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Abstract.  A scalable, parallel, relational-database driven information retrieval engine is described.  To
support portability across a wide-range of execution environments, including parallel multicomputers, all
algorithms strictly adhere to the SQL-92 standard.  By incorporating relevance feedback algorithms, accuracy
was significantly enhanced over prior database-driven information retrieval efforts.  Algorithmic
modifications to our earlier prototype resulted in significantly enhanced scalability.  Currently our
information retrieval engine sustains near-linear speedups using a 24-node parallel database machine.
Experiments using the TREC data collections are presented to validate the described approaches.

1 . Introduction
The continued growth, acceptance, and public reliance on digital libraries has fostered

wide interest in information retrieval systems.  Traditionally, customized approaches  

developed to provide information retrieval services.  Recently, however, general solutions that

support  traditional information retrieval functionality and integration of  structured data and

text have appeared both in the research community, e.g., (DeFazio95, Grossman94,

Grossman97) and in the commercial sector, e.g., Oracle’s ConText (Oracle97).

Today’s data processing engines must not only provide for the integration of both

text and structured data, but do so seamlessly.  Given the exponential growth of on-line

electronic data, information retrieval engines must be scalable in terms of  growth in data

volume and retrieval accuracy.  Furthermore, with the ever-increasing drive towards

Commercial-Off-The-Shelf (COTS) software systems, and solutions that are portable across a

wide range of execution environments, modern-day information retrieval engines must be

developed using general purpose software components.  To address all of the above concerns,

we extended our relational database driven information retrieval engine, initially described in

(Grossman94) and lately in (Grossman97), to incorporate relevance feedback.  We modified

our original design to not only support a higher degree of functionality but to also scale to, at

least,  tens of processors. Throughout our efforts, we continue to rely on strictly unchanged,

standard  SQL to support a wide range of execution environments.  With these enhancements,
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as evidenced by recent experimental results obtained as part of the NIST Text REtrieval

Conference (TREC-6) efforts, our current prototype sustains a high retrieval accuracy both in

terms of precision and recall while supporting near linear speed-ups using 24 parallel nodes.

The remainder of our paper is organized as follows.  We begin by overviewing recent

efforts that focus on relevance feedback algorithm implementation, relational database

information retrieval approaches, and parallel information retrieval systems.  Having reviewed

prior efforts, we describe our SQL-driven relevance feedback algorithm.  We continue with an

experimental evaluation in which we vary the feedback term selection algorithm, the number

of top-ranked documents considered, and the number of feedback terms, the feedback

scaling, and feedback thresholding approaches used.  Throughout all of these experiments,

the entire approach uses strictly unchanged SQL.  We conclude with a thorough scalability

study using the NCR Teradata DBC/1012 Database Computer configured with 24 nodes.  As

is shown, our original approach described in (Grossman97) was limited in terms of scalability,

but with the modifications described in Section 4, a significant improvement in the scalability

of the approach was achieved.

2 . Prior Work
A.  Relevance Feedback

Relevance feedback was first proposed in the late-1960’s as a method to increase the

number of relevant documents retrieved by a query (Rocchio66).  In relevance feedback, a

user query is used to search a document collection.  The documents obtained from this search

are examined and certain terms selected from the documents deemed to be relevant are used

to expand the original query.  Terms from documents deemed not relevant may also be used

to modify the original query.  Rocchio’s original formula, shown in equation F1, is based on

the vector-space model.
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where
Q1 = new query vector
Q0 = initial query vector
Rk = vector for relevant document k
Sk = vector for non-relevant document k
n1 = number of relevant documents
n2 = number of non-relevant documents
β and γ = weight multipliers to control relative contributions of relevant

          and non-relevant documents

Much of the prior research on relevance feedback has focused on the impact from the

relevant and non-relevant document weight multipliers,β  and γ  where (0 2β  , γ 2 1,β   + γ

= 1) (Ide71, Rocchio71).  In 1990, Salton and Buckley experimented with setting the

multiplier for the non-relevant documents to zero and determined that results from this form

of relevance feedback were still an improvement over results obtained without relevance

feedback (Salton90).  In 1992, Harman experimented with term reweighting by query

expansion, feedback term selection techniques or sort orders, and the effectiveness of

performing multiple iterations of relevance feedback (Harman92).  Harman determined that

using only selected terms for relevance feedback produced better results than using all of the

terms from the relevant documents.  She also determined that using a feedback term sort

order that incorporated information about the frequency of the term in the document as well

as the term’s overall collection frequency produced improved results.  However, the

experiments described above were conducted using small test collections of documents (i.e.,

collections with less than 15,000 documents) so the effectiveness of these techniques on large

document collections was unknown.  Results obtained from a small collection do not

necessarily hold true for larger collections (Blair85).

The work described in Section 3 expands upon the prior work by using the Tipster

document collection (i.e., a large standard collection of more than 500,000 documents) and

systematically conducting an experimental study of the effects of the following parameters on

relevance feedback:

- number of top-ranked relevant documents used

- number of feedback terms selected

- various types of feedback term selection techniques or sort orders

- feedback term weight multipliers

B.  Relational Systems with Information Retrieval

While most information retrieval systems have been implemented using custom

software, there have been a few proposals to use a relational database (RDBMS) as the basis
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for an information retrieval system.  Much of the early work focused on designing special

extensions to the relational model to incorporate the unique features of text-based data.

Examples of this approach can be found in (Blair75, Crawford78, Macleod78, Crawford81,

Macleod81a, Macleod81b, Macleod83, Stonebraker83, and DeFazio95).

Several difficulties occur when custom extensions are added to a system, particularly

in areas of system integrity, optimization, and portability.  For example, custom extensions to

an RDBMS may  circumvent controls inherent in the RDBMS to ensure data consistency and

security, and thus, compromise the integrity of data in the system.  In addition, custom

extensions implemented and optimized on one system may perform quite differently on

another system, and thus, impact system performance.  In work done by Grossman, et al, in

1995, the implementation of an information retrieval system using unchanged SQL was first

demonstrated (Grossman97).  As part of their information retrieval system, they also

demonstrated the implementation of  basic term weighting and relevance ranking

functionality using unchanged SQL.  An information retrieval system that is treated as an

application ofthe relational model and using standard SQL has the advantages of being

portable across RDBMS platforms as well as being able to use the maintenance, security, and

data integrity features which are an integral part of the RDBMS system.

C.  Parallel Information Retrieval

Recently, several participants in the Text REtrieval Conferences (TREC) have

developed parallel information retrieval systems (Hawking96, Mamalis96) to combat the data

explosion versus response time concerns.  A major drawback to these parallel systems is that

they require special purpose hardware and software to implement the information retrieval

system which greatly diminishes the portability of these information retrieval systems across

platforms.  This drawback, however, is avoided when an information retrieval system is

designed on the relational model because an information retrieval system designed on the

relational model retains the benefits of portability across RDBMS and is able to run virtually

unchanged in both the single processor and parallel environments.  Information retrieval

systems based on the relational model can be easily and transparently ported to a parallel

environment by shifting to a parallel RDBMS.

3 . Implementing Relevance Feedback in the Relational Model
A.  Relevance Feedback Implementation

Using an RDBMS to support information retrieval offers several advantages such as

the simplicity of the relational model, user independence from the details of data organization

and storage, and portability across different systems and platforms.  All major RDBMS
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vendors (IBM, Informix, Microsoft, NCR, Oracle, and  Sybase) offer a parallel version of their

database software that allows relational applications to take advantage of a parallel processing

environment in a way which is transparent to the application.  Since parallel RDBMS also use

standard SQL, an information retrieval system designed using unchanged SQL can easily run

on a parallel platform as well.  In addition, nearly all major, commercial RDBMS products

provide extensive mechanisms to handle database maintenance and ensure data integrity

through utilities for data recovery, concurrency control, transaction processing, security, etc.

Another major advantage to using the relational model for information retrieval is that new

features and processes are easily added through minor modifications to the SQL and do not

require the recoding, debugging, and testing of large sections of code.

The automatic relevance feedback method developed for the relational model divides

the feedback process into five steps.  While it is possible to do the entire process with a single

query, it would be somewhat cumbersome to implement the SQL to select only the top n

documents or top x terms.  For the sake of clarity, the process is separated into five steps.

Descriptions of the relational structures used for this system can be found in section 4.

Step 1 - Identify the top n documents for each query through relevance ranking.

The first step performs relevance ranking using the nidf term weighting method

described in (Ballerini96, Singhal96).  Using this method, the similarity coefficient between a

document and a query is calculated by the following SQL statement.  For our experiments, s

is set to .20 and represents a scaling factor applied to the number of distinct terms in the

document being ranked and p is set to 282.7 which represents the average number of unique

terms across all documents in the collection.  To simplify processing, the results from each of

these steps are loaded into temporary tables.

INSERT INTO temp_table1 VALUES
SELECT a.qryid, d.docid, SUM(((1+LOG(c.termcnt))/

    ((d.logavgtf) * (((1 - s) * p) + (s * d.disterm)))) *
     (a.nidf * ((1 + LOG(a.termcnt))/(b.logavgtf))))
 FROM query a, query_weight b, doc_term c, doc_weight d
WHERE a.qryid = b.qryid AND c.docid = d.docid
    AND a.term = c.term AND a.qryid = query_number
GROUP BY a.qryid, d.docname;

Step 2 - Identify the terms from the top n documents.

The second step of this process involves the identification of all terms associated with

the top documents.  The SQL to execute this step is as follows:
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INSERT INTO temp_table2
SELECT a.qryid, a.docid, b.term, c.nidf
FROM temp_table1 a, doc_term b, nidf c
WHERE a.docid = b.docid AND b.term = c.term;

Step 3 - Select the feedback terms.

The third step involves the selection of the feedback terms. Several term selection

techniques were tried and one of the more successful sort techniques (n * term weight) is

similar to a technique suggested in (Harman92) where n is equal to the number of top-ranked

documents containing the term and term weight reflects the collection weight of the term.

Other term selection techniques are described in Section 3.B.1.  The SQL necessary to

implement the (n * term weight) selection processes, is shown below.  The flexibility of the

relational model provides a powerful yet convenient mechanism to easily implement a wide

variety of term selection techniques.

INSERT INTO temp_table3
SELECT qryid, term, nidf, (nidf * COUNT(*))
FROM temp_table2
WHERE qryid = query_number
GROUP BY qryid, term, nidf
ORDER BY 4 DESC;

The SQL for selecting feedback terms using other selection techniques is similar to

the SQL for the (n * term weight) term selection technique with only minor changes to the

grouping clause or the addition of a HAVING  clause to specify that a designated number of

documents must meet the conditions.

Step 4 - Merge the feedback terms with the original query.

The fourth step in the relevance feedback process merges the terms from the original

query with the newly selected terms and builds the aggregate weights for the new query.  The

SQL statements necessary for this step are shown in the following code segment:



7

INSERT INTO new_query
SELECT a.qryid, 1, a.nidf, a.term
FROM temp_table3 a
WHERE a.term NOT IN
    (SELECT b.term FROM query b

      WHERE b.qryid = temp_table3.qryid);

INSERT INTO new_query
SELECT a.qryid, a.termcnt, a.nidf, a.term
FROM query a;

INSERT INTO new_query_wt
SELECT a.qryid, SUM(a.termcnt)/COUNT(*),
      COUNT(*), (1 + log(SUM(a.termcnt)/COUNT(*)))
FROM new_query a
GROUP BY a.qryid;

Given the flexibility of the relational model, scaling the new feedback terms to give

them a lesser or greater relative weight in the feedback query can be easily implemented by

changing the ‘1’ in the first SQL statement to a scale value, such as 0.4 or 1.4 to give the

feedback terms more or less relative weight than the original query terms.  Again, the

flexibility and data independence of the relational model make it unnecessary to make

changes to the application code or underlying data structures to accomplish this change.

Step 5 - Identify the top documents for the modified queries through relevance ranking.

The final step is identical to the first except the query is directed to the new_query

tables rather than the table containing the original query terms.
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Improvement from Relevance Feedback
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--- Figure 1 ---

Figure 1 illustrates the improvement in precision and recall obtained from relevance

feedback using two different types of term weights to show that the improvements to retrieval

effectiveness obtained from relevance feedback are not dependent upon a particular term

weight method.  These experiments were run using a subset of documents from disks 2 and 4

of the Tipster collection and the 50 TREC-5 queries.

B.  Relevance Feedback Improvements

Many techniques have been proposed to tailor and improve the relevance feedback

results since relevance feedback in information retrieval systems was first proposed in the late-

1960’s.  However, most systems using relevance feedback incorporate a variety of techniques;

so the contribution to the overall improvement from any single technique is relatively

unknown.  Most of the previous work done on comparing different relevance feedback

improvements techniques has been done using small, special purpose document collections

(Salton90, Harman92), and there has been no systematic comparison of the techniques done

against a large, standard collection of research data.  To better understand the interaction

between the different relevance feedback techniques, the experiments described below focus

on a variety of relevance feedback improvement techniques and determine the impact each

technique has on improving precision and recall in an information retrieval system.
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Our information retrieval system is based on the vector-space model and is

implemented in a relational database using unchanged SQL.  Details of implementing an

information retrieval system using unchanged SQL are found in (Grossman96, Grossman97,

Lundquist97a).  A four processor Teradata DBC/1012 parallel processing computer is used as

the platform for the information retrieval system.  The Teradata DBC/1012 Database

Computer is a special purpose machine designed to run a relational database management

system using standard SQL.  To investigate the behavior of relevance feedback in information

retrieval, a series of experiments were conducted using various combinations of the TREC

queries and the Tipster data collection.  The following sections describe these experiments

and the improvements in retrieval effectiveness demonstrated by the different relevance

feedback techniques.  Descriptions of several of these experiments are found in

(Lundquist97b).

The following sections focus on discrete components of the relevance feedback

process.  Because the relevance feedback process consists of several factors working together,

the impact from a single factor is investigated by varying that factor while holding all other

factors constant.

i. Feedback Term Selection Techniques

The first step of the automatic relevance feedback process identifies the n top-ranked

documents by conducting relevance ranking between the query and the documents in a

collection.  These documents are assumed to be relevant and used as the source of the

feedback terms.  The issue then becomes one of identifying the particular terms, and only

those terms, which will improve the precision and recall levels for the query.  If  “good”

terms are chosen, the query will find more relevant documents.  However, if “bad” terms are

chosen, the feedback terms can potentially re-focus the query onto a topic different from the

original query topic and result in fewer relevant documents being identified after relevance

feedback.  In 1992, Harman experimented with several different feedback term selection

techniques using the Cranfield document collection (Harman92).  According to her results,

the best feedback term selection techniques were those which incorporated information about

the total frequency of a term in the collection rather than just the frequency of the term

within a document.

To determine the impact on precision and recall from the type of feedback term

selection method used, several different feedback term selection methods were developed and

tested.  These experiments were conducted using a subset of documents from disks 2 and 4 of

the Tipster data collection along with the short versions of queries from the TREC-4 and
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TREC-5 conferences.  The feedback term selection methods are described below and each

can easily be implemented using standard SQL.

1.  n * term weight (where n = number of top-ranked documents containing the term and
term weight is the nidf or idf weight of the term in the collection)
2.  Modified TermWeight (where modified term weight = (term weight * ((1 +
log(termcnt))/logavgtf))  )
3.  Min3Docs  (where the top terms occurring in at least 3 of the top-ranked documents are
ordered by their term weight values)
4.  Min4Docs  (where the top terms occurring in at least 4 of the top-ranked documents are
ordered by their term weight values)
5.  SUM(termcnt * term weight)/reldoc  (where reldoc = number of top-ranked documents
chosen for relevance feedback)
6.  term weight * log(n)  (where term weight = the weight of the term in the collection and n
= number of top-ranked documents containing the term)

The first method, n * term weight, appears to be the most effective feedback term

selection technique when compared to the other techniques.

ii. Number of Top-Ranked Documents

One of the issues in relevance feedback concerns the optimal number of top-ranked

documents to use as the source of the feedback terms because in automatic relevance

feedback, all of the n top-ranked documents are assumed to be relevant to the query.  The

top-ranked documents for a particular user query are identified by running the SQL

relevance ranking query to match terms from the user supplied query against the documents

in the collection.  The ORDER BY clause in the SQL query returns the relevant documents in

ranked order so that the n top-ranked documents can be selected.

To investigate the impact on precision and recall for the number of top-ranked

documents used, experiments were conducted using the short versions of the 50 TREC-4

queries and documents from disk 2 of the Tipster collection.  In these experiments, the idf

term weight method (described in section 4.5) was used and either 10 or 20 feedback terms

were selected from 1, 5, 10, 20, 30, or 50 top-ranked documents.  Similar experiments were

done by Harman in 1992 but with the small Cranfield document collection and using the

probabilistic model (Harman92).  Figures 2 and 3 illustrate how the levels of precision and

recall are impacted when the number of top-ranked documents used for relevance feedback is

varied.
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Varying numbers of top-ranked documents, 10 feedback terms
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Varying numbers of top-ranked documents, 20 feedback terms
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The results shown in figures 2 and 3 indicate that the greatest increases in precision

and recall are obtained when between 5 and 20 top-ranked documents are used for use for

relevance feedback.  The results also indicate that selecting a fewer number of documents or a

larger number of documents for use in relevance feedback produces less than optimal levels

of precision and recall.  The results also show that there was a negligible difference when

using 10 or 20 feedback terms.  The following section provides more detail on the impact on

relevance feedback when varying numbers of feedback terms are selected.

iii. Number of Feedback Terms

In relevance feedback, a predetermined number (x) of feedback terms are selected

from the top-ranked documents and added back into the original user query.  The goal

behind the query expansion is to identify new terms that enhance the retrieval effectiveness of

the user supplied query in a particular document collection.  The various feedback term

selection techniques (described in section 3.B.i) generate a numerical score representing the

likelihood that the term is related to the user supplied query terms.  The SQL used to

implement the feedback term selection techniques generates a list of candidate feedback

terms in ranked order which can be used to identify the top x feedback terms to add back into

the original user supplied query.

To evaluate the impact of the number of terms selected from the top-ranked

documents on improving precision and recall, two sets of experiments were conducted.  The

first set of experiments was conducted using the short versions of the 50 TREC-5 queries and

a subset of documents from disks 2 and 4 of the Tipster data collection.  In the first set of

experiments, the nidf term weighting method was used, the 20 top-ranked documents for each

query were identified, and the n * term weight feedback term selection technique was used to

select 10 terms (either single words or two-word phrases) in one experiment and 50 words

plus 20 phrases for the second experiment.  Results shown in figure 4 compare the precision

and recall levels when the two different numbers of feedback terms are used and shows how

much improvement over the baseline is obtained from both methods.  Figure 4  illustrates that

using a smaller number of feedback terms is clearly better for the short TREC-5 queries than

using a larger number of feedback terms although many groups in TREC have used 50 words

plus 20 phrases for relevance feedback (Buckley95, Ballerini96).
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Varying numbers of feedback terms
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Varying numbers of feedback terms
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The second set of experiments was conducted using only documents from disk 2 of

the Tipster collection, the short versions of the 50 TREC-4 queries, and the idf term weighting
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method.  During these experiments the number of feedback terms used was varied when

20top-ranked documents were selected for relevance feedback.  Figure 5 shows how the

precision and recall levels varied when 5, 10, 20, and 30 feedback terms were added to the

original query.

Figure 5 shows that the highest levels of precision and recall are obtained when

between 10 and 20 top-ranked documents are selected for relevance feedback and 10 to 20

new terms are added to the short versions of the TREC-5 and TREC-4 queries with terms

consisting of either words or phrases.  Figure 4 clearly shows that the method commonly used

by several TREC participants of expanding the user supplied queries with 50 words and 20

phrases is not as effective as adding only 10 terms (either words or phrases) to the user

supplied query.  When more feedback terms are used or when fewer feedback terms are used,

the precision and recall levels obtained are less than optimal.

iv. Feedback Term Scaling

Rocchio’s original formula contained a scaling factor which allowed the relative

weights of feedback terms to be either increased or decreased with respect to the original

query terms.  This scaling factor can be easily implemented in our relational system by

applying the scaling factor to the term count (termcnt) field for the feedback terms in the

intermediate temporary tables (see step 4 in the relevance feedback process).

To investigate the impact of scaling the weights of the feedback terms, a series of

experiments using documents from disk 2 of the Tipster collection along with the short

versions of the 50 TREC-4 queries were conducted.  Ten feedback terms were chosen from

the 20 top-ranked documents and various scaling factors were used to adjust the weight of the

feedback terms relative to the original query terms by 0.2, 0.4, 0.6, 0.8, and 1.0.  Figure 6

shows the impact scaling has on the overall precision and recall for the queries.  The results

described in figure 6 indicate that when a scaling factor between 0.4 and 0.6 is used to adjust

the weight of the feedback terms relative to the original query terms, the greatest

improvement in the precision and recall levels can be obtained.
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Feedback term scaling
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v. Relevance Feedback Thresholding

When the precision and recall levels for individual queries were examined, a

correlation coefficient of +0.24 was identified between the percentage of improvement in

exact precision seen during relevance feedback and the average of the nidf term weights of

the words (not including any phrases) within the queries.  This correlation implies that queries

with an average nidf of their words below a certain threshold should not undergo relevance

feedback.  To test this hypothesis, several experiments using the short versions of the TREC-5

queries, a subset of disks 2 and 4 of the Tipster data collection, the nidf term weight method,

the n * term weight feedback term selection method, 10 feedback terms, and 20 top-ranked

documents were conducted.  These experiments determined that the maximum improvement

to precision and recall is realized if relevance feedback is not performed on queries having an

average nidf  < .2175.  Further experiments showed that the average nidf for a query should

be calculated on only the words having an nidf <= 0.4.  (The 0.4 value roughly corresponds

to the word occurring in less than 35,000 documents in the collection.  Using these

calculations, six of the fifty TREC-5 queries (#251, #263, #268, #270, #272, #293) did not

undergo relevance feedback.  As a result of relevance feedback thresholding, the average

precision increased +1.4% from .1400 to .1421 and the exact precision increased +2.1%

from .1755 to .1791.  These results demonstrate that improvement, while not dramatic, can be

achieved through relevance feedback thresholding.
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vi. Combination of Techniques

The experiments demonstrated that for short versions of the TREC-5 and TREC-4

queries, maximum levels of precision and recall were obtained when a relevance feedback

process incorporating the following components is used:  1) query expansion by 10 to 20

new terms (either words or phrases); 2) number of top-ranked documents between 5 to 20;

and 3)  feedback terms scaled by a factor between 0.4 and 0.6. One of the interesting results

from these experiments is it appears that certain characteristics of a query (i.e., average nidf of

words in the query) are a predictor of improvement under relevance feedback.

4 . Parallel Relevance Feedback Algorithm
One of the major drawbacks to parallel information retrieval systems is that they

require custom hardware and software which greatly reduces the portability of these systems

across platforms.  In our information retrieval system, parallelism can be easily obtained

without requiring any custom hardware or software by treating information retrieval as an

application of an RDBMS.  This provides a parallel implementation without requiring any

changes to the basic information retrieval algorithm.

A.  Parallel RDBMS

A major benefit to using the relational model for information retrieval is the ability to

exploit parallel processing via the DBMS.  To test the effectiveness of parallel processing in

information retrieval, an information retrieval system was implemented using Teradata’s

RDBMS on a 4 processor DBC/1012 Model 4 parallel processing machine.  The Teradata

DBC/1012 Database Computer is a special purpose machine designed to run a relational

database management system using standard SQL.

On the DBC/1012, I/O parallelism is achieved by dividing and physically storing the

rows of each table on the different processors.  A hashing function is applied to the primary

index value for each row, and the output is a 32 bit value which becomes the logical storage

address for the row and identifies the processor which will store the row.  When rows are

retrieved, the hashing function is applied to the key value for the row to determine the logical

storage address.  An I/O request is then sent to the correct processor, and the row is retrieved.

When multiple rows are being retrieved, each processor can work independently to retrieve its

rows and send them to a temporary storage area.  The resulting dataset from all of the

processors is then returned to the user.  An interesting side effect of using a hashing design

for the indexes instead of an ordered index such as the B-tree index design commonly used

in non-parallel RDBMS is that unlike ordered indexes, queries done in the Teradata system
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cannot make use of partial indexes.  Thus, all columns of the index must be contained in the

query’s WHERE clause or the query cannot use the index.  This is different from an ordered

B-tree index where if the query’s WHERE clause contains only the first column of a multi-

column index, the query can still use the index to efficiently access the data.

On the DBC/1012, parallel processing of the queries is transparent to the user.  When

SQL statements are issued, the  parser and query optimizer partitions the request into a series

of serial and parallel steps.  Parallel steps are  are executed concurrently by two or more

processors.  These parallel steps, which make the best use of the DBC/1012 architecture, are

generated by the optimizer whenever possible.  The DBC/1012 can execute some statements

in a single transaction in parallel.  This capability applies both to implicit transactions, such as

macros and multi-statement requests, and to transactions explicitly defined with BEGIN/END

TRANSACTION statements.  Statements in a transaction are broken down by the interface

processor into one or more steps that direct the transaction execution performed by the

processors.  It is these steps, not the actual statements, that are executed in parallel.  A

handshaking protocol between the interface processor and the processors allows the

processors to determine when the interface processor can dispatch the next parallel step

(DBC-1).

To show how the query parser and optimizer function on the DBC/1012 to process a

query in parallel, the following SQL statement is used as an example.  The processing steps

outlined below are generated by the “EXPLAIN” function on the DBC/1012 which can be

used to obtain information from the query parser and optimizer as to how a particular SQL

statement will be processed.  These steps illustrate how the query parser and optimizer on the

DBC/1012 allow a standard SQL statement to be run in a parallel mode in a way that is totally

transparent to the user.
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Sample Relational Table Structures:

Doc_Term (docid, termcnt, term)
Doc_Weight (docid, docname, avgtf, disterm, logavgtf)*
Query_Term (qryid, termcnt, nidf, term)
Query_Weight (qryid, avgtf, disterm, logavgtf)*

*Certain aggregate values are pre-computer to optimize performance.

Sample Relevance Ranking Query:

SELECT c.qryid, b.docid,SUM(((1+LOG(a.termcnt))/((b.logavgtf) *
         (229.50439 + (.20 * b.disterm)))) * (c.nidf * ((1 + LOG(c.termcnt))/(d.logavgtf))))
FROM disk5_doc_term a, disk5_doc_weight b, query_term c, query_weight d
WHERE a.docid = b.docid AND c.qryid = d.qryid AND a.term = c.term and c.qryid = 301
GROUP BY c.qryid, b.docid
       UNION
SELECT c.qryid, b.docid,SUM(((1+LOG(a.termcnt))/((b.logavgtf) *
         (229.50439 + (.20 * b.disterm)))) * (c.nidf * ((1 + LOG(c.termcnt))/(d.logavgtf))))
FROM disk4_doc_term a, disk4_doc_weight b, query_term c, query_weight d
WHERE a.docid = b.docid AND c.qryid = d.qryid AND a.term = c.term and c.qryid = 301
GROUP BY c.qryid, b.docid
ORDER BY 3 DESC;

Breakdown of DBC/1012 Processing Steps:

Step 1 - A read lock is placed on tables disk5_doc_term, disk5_doc_weight, disk4_doc_term, and
disk4_doc_weight.

Step 2 - A single processor is used to select and join rows via a merge join from query_term and
query_weight where the value of qryid = 301.  The results are stored in temporary table1.

Step 3 - An all processor join is used to select and join rows via a row hash match scan from
disk5_doc_term and temporary table1 where the values of the term attribute match.  The results are sorted
and stored in temporary table2.

Step 4 - An all processor join is used to select and join rows via a row hash match scan from
disk5_doc_weight and temporary table2 where the values of the docid attribute match.  The results are stored
on temporary table3 which is built locally on each processor.

Step 5 - The SUM value for the aggregate function is calculated from the data in temporary table3 and the
results are stored in temporary table4.

(The next two steps, 6a and 6b, are executed in parallel)

Step 6a - The data from temporary table4 is retrieved and distributed via a hash code to temporary table5
which encompasses all processors.
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Step 6b - An all processor join is used to select and join rows via a row hash match scan from
disk4_doc_term and temporary table1 where the values of the term attribute match.  The results are sorted
and stored on temporary table6.

Step 7 - An all processor join is used to select and join rows via a row hash match scan from
disk4_doc_weight and temporary table6 where the values of the docid attribute match.  The results are stored
on temporary table7 which is built locally on each processor.

Step 8 - The SUM value for the aggregate function is calculated from the data on temporary table7 and the
results are stored on temporary table8.

Step 9 - The data from temporary table8 is retrieved and distributed via a hash code to temporary table9
which encompasses all processors.  A sort is then done to remove duplicates from data on temporary table9.

Step 10 - An END TRANSACTION step is sent to all processors involved and the contents of temporary
table9 are sent back to the user.

As seen in the steps described above, the DBC/1012 is able to execute various steps of

the query in parallel as well as execute a single step concurrently on multiple processors.  All

of this, whether it be deciding on the best parallel strategy to process the query or executing

the steps in parallel, is accomplished independently of the user and does not require any

specialized instructions from the user.

Our hypothesis for the parallel approach was that queries would run in a balanced

fashion and the workload for each processor would be approximately equal.  This balance is

critical if the approach is to be truly scalable.  To determine the level of processor imbalance,

processor performance data for both the initial relevance ranking to identify the top-ranked

documents (Step 1 in Section 3.A) and the relevance ranking after relevance feedback had

been accomplished by identifying and adding ten new terms (Step 5 in Section 3.A) was

collected.  Table 1 illustrates the level of processor imbalance where processor and disk I/O

imbalance are calculated with the following equations:

processor imbalance =  
(max_ min_ )

min_

cpu cpu

cpu

−
(F2)

disk I/O imbalance   = 
(max_ min_ )

min_

diskio diskio

diskio

−
 (F3)

where
max_cpu = maximum cpu time across all processors
min_cpu = minimum cpu time across all processors
max_diskio = maximum disk I/O time across all processors
min_diskio = minimum disk I/O time across all processors
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Percentage of
processor
imbalance

Percentage of
disk I/O
imbalance

Step 1 -
Relevance Ranking before Relevance
Feedback terms added

4.98% 0.69%

Step 5 -
Relevance Ranking after Relevance
Feedback terms added (10 terms)

9.86% 2.46%

---Table 1---

It can be seen that for all workloads, the processors and disk I/O amounts are ten

percent or less out of balance.  Given that the workload is seemingly balanced evenly among

the existing processors, if additional processors are added, response time potentially can be

reduced.

B. Parallel Performance

A key aspect of any parallel system are whether the multiple processors are efficiently

distributing the workload.  One of the methods used in industry to determine the efficiency at

which the processors are distributing the workload is to calculate the Parallel Efficiency (PE)

(Higa91).  The PE measures how well the processors are working together and is an indicator

as to how well the data is distributed among the processors.  A low PE may indicate that some

of the tables being processed by the SQL statement may require a different primary index so

the data are hashed and distributed more evenly among the multiple processors.  The PE is

calculated as follows:

parallel efficiency (PE) =  
avg cpu

cpu

_

max_
              (F4)

where
      max_cpu = max. cpu time across all processors
      avg_cpu = avg. cpu time across all processors

For example, to calculate the PE for the relevance ranking run on the four processor

DBC/1012 parallel machine, the average and maximum CPU times across all processors for all

50 queries is determined.  When this is done, the  PE = 149.45/176 or 85%.
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To determine if the information retrieval system was efficiently distributing its

workload across multiple processors, several experiments were conducted using both a 4

processor and a 24 processor Teradata DBC/1012 Model 4.  Table 2 illustrates the

performance and PE for the 50 TREC-5 queries run on these two machines against

documents from Tipster disk 2 and disk 4 (approximately 1 gigabyte of data per disk).

Average CPU
time per processor

Maximum CPU
time per processor

Data storage imbalance
across processors

Parallel
Efficiency

4 processors,
disk 2 only,
primary index on term

149.45 176.00 6.1% 84.9%

4 processors,
disk 2 and 4,
primary index on term

393.65 453.20 3.1% 86.9%

24 processors,
disk 2 only,
primary index on term

17.07 42.04 18.9% 40.6%

24 processors,
disk 2 and 4,
primary index on term

49.11 111.10 19.2% 44.2%

 ---Table 2---

Table 2 illustrates that as the disk storage imbalance increases across the processors,

the PE decreases because the workload is not evenly distributed across the processors.

Section 4.A described how a hash function based on the primary index is applied to data in

the table to distribute it across the processors.  So when the primary index is defined to be the

term field, the hash function is based on the non-unique term value.  This leads to an uneven

distribution of the data because terms are more likely to start with certain letters than with

others and some terms occur more frequently than others.  The uneven distribution across the

processors is not as apparent on the 4 processor machine because there are only 4 processors

resulting in frequently and infrequently occurring terms being assigned to each processor,

thus somewhat balancing out the data storage.  However, the uneven distribution is much

more apparent on the 24 processor machine because the data are divided among a larger

number of processors and there is less opportunity for the frequently and infrequently

occurring terms to balance.  To highlight the imbalance among the terms in the collection,

figure 7 shows the distribution of terms according to their starting letter.
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Distribution of terms according to starting letter
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--- Figure 7 ---

To determine if the PE could be improved by redistributing the data across the

processors, data from Tipster disks 2 and 4 was loaded into the database using the

combination of the docid and term fields to create a unique primary index so that the hash

function would be able to more uniformly balance the data across the 24 processors.  Table 3

illustrates the difference in CPU time, data storage imbalance, and PE when the data are stored

differently on the 24 processors.

Average CPU
time per processor

Maximum CPU
time per processor

Data storage imbalance
across processors

Parallel
Efficiency

24 processors,
disk 2 only,
primary index on term

17.07 42.04 18.9% 40.6%

24 processors,
disk 2 and 4,
primary index on term

49.11 111.10 19.2% 44.2%

24 processors,
disk 2 only,
primary index on docid
and term

29.21 31.90 0.8% 91.6%

24 processors,
disk 2 and 4,
primary index on docid
and term

74.18 79.09 0.5% 93.8%

---Table 3---

The results listed in table 3 show that when an unique index is used as the primary

index, the hashing function is able to uniformly distribute the data across the 24 processors

and the data storage imbalance among the processors drops from about 19% to about 1%.

Because the data are more evenly distributed, the PE more than doubles and the maximum
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cpu time per processor decreases by 24% for just disk 2 and 29% for disks 2 and 4 together.

The experiments described in this section show that when a system is scaled up to run on

additional processors, it may be necessary to restructure the data to maintain an even

distribution of data across the processors.  If this is not done, then the full extent of the

performance improvements obtained by increasing the number of processors may not be

realized.

C. Parallel Scalability

Another key aspect of a parallel system is whether the system demonstrates

performance improvements when the number of processors is increased.  For example, if a

query required 100 seconds to run on a 4 processor machine and the machine was 100%

scalable, the query would then only require 50 seconds to run on an 8 processor machine.

Most machines, however, do not provide 100% scalability due to hardware limitations, i.e., it

takes longer to coordinate messages among 8 processors than among 4 processors.  The

scalability of a machine can be projected and estimates of the reduction in cpu time and

number of disk I/O’s per processor can be calculated using the processor imbalance formulae

in F2 and F3.

projected cpu time per processor = X 
n

PI n
1

21(( ) )−






 (F5)

projected number of disk I/O’s per processor = Y 
n

DI n
1

21(( ) )−






 (F6)

where
PI = processor imbalance calculated by F29
DI = disk I/O imbalance calculated by F30

 X = maximum CPU time per processor on n1 processors
Y = maximum number of disk I/O’s per processor on n1 processors
n1 = number of original processors
n2 = number of projected processors
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--- Figure 8 ---

Projected reduction in number of disk I/O's
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--- Figure 9 ---

Figures 8 and 9 illustrate the projected reduction in maximum cpu time and number

of disk I/O’s per processor as the number of processors increases from 4 to 24.

To determine how accurate the estimates of the reduction in average cpu time and

number of disk I/O’s per processor were, identical amounts of data were loaded into identical

relational structures on a 4 processor and a 24 processor Teradata DBC/1012 model 4 parallel

machine and identical queries were run on the two machines.  The estimated maximum cpu

time and number of disk I/O’s per processor along with the actual performance results on the

24 processor machine are shown in tables 4 and 5.
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Projected
maximum CPU
time per processor

Actual maximum CPU
time per processor with
data storage unbalanced

Actual maximum CPU
time per processor with
data storage balanced

Tipster disk 2 and 50
TREC-5 queries

45.83 42.04 31.90

Tipster disk 2 & 4 and
50 TREC-5 queries

107.90 111.10 79.09

---Table 4---

Projected maximum
number of disk I/O’s
per processor

Actual maximum
number of disk I/O’s
per processor with data
storage unbalanced

Actual maximum
number of disk I/O’s
per processor with data
storage balanced

Tipster disk 2 and 50
TREC-5 queries

5197.28 6424.0 9226.0

Tipster disk 2 & 4 and
50 TREC-5 queries

12464.65 14186.0 20772.2

---Table 5---

The results shown in tables 4 and 5 indicate that when the number of processors is

increased from 4 processors to 24 processors the actual performance is approximately equal

to the projected performance, however, when the data stored on the processors is more

uniformly distributed, the actual performance is then much better than the projected

performance.  This difference is due to the improved parallel efficiency when the data stored

are balanced among the processors.  The number of disk I/O’s per processor, however, shows

a different pattern because as the data becomes more uniformly distributed among the

processors, the number of disk I/O’s done by each processor increases.  This increase can be

explained by having to perform additional disk I/O’s to use a secondary index on just the

term column.  This is done because the query is still searching on the term value, but since the

primary index is placed on the combination of docid and term, a second index is necessary.

Table 6 shows the actual scalability of the system by directly comparing the CPU times on the

4 processor and the 24 processor machines and shows that when the data is uniformly

distributed among the processors, the system achieves a 95.5% level of scalability for disks 2

and 4.
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Scalability when data is unbalanced Scalability when data is balanced
Tipster disk 2 69.8% 92.0%
Tipster disk 2 & 4 68.0% 95.5%

---Table 6---

D. Summary

The preceding sections provide a parallel algorithm for implementing an information

retrieval system.  The results described above demonstrate that when an information retrieval

system is designed on the relational model, it can easily and transparently obtain parallelism

by using a parallel RDBMS.  It is further demonstrated that such a system is scalable (up to

95.5%) and shows significant performance improvements when scaled up from 4 to 24

processors.  These results indicate that an information retrieval system implemented in an

RDBMS is scalable and demonstrates significant reductions in processor CPU times and disk

I/O’s.

5 . Conclusions
Information retrieval systems must sustain a high degree of accuracy and must scale

in terms of the volume of data they process.  We described an information retrieval system

that is implemented as a relational database application, and therefore, benefits from all the

traditional features supported by commercial database systems.  Namely, features such as

concurrency, recovery, data integrity constraints, optimization algorithms, and parallel

implementations, are all available to the information retrieval application without additional

software development.

We described our information retrieval system that is implemented as an application

of a relational DBMS.    We showed how  relevance feedback could be implemented with

standard SQL and identified tuning paramters that improved effectiveness of relevance

feedback over prior work.   Additionally, we implemented relevance feedback on a parallel

database machine and, using TREC data,  enhanced precision and recall over previously

developed database driven approaches while sustaining near linear speed-up using 24 nodes.

It is still an open question what combination of retrieval enhancements and

underlying models are best suited for information retrieval.  What is clear is that all future

information retrieval systems must, at least, follow the technology curve since on-line digital

data are exponentially growing.  We believe that to support such growth without incurring

vast software development costs requires reliance on proven scalable technology.  Our
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relational database-driven information  retrieval system is but one attempt at meeting these

demands.
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