that the DSC-SS algorithm performs
poorly on web sized documents.

4.5 Runtime Performance

We divide the runtime performance experiments and results into two sections.
The first set of experiments compares the I-Match and the DSC-SS algorithms
on the Excite@Home test document collection, shown in Table VII. The second
set of experiments compares the I-Match, DSC-SS and DSC algorithms using
the 2-gigabyte NIST web collection. All experiments were run on a SUN ES-450;
each process ran with about 200 MB for all algorithms.

I-Match was approximately five times faster than DSC-SS for the
Excite@Home collection. The pure syntactic filtration technique ran in less than
5 seconds, but as discussed previously, only exact matches are found with this
technique. Varying the threshold for super shingle sizes does not significantly
influence the runtime since the same amount of work must occur. Our best per-
forming I-Match techniques, in terms of accuracy, ran in 142 (Doc-L-90) and
134 (IDF-L-10) seconds.

The DSC and DSC-SS timings for the Excite@Home collection are compa-
rable since the third and fourth steps of the DSC algorithm are I/O bound in
nature but are relatively negligible for a small collection. The third and fourth
steps in the DSC approach become a greater percentage of the cost as the col-
lection grows, as seen in Table VIII for the 2 GB NIST collection.

We compared the run time of I-Match to the DSC and DSC-SS algo-
rithms running against the NIST 2 gigabyte Web collection. As with the
Excite@Home experiments, the parsing/indexing system builds shingle data
and relevance feedback data structures when indexing a collection. Thus,
preprocessing the text and creating shingle and token data times are not
contained in our timing results, just the specific clustering or duplication
algorithm.

As shown in Table VIII, I-Match was approximately six times faster than
DSC-SS and almost 9 times faster than the DSC algorithm. The faster speed
of the I-Match algorithm suite is due to the processing of fewer tokens. The

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 187

Table VIII. Processing Time for 2 GB NIST Web Collection

Algorithm Mean Time Std Deviation Median Time
DSC 31838.22 807.9 30862.5
DSC-SS 24514.7 1042.1 24475.5
I-Match 3815.8 975.8 3598.8
Syntactic 65 N/A N/A

average distinct tokens per document for the NIST 2 gigabyte collection is ap-
proximately 475, while the average document size is over 2000 terms long.
Since a sliding window creating shingles produces about the same number of
shingles as the size of the document, the added amount of processing is propor-
tional. This is true for all small window sizes proportional to the total document
size. If a large window size for super shingles is used, the DSC-SS approach
is just a hash approach and will not match on similar documents. This ra-
tio of distinct terms to document size is consistent with our TREC collection
statistics.

The DSC algorithm has several additional steps, which are I/O bound
in nature, and contributes to its additional run time. Table VIII contains
an average of timing results for each of the given techniques. DSC had five
experiments, using a threshold of 50%, 60%, 70%, 80% and 90%. DSC-SS
had ten experiments (enumerated in Table V). I-Match results are from 52
experiments described above. Last, a syntactic filtration comparison is given.
Detailed experimental results are presented as an appendix and are listed
in Tables IX and XI with the legend describing the experimentation given in
Table X.

4.6 Duplication in TREC Results

We examined the effects of duplication on result sets. We used the I-Match
algorithm on the TREC disks 4–5, which were used for TREC 6–8. We used
the NIST relevance judgments to flag documents judged by NIST. If a du-
plicate was found and a positive judgment was made for a given query, we
checked to make sure that no false judgments were made on its duplicates.
A dozen inconsistencies were found for TREC 6. Eight inconsistencies were
found for TREC 7. Seventeen inconsistencies were detected in TREC 8 and 65
inconsistencies were noted for the web track of TREC 8. Examining these in-
consistencies, we found documents that were identical and judged differently.
TREC topic 301, judged document FBIS3-58055 relevant and FBIS3-58025 not
relevant; they are the same document except for the document number. An-
other example for topic 301 is that document FBIS3-33287 was judged relevant
and document FBIS3-41305 was not judged as relevant although these doc-
uments are identical except for the title and the document number. Similar
examples were found for TREC 7 and 8 and the web track of TREC 8. While
this does not diminish the usefulness of the TREC judgments, it does show that
accurate duplicate document detection would eliminate these inconsistencies in
test collections.

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



188 • A. Chowdhury et al.

5. CONCLUSIONS AND FUTURE WORK

Algorithms for detecting similar documents are critical in applications where
data is obtained from multiple sources. The removal of similar documents is
necessary, not only to reduce runtime, but also to improve search accuracy.
Today, search engine crawlers are retrieving billions of unique URL’s, of which
hundreds of millions are duplicates of some form. Thus, quickly identifying
duplicate detection expedites indexing and searching. One vendor’s analysis of
1.2 billion URL’s resulted in 400 million exact duplicates found with a MD5
hash (S. Cicciarelly, personal communication). Reducing the collection sizes
by tens of percentage points results in great savings in indexing time and a
reduction in the amount of hardware required to support the system. Last
and probably more significant, users benefit by eliminating duplicate results.
By efficiently presenting only unique documents, user satisfaction is likely to
increase.

We proposed a new similar document detection algorithm called I-Match
and evaluated its performance using multiple data collections. The docu-
ment collections used varied in size, degree of expected document duplica-
tion, and document lengths. The data was obtained from NIST and from
Excite@Home.

I-Match relies on collection statistics to select the best terms to represent the
document. I-Match was developed to support web document collections. Thus,
unlike many of its predecessors, I-Match efficiently processes large collections
and does not neglect small documents. In comparison to the prior state-of-the-
art, I-Match ran five times faster than DSC-SS against the Excite@Home test
collection and six times faster against the NIST 2 GB collection. Furthermore,
unlike the efficient version of the prior art, I-Match did not skip the processing
of small documents.

In terms of human usability, no similar document detection approach is
perfect however; our experimentation shows the I-Match IDF-L-10 to be the
most effective approach for finding duplicate documents. The ultimate deter-
mination of how similar a document must be to be considered a duplicate,
relies on human judgment. Therefore, any solution must be easy to use. To
support ease of use, all potential duplicates should be uniquely grouped to-
gether. Shingling approaches, including the DSC and DSC-SS approaches,
however, group potential duplicate documents according to shingle matches.
Therefore, any match in even a single shingle results in a potential dupli-
cate match indication. This results in the scattering of potential duplicates
across many groupings, and many false positive potential matches. I-Match,
in contrast, treats a document in its entirety and maps all potential dupli-
cates into a single grouping. This reduces the processing demands on the
user.

Our future efforts will focus on the processing of corrupted text and multi-
lingual document collections. Since our statistics are collection-based, the in-
corporation of foreign languages is unlikely to cause great difficulty. However,
cross language processing, namely translated document processing, is likely to
be very difficult.

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 189

APPENDIX

Table IX. I-Match WT2G Experiments

TREC 2 GB
WEB 247491

Pre Avg Post Avg Pre Post
Post Doc Dist Dist Doc Doc Dup Dup Dup Dup Max

Experiment Num Filtered Terms Terms Size Size Hash URL Total Clusters Cluster Time
baseline 247491 0 471 471 2085 2085 60 0 60 46 5 62
Doc-h-f1 247348 143 471 471 2085 2085 53535 0 53535 22019 782 6869
Doc-h-f2 247348 143 471 471 2085 2085 54398 0 54398 22243 782 6086
Doc-h-f3 247348 143 471 471 2085 2085 55578 0 55578 22484 782 5707
Doc-h-f4 247348 143 471 471 2085 2085 56756 0 56756 22710 782 5376
Doc-h-f5 247348 143 471 471 2085 2085 58235 0 58235 22975 782 5287
Doc-h-f6 247348 143 471 471 2085 2085 60905 0 60905 23520 782 3701
Doc-h-f7 247348 143 471 471 2085 2085 65183 0 65183 23926 782 3415
Doc-h-f8 247348 143 471 471 2085 2085 75169 0 75169 24286 1805 3259
Doc-h-f9 247348 143 471 471 2085 2085 108157 0 108157 22957 4288 3104
Doc-l-f1 247348 143 471 471 2085 2085 52280 0 52280 21747 782 4311
Doc-l-f2 247348 143 471 471 2085 2085 52331 0 52331 21753 782 4100
Doc-l-f3 247348 143 471 471 2085 2085 52389 0 52389 21776 782 3810
Doc-l-f4 247348 143 471 471 2085 2085 52498 0 52498 21831 782 3710
Doc-l-f5 247348 143 471 471 2085 2085 52712 0 52712 21928 782 3568
Doc-l-f6 247348 143 471 471 2085 2085 53196 0 53196 22067 782 5439
Doc-l-f7 247348 143 471 471 2085 2085 54079 0 54079 22306 782 4668
Doc-l-f8 247348 143 471 471 2085 2085 55788 0 55788 22801 782 3317
Doc-l-f9 247348 143 471 471 2085 2085 60053 0 60053 24268 1200 3174
IDF-h-f1 244348 3143 471 476 2085 2107 126710 0 126710 31065 782 2473
IDF-h-f2 247265 226 471 472 2085 2086 60858 0 60858 23636 782 3012
IDF-h-f3 247317 174 471 471 2085 2085 56616 0 56616 22914 782 3551
IDF-h-f4 247339 152 471 471 2085 2085 54864 0 54864 22576 782 3924
IDF-h-f5 247341 150 471 471 2085 2085 54130 0 54130 22358 782 4081
IDF-h-f6 247343 148 471 471 2085 2085 53466 0 53466 22012 782 4115
IDF-h-f7 247344 147 471 471 2085 2085 53107 0 53107 21925 782 4266
IDF-h-f8 247345 146 471 471 2085 2085 52816 0 52816 21900 782 4383
IDF-h-f9 247345 146 471 471 2085 2085 52574 0 52574 21829 782 4472
IDF-l-f1 247318 173 471 471 2085 2086 52391 0 52391 21813 782 4399
IDF-l-f2 246870 621 471 472 2085 2088 52732 0 52732 22022 782 3773
IDF-l-f3 245724 1767 471 474 2085 2097 53372 0 53372 22437 423 3133
IDF-l-f4 244098 3393 471 475 2085 2101 55271 0 55271 22994 238 2897
IDF-l-f5 240678 6813 471 479 2085 2122 58963 0 58963 24275 238 2645
IDF-l-f6 227196 20295 471 492 2085 2171 57403 0 57403 24995 130 2696
IDF-l-f7 203845 43646 471 519 2085 2285 50840 0 50840 24132 30 2535
IDF-l-f8 165898 81593 471 568 2085 2497 35423 0 35423 20139 10 2430
IDF-l-f9 114434 133057 471 616 2085 2724 13242 0 13242 11696 2 2608
DocR-O-f1f9 247348 143 471 471 2085 2085 57316 0 57316 23226 782 4050
DocR-O-f2f8 247348 143 471 471 2085 2085 54248 0 54248 22293 782 3576
DocR-O-f3f7 247348 143 471 471 2085 2085 53201 0 53201 22046 782 3869
DocR-O-f4f6 247348 143 471 471 2085 2085 52556 0 52556 21849 782 4211
DocR-I-f1f9 247200 291 471 472 2085 2086 53726 0 53726 22087 782 5267
DocR-I-f2f8 247200 291 471 472 2085 2086 54743 0 54743 22294 782 4043
DocR-I-f3f7 246907 584 471 472 2085 2087 55840 0 55840 22525 782 3517
DocR-I-f4f6 245740 1751 471 474 2085 2090 57865 0 57865 22963 798 3250
IDFR-O-f1f9 244743 2748 471 476 2085 2106 88641 0 88641 25354 676 2622
IDFR-O-f2f8 247291 200 471 472 2085 2086 57349 0 57349 22981 782 2991
IDFR-O-f3f7 247334 157 471 471 2085 2085 54415 0 54415 22472 782 3577
IDFR-O-f4f6 247346 145 471 471 2085 2085 53030 0 53030 22173 782 4088
IDFR-I-f1f9 247293 198 471 472 2085 2086 52703 0 52703 21905 782 4112
IDFR-I-f2f8 246759 732 471 473 2085 2088 53395 0 53395 22245 782 3419
IDFR-I-f3f7 245457 2034 471 475 2085 2099 55295 0 55295 22997 423 2921
IDFR-I-f4f6 241515 5976 471 479 2085 2117 62341 0 62341 24360 238 2615

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



190 • A. Chowdhury et al.

Table X. I-Match Experiment Legend

I-Match Experiment Description
baseline Syntactic one-pass hash approach, stemming and removable

of special character terms.
Doc (% Doc approach) Takes the X percent of the document based on idf values of

the terms.
l = Highest on the left side of tree. So the terms with the X
highest idf values are used.
h = Lowest on the left side of tree. So the terms with the X
lowest idf values are used.

IDF (IDF approach) Filters terms that don’t meet the normalized idf value
threshold are removed.
l = Terms with idf value is greater than the filter value, the
term are kept.
h = Terms with idf value is lower than the filter value, the
term are kept.

DocR (%Doc Range approach) Takes the X percent of the document based on idf values of the
terms. The range takes either the middle X percent or the
outer X percent based on the l or h value.
I = The inner X percent of terms based on idf values are kept.
O = The outer X percent of terms based on idf values are kept.

IDFR (IDF range approach) Filters terms based on normalized idf values. Thus if the term
is in the range of idf values it is kept for the final hash.
I = Keeps terms with idf values between the two values
O = Keeps terms with idf values greater and less than the
2 filter values.

Table XI. WT2G DSC-SS Experiments

WT2G
Post
Num Pre Dist Post Dist Pre Doc Post Doc Dup
Docs Filtered Shingles Shingles Size Size Clusters Time

DSC-SS-2 239886 7605 470 484 2079 2140 41001 23465
DSC-SS-4 229609 17882 470 503 2079 2225 35638 23441
DSC-SS-5 224157 23334 470 513 2079 2272 33771 26064
DSC-SS-10 192202 55289 470 578 2079 2575 27224 24984
DSC-SS-15 160126 87365 470 659 2079 2963 22667 23609
DSC-SS-20 133711 113780 470 746 2079 3389 19183 24318
DSC-SS-25 112800 134691 470 833 2079 3833 16249 23669
DSC-SS-50 57343 190148 470 1255 2079 6109 7546 25366
DSC-SS-75 36486 211005 470 1626 2079 8123 4948 24147
DSC-SS-100 26341 221150 470 1926 2079 9860 3673 26084

ACKNOWLEDGMENT

The authors thank the comments of the anonymous referees.

REFERENCES

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison Wesley.
BRIN, S., DAVIS, J., AND GARCIA-MOLINA, H. 1995. Copy Detection Mechanisms for Digital

Documents. In Proceeding of the Special Interest Group on Management of Data (SIGMOD’95)
(San Francisco, CA., May). 298–409.

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.



Collection Statistics for Fast Duplicate Document Detection • 191

BRODER, A., GLASSMAN, S., MANASSE, S., AND ZWEIG, G. 1997. Syntactic clustering of the web. In
Proceedings of the Sixth International World Wide Web Conference (WWW6’97) (Santa Clara,
CA., April). 391–404.

BUCKLEY, C., CARDIE, C., MARDIS, S., MITRA, M., PIERCE, D., WAGSTAFF, K., AND WALZ, J. 1999. The
Smart/Empire TIPSTER IR System. In Proceedings of TIPSTER Phase III (San Francisco, CA.).
107–121.

CHOWDHURY, A., HOLMES, D., MCCABE, M. C., GROSSMAN, D., AND FRIEDER, O. 2000. The use of
fusion with AIRE at TREC-9. In Proceedings of the Ninth Text Retrieval Conference (TREC-9,
Gathersburg, MD, November).

FRIEDER, O., GROSSMAN, D., CHOWDHURY, A., AND FRIEDER, G. 2000. Efficiency considerations in very
large information retrieval servers. J. Dig. Inf. 1, 5 (Apr).

GILES, L. AND LAWRENCE, S. 1999. Accessibility and distribution of information on the web.
Nature 400, 107–109.

GROSSMAN, D., HOLMES, D., AND FRIEDER, O. 1993. A DBMS Approach to IR in TREC-4. In
Proceedings of the Fourth Text Retrieval Conference (TREC-4) (Gaithersburg, Maryland,
November).

HEINTZE, N. 1996. Scalable document fingerprinting. In Proceedings of the Second USENIX
Electronic Commerce Workshop (Oakland, CA., November). 191–200.

KJELL, B., WOODS, W., AND FRIEDER, O. 1994. Discrimination of authorship using visualization.
Information Processing and Management. Pergamon Press 30, 1 (Jan), 141–150.

KWOK, K. L. 1996. A new method of weighting query terms for Ad-hoc retrieval. In Proceedings
of the 19th Annual International. ACM Special Interest Group on Information Retrieval (SIGIR
’96) (Zurich, Switzerland, August). pp.187–195.

LAWRENCE, S. AND GILES, C. L. 1998. Searching the World Wide Web. Science. 280, 5360, 98–100.
NIH. 2000. http://nccam.nih.gov/, The National Institutes of Health (NIH), National Center for

Complementary and Alternative Medicine (NCCAM), April 12, 2000.
NIST. 1995. Secure Hash Standard, U.S. Department of Commerce/National Institute of

Standards and Technology, FIPS PUB 180-1 (April 17).
PORTER, M. 1980. An algorithm for suffix stripping. Program 14, 3, 130–137.
ROBERTSON, S. WALKER, S., AND BEAULIEU, M. 1999. Okapi at TREC-7: Automatic Ad Hoc, Filter-

ing, VLC and interactive, Proceedings of the 7th Text Retrieval Conference (TREC-7’99) (July).
253–264.

ROCCHIO, J. 1971. Relevance Feedback in Information Retrieval. In The Smart System—
experiments in automatic document processing, pages 313–323. Prentice Hall, Englewood Cliffs,
NJ.

SALTON, G., YANG, C. S., AND WONG, A. 1975. A vector-space model for information retrieval.
C. ACM. ASIS. 18, 11, 613–620.

SANDERSON, M. 1997. Duplicate detection in the Reuters collection. Technical Report (TR-1997-5)
of the Department of Computing Science at the University of Glasgow, Glasgow G12 8QQ, UK.

SCOTTI, R. AND LILLY, C. 1999. George Washington University Declassification Productivity
Research Center. http://dprc.seas.gwu.edu. July 31.

SHIVAKUMAR, N. AND GARICA-MOLINA, H. 1998. Finding near-replicas of documents on the web. In
Proceedings of Workshop on Web Databases (WebDB’98) (Valencia, Spain, March). 204–212.

SINGHAL, A., BUCKLEY, C., AND MITRA, M. 1996. Pivoted Document Length Normalization,
Proceedings of the Nineteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’96) (Zurich, Switzerland, August). 21–29.

SMART FTP site: 2000. ftp://ftp.cs.cornell.edu/pub/smart/. January 19.
SMEATON, A., KELLEDY, F., AND QUINN, G. 1997. Ad-hoc retrieval using thresholds, WSTs for

French monolingual retrieval, Document-at-a-Glance for high precision and triphone windows for
spoken documents. In Proceedings of the Sixth Text Retrieval Conference (TREC-6, Gathersburg,
Maryland).

Received July 2000; revised April 2001; accepted November 2001

ACM Transactions on Information Systems, Vol. 20, No. 2, April 2002.


