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Grooming of Arbitrary Traffic in SONET/WDM
BLSRsS

Peng-Jun Wan, Gruiadlinescu, Liwu Liu, and Ophir Frieder

Abstract—SONET add-drop multiplexers (ADMs) are the of required fiber and allowing for more graceful upgrades, but
dominant cost factor in the SONET/WDM rings. They can also potentially reduce the amount of required SONET ADMs.
potentially be reduced by optical bypass via optical add—drop As SONET ADMs typically cost on the order of hundreds of

multiplexers (OADMSs) and traffic grooming. In this paper we .
study the grooming of arbitrary traffic in WDM bidirectional thousands of dollars, a fundamental bandwidth management

line-switched rings (BLSRs) so as to minimize the ADM cost. Two Problem is how to route and groom the traffic demands to
versions of the minimum ADM cost problem are addressed. In minimize the total SONET ADM cost. This problem is referred
the first version, each traffic stream has a predetermined routing.  to as theminimum ADM cost problem

In the second version, the routing of each traffic stream is not In this paper, we assume that the physical ring network is a

given in advance; however, each traffic stream is fully duplex with | . . . . - . . . .
symmetric demands, which must be routed along the same path bidirectional line-switched ring (BLSR) with either two fiber

but in opposite directions. In both versions, we further consider fings (i.e., BLSR/2) or four fiber rings (BLSR/4) [10]. All wave-

two variants depending on whether a traffic stream is allowed length channels are assumed to have the same line-speed, de-
to be split at intermediate nodes. All the four combinations are noted byg. By allowing parallel traffic streams between the
NP-hard even for any fixed line-speed. General lower bounds same pair of nodes, each traffic steam is assumed to haniteh

on the minimum ADM cost are provided. Our traffic grooming traffic d d H h traffic st bet
follows a two-phased approach. The problem targeted at in each raflic demand. However, each traflic stream can occur between

phase is NP-hard itself, except the second phase when the line@Ny arbitrary pair of nodes, as opposite to the all-to-all traffic
speed is two. Various approximation algorithms are proposed in [7], [8], [4], [14], [15], [17] and one-to-all traffic [10], [12], [4],

both phases, and their approximation ratios are analyzed. [14]. Two versions of the minimum ADM cost problem will be
Index Terms—Approximation ratio, grooming, optical, SONET, ~addressed. In the first version, each traffic stream has its prede-
WDM. termined routing, such as short-path routing. Thus we can deal

with the two (working) fiber rings separately. In each fiber ring,
a traffic stream can be represented as a (directed) circular arc.
Depending on the implementation, the arcs may or may not be
OUPLING wavelength division multiplexing (WDM) allowed to be split at intermediate nodes. If the splitting is not
technology with synchronous optical network (SONETallowed, a valid traffic grooming corresponds to a partitioniof
rings [11] is a very promising network architecture that haato groups ofg-colorable arcs. If the splitting is allowed, then
attracted much attention recently [7]-[10], [4], [14], [15]a valid traffic grooming consists of a choice of splitting each arc
In this network architecture, each WDM channel carries ¢f A, thus obtaining3, and then a partition aB into groups of
high-speed (e.g., OC-48) SONET ring. Each SONET ring-colorable arcs. In either case, each groug-gblorable arcs
can further carry a number of low-speed (e.g., OC-3) traffigan be carried in a wavelength and thus form a logical SONET
streams. The number of the low-speed streams that canripg. This version is referred to as thec-versionthe minimum
carried in a SONET ring is referred to as tiaffic granularity, ADM cost problem.
denote by a parametgt The key terminating equipments are In the second version, the routing of each traffic stream is
optical add—drop multiplexers (OADMs) and SONET add/dropot given in advance. However, each traffic stream is fully du-
multiplexers (ADMs). Each node is equipped with one OADMplex with symmetric (unital) demands, which must be routed
The OADM can selectively drop wavelengths at a nodalong the same path but in opposite directions. Thus we can
Thus, if a wavelength does not carry any traffic from or to &eat the two (working) fiber rings as one (undirected), and each
particular node, the OADM allows that wavelength to opticalliraffic stream as a (undirected) chord. Similarly, depending on
bypass that node rather than being electronically terminateige implementation, the chords may or may not be allowed to be
Consequently, in each SONET ring a SONET ADM is requireshlit at intermediate nodes. If the splitting is not allowed, a valid
at a node if and only if it carries some traffic terminating at thigaffic routing and grooming corresponds to a partitiomdahto
node. Therefore, the SONET/WDM ring architecture canngtoups ofg-colorable chords (a set of chords is said tg/keol-
only greatly increase the capacity, thereby reducing the amowgréble if they can be routed gscolorable arcs). If the splitting
is allowed, then a valid traffic routing and grooming consists of
a choice of splitting each chord df, thus obtaining3, and then
Manuscript received October 15, 1999; revised May 15, 2000. a partition of B into groups ofy-colorable chords. In either case,
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Both versions of the minimum ADM cost problem arewith the arc version. Leti be the set of input (clockwise) arcs.
NP-hard wherny = 1 in [12] and [3], respectively. The re- For any node, let o4 (¢) denote the total number of arcs ih
ductions made in [12] and [3] can be generalized to show theat originate from nodé andr 4 () denote the total number of
NP-hardness of both versions for afiged constanty > 1 arcs inA that terminate at node Then the nodé must use at
(for the arc-version without splits, a proof can be found iteast
[16]). Due to hardness of this problem, we adopt the following [

two-phased approach as did in [16] and [17]. maX(UA(i)’TA(i))W

g9
A. Generation of Primitive Rings ADMs. Hence, the total ADM cost is at least
In its arc-version, split the arcs as necessary if the splitting is -
allowed, and partition the resulting arcs or chords into groups Z [In&X(UA(i)aTA(i))—‘
of nonoverlapping arcs of chords (a set of arcs are said to be g '

L. .. . . . =0
nonoverlappingf their interiors have empty intersection; a set ‘

of chords are said to be nonoverlapping if they can be routétiis lower bound is a generalization of the one in given in [9]
as nonoverlapping arcs). In its chord version, split the chordsfas g = 1.

necessary if the splitting is allowed, and partition the resulting Now we consider the chord version. Lét be the set of
chords into groups of nonoverlapping chords (a set of chorifgput chords. For any node let 8 4(¢) denote the total number
are said to b@onoverlappingf they can be routed as nonover-of chords inA that contain node as one endpoint. As each
lapping arcs). In both versions, each group of nonoverlappiddPM can terminate at mosty chords, nodé must use at least
arcs or chords in the partition can be arranged in a single rifgf.4(:)/2g)] ADMs. Hence the total ADM cost is at least
referred to as arimitive ring. The cost of each primitive ring is )

defined as the number of nodes appearing in this primitive ring, < [6a(4)

and the cost of a partition is defined as the sum of the costs of all Z ’72—9—‘ ’

primitive rings within this partition. The objective in this phase =0

is then to find a partition with minimum cost. In the remaining of this section, we develop another lower
bound by calculating thenaximum ADM efficiengyas defined
B. Grooming of Primitive Rings later. We notice that similar lower bounding technique was used

Partition those primitive rings that are constructed in the firt [4] for only g = 4,16, but no general lower bound was es-
phase into groups of at mogiprimitive rings. Each group then tabh_shed in [4]. The lower bound de_rlved below is ggrjergl and
forms a logical SONET ring. Once again, the ADM cost of eaciPPlicable to any values af andg. Given any two positive in-
group or SONET ring is the number of nodes contained in tHig9ers: andg, let A(n, g) denote the maximal number of arcs
group, and the total ADM cost of a partition is the sum ofADM’V'th differentendpoint pairs over a ring of nodes whose load
costs of all groups in this partition. The objective of this phadg 9 and let
is thus to find a partition with the minimum total ADM cost. A(n, g)

Notice that the first phase is essentially the minimum ADM E(n,g)= ————.
cost problem withy = 1, and thus is NP-hard itself. Especially, "
its arc version can be interpreted as the wavelength assignmBnen themaximal ADM efficiencyvith line-speed; is defined
to lightpaths to minimize ADMs, which was studied in a serieg&s
of papers including [9], [12], [2], [3]. The second phase can be
solved optimally in polynomial time when = 2. However, E(g) = max E(n,g).
for any fixed constraing > 2, [1] proves the NP-hardness B
of restricted ring grooming, a grooming of primitive rings withintuitively, E(g) puts an upper bound on the average number of
the constraint that the number of groups of the primitive ringecs that can be carried by one ADM. Thus, the total number
should be the least. The same reduction used in [1] can be useaft&DMs required by a set of arcs (or chords) with different
show the NP-hardness of the unrestricted ring grooming for aagdpoint pairs is at least the total number of arcs (or chords
fixed constrainty > 2. Thus both phases remain challenging.respectively) divided by th&(g).

The remainder of this paper is organized as follows. In Sec-Wheng is small,E(g) can be calculated easily. For example,
tion I, we present two lower bounds on the minimum ADMwvheng = 1 or 2,
cost. In Sections Il and IV, we provide a number of heuristics

for both versions of generation of primitive rings respectively. A(n,1) =n
In Section V, we present approximation algorithms for optimal E(n,1)=EQ1)=1
grooming of primitive rings. Finally we conclude this paper in In )
Section VI. {_J ifn>5
A(n,2) =
[I. GENERAL LOWER BOUNDS {%J -1 ifn<4

One straightforward but rather loose lower bound on the min- 3
imum ADM cost can be obtained in the following way. We begin B@2) =
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In general, the calculation aE(g) relies on the concept of TABLE |

canonicalset of arcs. A set of arcs with different endpoint pairs ~ MAXIMAL ADM EFFICIENCY WITH VARIOUS LINK CAPACITIES
is said to becanonicalif it satisfies the following property: if g 2[4 [816

an arc of lengtl is in this set, then all arcs of length less than 4 112735

£ are also in this set. It is easy to show that any set of arcs over E@Qls|zls1%

a ring can be transformed to a canonical set of arcs ofdinee
cardinality over the same ring with the same or less load. ThHF'particular whem is a multiple of¢ + 1
there is always a canonical set of arcs over a ring ofodes

whose load ig. A canonical set of arcs can be generated in the Aln,g) =n <L n {)
following greedy manner: we first add all arcs of length one, ’ +1 2
then we add all arcs of length two, and so on until we cannot g /
add all arcs of some length; in this case, we add as many arcs E(n,g) = 1+1 - 9"
of such length as possible. The following lemma gives the load
of the set of arcs of length no more than Therefore,
Lemma 1: For any/ < n — 1, the load of all arcs of length g Y]
no more tharf over a ring of sizeu is (£(£ + 1)/2). E(9) = i+1 o

Proof: For anyk < n — 1, there aren arcs of lengthk. ) ) ]
Thesen arcs of lengthk contribute a load of to each link. Thus  The next Ier'nma summarizes the above discussion. .
the load contributed to each link by thosé arcs of length at Lemma 2: For any positive integey, the maximal node effi-

most/ is ci_ency is(g/¢+ 1) + (¢/2) where{ is the largest integer satis-
fying that(£(¢ + 1)/2) < g.
1424 4f= (e+ 1)_ Table | lists the values aF'(g) wheng = 2, 4, 8, and 16.
2 From Lemma 2, we have the following lower bound on the

B minimal ADMs required.
Let ¢ be the largest integer satisfying tHét¢ + 1)/2) < g. Lemma 3: Let g be the line-speed and be any set of arcs
If n < £+ 1, then the load of ath(n — 1) arcs over am-node with different endpoint pairs in the arc version (or chords with
ring is no more tharmy, and thereby different endpoint pairs in the chord version). If the splitting
is not allowed, then the minimum ADM cost of is at least
A(n,g) =n(n—1)

, [(JA]/(g/f+1) + (¢/2))], where/ is the largest integer satis-

E(ng)=n—-1<6< -9 4~ fying that(¢(¢ +1)/2) < g.
£+1 2
Now we assume that > ¢ + 2. If g = (£(£ + 1)/2), then the I1l. GENERATION OF PRIMITIVE RINGS FROMARCS
load of alln/ arcs of length at most over ann-node ring is  Assume that the ring network consistsrohodes numbered
exactlyg, and thereby clockwise byo, 1,. .., n—1. An (clockwise) ara is represented
A(n, g) =nl by (o(a),t(a)), whereo(a) is the origin ofa andt(a) is the
9 ’ termination ofa. Thenormalized lengthor length in short, of
E(n,g)=£= £+Ll + 5 an arca is defined as the number of links mdivided byn.

Let A be any set of arcs. The (normalized) lengttdotdenoted

If ¢ > (4(¢+1)/2), thenA(n, g) —nlis equal to the maximal by I(A4), is defined as the sum of the (normalized) lengths of
number of arcs of length + 1 which contribute a load of no the arcs inA. For any node:, the difference betweesi 4 (%)
more tharg — (¢(¢ + 1)/2) to each link. The cumulative link and.4(¢), denoted bys 4 (%), is referred to as theurplusof a
load contributed by these arcs of lendth 1 is at mostn(g — nodei with respect tod. Thedeficiencyof a node with respect
(£(£+1)/2)). As each arc of length+ 1 contributes a unitload to A is d.1(¢) = 1/2|64(4)|. The deficiency of4, denoted by

to £ 4 1 links, the total number of such arcs is d(A), is defined as the sum of the deficiencies of all nodes with
respect ta4, i.e.,d(A) = E;;_ol d4(4). In all these notations,

< — “e+ 1)> the subscripts may be omitted if understood from the context.
Aln,g) —nl < 2 —-n <L _ f) . A sequence of arcs is called aslainif the termination of
£+1 £+1 2 each circular arc (except the last one) is the origin of the subse-
On the other hand, it is obvious that quent circular arc. A chain is said to blesedif the termination
of the last circular arc is also the origin of the first circular arc,
Aln,g) —nl > {LJ < s 1)> . or openotherwise. The origin and termination of an open chain
£+1 2 C, denoted by(C) andt(C), respectively, are defined as the
Hence, origin of the first arc and the termination of the last arc, respec-

tively. An open chair in a set of arcsi is said to beight with
) <A(n.g)<n 9 + f) respect toA if o(Q) has anega_\tive surplus with respecﬁtqnd

t(C) has a positive surplus with respect4oFor each chaid”,
l thecostof C is the number of nodes ifi; thesizeof C, denoted
9 by |C|, is the number of arcs i€¥. A chain of sizek is called as
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ak-chain. A chain is said to be ardd (or even) chain if its size  Suppose that there af@inmatched arcs ii. Theni < (|A| +
is odd (or even respectively). If the arcs in a chain do not overlag2). These: unmatched arcs formopen (valid) 1-chains ig.
with each other, then the chain is said touadid; otherwise it As the sizes of the other (valid) chains@rare all at least two,
is said to beanvalid. the total number of (valid) chains ihis at most

Any primitive ring generation, with or without splits, induces Al + &
naturally a set of disjoint valid chains. The cost of a primitive |A| —i |A| + 4 |Al +
ring generation is simply the sum of the costs of all these valid? + { 5 J < 5 < 5
chains or, equivalently, the sum of the sizes of all valid chains ]
plus the number of open valid chains. In particular, if all arcs arg'Us; the cost of is at most
not splittable, the cost of any primitive ring generation equals the 4] + <2|A| n g) _ £|A| n

9 3 k
= —|A|+ —.
4| |+4

i < ’ Al+Ek
total number of arcs plus the number of open valid chains; there- 7 S AR "

4~ 4
fore_, an 0_pt_|mal primitive ring gener{mon c_orrespondsto th_e one| e following, we will present five maximal valid chain
having minimal number of open valid chains. Based on this ob- .
4 T : enerations.
servation, a set of primitive rings can be generated in two stages

. . . . 1) Assign First—Reuvisitedlf all arcs inA do not cross over

In the first stage, called aslid chain generationthe arcs are . .
o o O : . .~ some link, say the link frorm — 1 to 0, then the arcs form an
split if splitting is allowed and then grouped into valid chains

in the second stage, called aiid chain coloring these valid Interval graph and the optimal valid chain generation of such

. . S S . _instance can be found in polynomial time. A simple greedy al-
chains are grouped into minimum number of primitive rings, poly pieg y

S b%(%rithm given in [9] works as follows. The arcs are sorted ac-
The second stage only affects the number of primitive rings, . ) : . :
cording to their source endpoints. We then consider each cir-

has no impact on the total cost of these primitive rings. As the S . s
: ; : . cUlar arc one by one in this order. For each circular arc, if it
second stage is the well-studied circular-arc coloring problem . - . .
) can be merged with some existing valid chain to form a larger

we focus only on the first stage. : . i : .
. . . . . valid chain, then merge them; otherwise we create a new valid
In general, the optimal primitive ring generation, with or

without splits, is NP-hard as itis essentially the minimum ADn}t?r:‘:'ggsE;‘S“&%ﬁé)"ggz': igﬁt"larif); gfb‘&‘;”f%t)qeacno dSt of
problem whery = 1. So is the optimal valid chain generation 9 i=0 - OTLTAN, 1A

.. . S . therefore the greedy algorithm is optimal.
In addition, from the discussion in Section Il, a lower bound on he g y aly par _
. ) The assign firstheuristic presented in [9] initially puts each
the minimum cost of a set of arckis . L
circular arc that passes through a carefully selected link into

n—1 a unique 1l-chain. The remaining arcs, which form an interval
Z max{o (i), 7a(i)} = |A| +d(A). graph, are then greedily grouped into valid chains as above. This
i=0 heuristic cannot generate a valid solution in general [13]. In the

This lower bound can also follow from the fact that the totdP!!OWing, we present a modifieassign-first Consider any) <

sizes of all valid chains is at lealst| and the number of open ¢ < 7 LetA; denote the set of arcs passing through the ink
valid chains is at least(A). In this section, we will present e first greedily generate valid chains out of the arcs not,in
five approximation algorithms for optimal valid chain genera\-Ne then_ construgt a weighted b|part|_te graphover 4; and
tion without splits in Subsection A, and one approximation a}he obtained chalr'13 as follgw;: there is an edge between an arc
gorithm for optimal valid chain generation with splits in Sectioff? <} @nd an obtained chain if and only if they do not overlap
III-B. The performance ratios of all these approximation alg@"d share atleast one endpoint; the number of shared endpoints
rithms are analyzed. is set t_o the weight of the edge. We find a maximum-weighted
matching inG;. For each edge in the matching, we merge the arc
A. Unsplittable Arcs and the chain corresponding to the two vertices of the edge into
) _ a larger (valid) chain. The arcs i; that are not in the matching
In this subsection, we assume that all arcs are not allowedtp;,%n each form a unique 1-chain. Let denote the cost of the

be split. A valid chain generation is said tof@ximalif no two  yegyiting (valid) chains. We repeat the above procedure over all
valid chains can be merged to a larger valid chain, i.e., any pgit. ; - ,, and output

of valid chains are either disjoint or overlapping. The following
lemma provides @oarseanalysis of the cost of any maximal a=min{a;: 0 <4 < n}.
valid chain generation.

Lemma 4: The cost of any maximal valid chain generationis o
within 7/4 times of the minimum cost. : .

Proof: Let OPT be any optimal valid chain generation, @ = Z max{ (), Ta(D)} + 2 Al

andC be any maximal valid chain generation. Assume that there
arek odd open (valid) chains i®PT. Then the optimum cost ' US:

It is obvious that

=0

is |A| + k. We call an arsinmatchedn a valid chain generation n-l . . _ .
if it forms a (valid) chain by itself alone. Then out of any two @ < > max{o.(),74(i)} + 2min{|A;]: 0 <4 < n}.
consecutive arcs in any (valid) chain ©fPT', at most one is =0

unmatched irC. Let C be any (valid) chain irOPT. If Cis Therefore, the algorithm uses no more than twice the minimum
closed, then at mog{C|/2] arcs inC are unmatched ig. If link load than the optimum. On the other hand, this algorithm
C is open, then at mog${C| /2] arcs inC are unmatched id. is a maximal valid chain generation, and thus its approximation
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ratio is at most 7/4 from Lemma 4. However, its exact approxit is easy to verify that the chains induced by such matching
mation ratio is still unknown. overlap with each other and thus the algorithm stops. The cost

2) lterative Merging: Initially each valid chain consists of of these three chains is 9, which is 3/2 times of the minimum
one circular arc. At each iteration, one of the following threeost. Therefore, we have the following theorem.

possible operations is performed in decreasing priority. Theorem 7: The approximation ratio of the algorithitera-
Operation 1: Merge two open (valid) chains into a closedive matchings between 3/2 and 5/3.
valid chain. 4) Minimum-Weighted Cycle CoveiVe call a pair of arcs

Operation 2: Split an open (valid) chain into two opencomplementarif they form a closed valid chain. Suppose there
(valid) chains and then merge one of them with another opare two complementary arcsih Then itis routine to verify that

(valid) chain into a closed valid chain. there is an optimal solution in which these two complementary
Operation 3: Merge two open (valid) chains into a largerarcs form a closed chain. Thus we can find the maximal pair of
open valid chain. complementary arcs irk, and form a closed valid chain from

Operation 1 decreases the number of open valid chains dgch pair of complementary arcs. From now on, we assume that
two, and Operation 2 and Operation 3 both decrease the numbepairs of arcs imd are complementary.
of open valid chains by one. Thus, the total number of iterationswWe first construct a weighted directed graphA) over A as
before the algorithm terminates is less than the total numberfolows. The vertex set igl. For any pair of nonoverlapping arcs
arcs. The algorithm is a maximal valid chain generation. Thug, anda., add one link fromu; to . and one link fromus to a; .
its approximation ratio is at most 7/4 from Lemma 4. In the nexf, a; anda- do not share any endpoints, the weights of both links
we will use a bad example to show that the approximation ratie set to two. If the termination endpoint#dé,) = o(a>), the

of the algorithmiterative mergings at least 3/2. weight of the link froma; to a- is set to one and the weight of
Example 5: Letn = 5andA = 4; U A, where the link fromas to a4 is set to two. Ift(as) = o(a;), the weight
of the link froma; to a4 is set to one and the weight of the link
A1 ={(0,1),(1,3),(3,0)} fromay to a» is set to two. In addition, there is one loop link with
Ar ={(0,2),(2,4), (4,0)}. weight two at each arc. We then find a minimum-weighted cycle

. _ . cover of G(A). Note that any valid chain generation induces
Note that the three arcs i, form a closed valid chain, so donaturally a cycle cover whose weight is equal to the cost of the
the three arcs inl,. Thus, the minimum cost jsi| = 6. Onthe yalid chain generation. Thus the weight of the obtained cycle
other hand, the algorithm may output the following three op&iyver is a lower bound of the minimum cost.
valid chains: From each cycle in the minimum-weighted cycle cover, we
remove all links of weight two and obtain a collection of paths.
{(4,0),(0,1)},{(0,2), (2, 9}, {(1,3), (3, 4)}- Each path induces a chain of the original arcs. We split those
The cost of these three chains is 9, which is 3/2 times of tH¥/2lid chains into valid chains. An invalid open chain can be
minimum cost. This example can be scaled to the rings whoddit into valid chains by walking along the chain from the origin
sizes are multiple of five. Thus, the approximation ratio of th@f the chain and generating a valid chain whenever there is an

algorithmiterative mergings at least 3/2. overlap. If the invalid chain is closed, a splitting is conducted by
In summary, we have the following theorem. choosing each node in the chain as the starting point, and then
Theorem 6: The approximation ratio of the algorithitera- the best one is selected to split the chain. ,

tive mergingis between 3/2 and 7/4. It is obvious that the above algorithm has polynomial run-

3) Iterative Matching: Initially each valid chain consists of lime. The algorithm produces a set of valid chains, and thus
one circular arc. At any iteration, we construct a weighted graffi @PProximation ratio is at most 7/4 from Lemma 4. A tighter
over the current set of (valid) chains as follows. There is an edg@@lysis in [2] shows that the approximation ratio is at most 1.6.
between two (valid) chains if and only they do not overlap b thus we haye the following theorem on the performance of the
share at least one endpoint. The weight of an edge is the nun@eve algorithm. o _ _
of endpoints shared by the two (valid) chains incidentto this edge. Theorem 8: The approximation ratio of the algorithm based
We then find amaximumweighted matchinginthe graph. The tvif! Minimum weighted cycle cover is at most 1.6.

(valid) chains incident to each edge in the obtained matching are?) Closed ChainFirst:In this subsection we present yet an-
then merged into alarger (valid) chain. This procedure is repeaféher greedy algorithm, calledosed chain firs{CCF). The al-
until no matching can be found any more. gorithm consists of two phages. In _the flrs_t phasg, the algorlthm

Itis obvious that the algorithm has polynomial run-time. ThEgPeatedly obtains closed valid chalqs untilno vall_d closed _chalr_ls
algorithm is a maximal valid chain generation, and thus has &ff Ieft. In Fhe second phase, a maximum matchmg algorlthm is
approximation ratio of at most 7/4 from Lemma 4. A more conlsed iteratively to reduce the number of valid open chains.
plicated analysis in [2] shows that the approximation ratio is at The first phase applies the following procedure which outputs
most 5/3. On the other hand, the same instance in Exampl@gosed valid chain containing aspecified arc, ifthereis any, from
leads to a 3/2 lower bound on the approximation ratio of the @-Setofarcs’. Leta be any chordity. We build a directed acyclic
gorithmiterative matchingln fact, the first iteration may create 9raph (dag) that consists of only those arcsihatdo not overlap
the following matching over.: with a. Obviously there is a path frotfie) too(«) inthe dag ifand

only if there is a closed valid chain #that contains:. By using
{(4,0),(0,1)},{(0,2),(2,4)},{(1,3),(3,4)}. breadth-firstsearcim the dag, we can obtainapath, ifthereisany,
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from the from¢(a) to o(a). Once this path is obtained, we merge Example 11:Letn = 5 and A = {ay, as, as, a4, as }, with
it with « to obtain a closed valid chain. ar = (0,3), a2 = (3,1), a3 = (1,4), ax = (4,2), and

In the first phase, we start with = A (A is the initial set a3 = (2,0). The optimum without splits is 8, while with splits
of arcs). For every are € S, the procedure from the previousa solution of cost 6 can be obtained by splittinginto «4 and
paragraph is applied to determine if there is a valid closed chaif) at node 0 witht(a3) = o(aj) = 0, and thenz, , as, a§ form
containinga. If a valid closed chain is found, it is output as parbne valid chain and¥, a4, a; form another valid chain.
of the solution, its arcs are removed frd@fnmand we iterate. If  Not only can splits improve the optimum, but with splits we
there is no valid closed chain with arcs frafnwe proceed to can approximate the optimum better. Indeed, we will present a
the second phase. polynomial algorithm with splits that has approximation ratio of

The second phase applies maximum matching algorithm itet-most 5/4. We start by describing a procedure cdlelgrian
atively to group the remaining arcs into open valid chains. Inieunding Let.S be a set of arcs. The Eulerian rounding first adds
tially each open valid chain consists of one red circular arc. Atset ofd(.5) fake arcst’ such that!(S U F') = 0. This can be
any iterative step, we construct a graph over the current seteafsily done by adding one-by-one fake arcs with the origin being
open (valid) chains asfollows. There is an edge between two oenode of positive surplus and the termination being a node of
(valid) chains if and only there do not overlap and share one emakgative surplus, thus each fake arc decreasing the deficiency
point (note that they can share at most one endpoint). We thanone. Now the directed graph with edges) F' is Eulerian.
find the maximum matching in the resulting graph. The two opedhoosing any Eulerian tour and then removing all fake arcs re-
(valid) chains incident to each edge in the obtained maximuwsnlts ind(.S) open chains. Every invalid open chathis then
matching are then merged into a larger open (valid) chain. Thplit at its origin into|I(C)| — 1 closed valid chains and one
procedure is repeated until no matching can be found any moopen valid chain. Every invalid closed chaihis then split into
Then each remaining circular arc forms an open chain by itself(C) valid closed chains.

The algorithm also has polynomial run-time. The algorithm In general, Eulerian rounding cannot guarantee a good perfor-
produces a set of maximal valid chains, and thus has an appra®ance ratio if the arcs have large lengths. To make the Eulerian
mation ratio of at most 7/4 from Lemma 4. A sophisticated analeunding effective, we preprocess the input arcs by forming
ysis in [2] shows that the approximation ratio is at most 3/2alid chains out of arcs as long as possible. Kebe the set
The following example shows that the approximation ratio aff input arcs. Note that if two arcs are complementary, then it is

the proposed algorithm is at least 4/3. easy to verify that there is an optimal solution in which they form
Example 9: Letn = 6, andA = A; U A, U A3z where a closed valid chain. Therefore, we assume thdbes not con-
tain any pair of complementary arcs. We propose the following
A1 ={(0,2),(2,5),(5,0)} algorithm with splits.
A2 ={(0,3),(3,4),(4,0)} « The input is a set of arcd. Initialize i — 1.
A3 ={(1,2),(2,4),(4,1)}. * Phase 1: Whiled contains a closed valid 3-chadf, un-
split the arcs inC, then setC; — C, A — A— C, and
Note that for anyl < ¢ < 3, the three arcs inl; form a closed i— i+ 1.
valid chain. Thus, the minimum costigt = |A| = 9. The al- + Phase 2: Whilei containgtight valid 1-chainC' of length

gorithm we proposed, if unlucky, chooses the closed valid chain  at |east 1/2, find the longest one. Unsplit the ar€irthen
setC; «— C,A«— A—C,andi «— i+ 1.

1(0,2),(2,4), (4, 0)}- » Phase 3: Whiled containgtight valid 2-chainC, find the
The remaining 6 arcs do not contain a closed valid chain. The longest one. Unsplit the arcs i@, then setC; — C,
iterative matching generates three open valid chains A— A—-C, andi «— i+ 1. _
» Phase 4: Do the Eulerian rounding 4f
1(2,5),(5,0)},{(0,3),(3,4)},{(1,2), (4, 1)} It is shown in [2] that the approximation ratio of the above

i , algorithm is at most 5/4. The same instance in Example 9
Thus, the total ADM cost of all these valid chaind 5= (4/3)-  gjows that, even after the practical improvements above, the

opt. This example can be scaled to the rings whose sizes gfg)yimation ratio of the algorithm is at least 10/9. Indeed,

multiples of six. _ the optimum has cost 9. If our algorithm, if unlucky, chooses
In summary, we have the following theorem. the closed chain

Theorem 10:The approximation ratio of the algorithm
closed chain firsts between 4/3 and 3/2. {(0,2),(2,4),(4,0)}

B. Splittable Arcs in phase two, it produces a solution of cost 10.
. . . Theorem 12:The performance ratio of algorithm above is
In this subsection, we assume that each arc is allowed to b

. . i o batween 10/9 and 5/4.
split. We call each input circular arc amiginal arc, and an arc
resulting from splitting an original arc lagment A chain is
said to beunsplitif all arcs in it are original. Obviously, the
optimum with splits is at most the optimum without splits. Ac- Assume that the WDM self-healing ring consistswafiodes
tually, the optimum with splits can be 25% lower, as shown bhyumbered clockwise b§, 1,...,n — 1. For any chora, letc™
the following example. be the circular arc between the two endpoints: tifiat passes

IV. GENERATION OF PRIMITIVE RINGS FROMCHORDS
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through the link between node— 1 and node 0, and lett be
the arc complementary to. We callc~ andc™ the counter-
clockwise and clockwise orientations @frespectively.

As the optimal primitive ring generation from chords is
NP-hard, we will develop two 1.5-approximation algorithms
with or without splits, respectively.

« If the edge is between two chords, orient these two chords
in the unique way to form a valid open chain.

« If the edge is between an open chain and a chord, orient
the chord in the unique way and merge the resulting arc
with the open chain to form a larger valid open chain.

This iteration is repeated until no matching can be found any
more. Then each remaining chord forms an open chain by itself.
By using the similar argument to that to Theorem 10, we can

A. Unsplittable Chords
) ) ) Tprove the following performance of the above algorithm.
In this section, we assume that all chords are unsplittable. hel'heorem 13: The approximation ratio of the chord-version

algorithm we will propose is a modification of the arc-version|ysed chain firsts between 4/3 and 3/2.

closed chain firs{CCF). The chord-version CCF algorithm is

also a greedy two-phased algorithm. In the first phase, the al%).— splittable Chords

rithm repeatedly obtains closed valid chains until no valid closed ] N

chains are left. In the second phase, a maximum matching al-€t < be a set of input chords. Th@greeof a nodei is the
gorithm is used iteratively to reduce the number of valid opdftmber of chords ini that contain nodéas one endpoint. Then
chains. the number of nodes with odd degree is even. Our algorithm

The first phase applies the following procedure which outpuit% the chord-version Eulerian rounding, which is described as
a closed valid chain containing a specified chord, if there is arj§)/OWs-
from a set of chords. Let ¢ be any chord irS. Let St (S, ¢ Step 1 Divide the set of nodes with odd degree into dis-
respectively) be the set of chordsdn- { ¢} whose two endpoints joint pairs. We then add orfakechord between the two

are both inc™ (¢, respectively). LetGF (G, respectively) be
the directed graph with the nodesdh (¢, respectively) as its

vertices and directed edges obtained from orienting the chords*®

in S clockwise (orienting the chords i counterclockwise,
respectively). There is a closed valid chairbithat containg ™
if and only if there is a path between the two endpoints of
GF. Similarly, there is a closed valid chainghthat containg™*

nodes in each pair. Ldf be the set of fake chords. Then
the undirected graph with edgelsuU [ is Eulerian.

Step 2 Choose any Eulerian tour in this undirected graph.
Step 3 This Eulerian tour can be oriented in two opposite
directions, and we choose the one which has shorter total
length of nonfake arcs and break the ties arbitrarily. If there
is no fake arc, go to Step 6.

if and only if there is a path between the two endpoints if » Step 4 Remove all fake arcs from the oriented Eulerian
G . After constructingit andG , such a path, if there is any, tour to get (open) chains.

can be found by breadth-first search. Once this path is obtained,* Step 5For every invalid (open) chai@ output by Step 4,
we addc to it to obtain a closed valid chain. split it into valid chains as follows: for each circular arc

In the first phase, we start with = A (A is the initial set of in C that passes througl{C'), the origin ofP, split it into
chords). For every are € S, the procedure from the previous two arcs
paragraph is applied to determine if there is a valid closed chain
containinge. If a valid closed chain is found, it is output as part
of the solution, its chords are removed fra@imand we iterate.

If there is no valid closed chain with chords fra#hwe proceed
to the second phase.

The second phase applies maximum matching algorithm it-
eratively to group the remaining chords into open valid chains.
Initially the set of open valid chains empty At each iteration,
we construct a graph over the obtained valid open chains and
the remaining chords as follows.

» There is an edge between two open chains if and only if
they do not overlap with each other and share one end-
point. a' = (o(a),i),d” = (i,t(a)).

» There is an edge between two chords if and only if they
share one endpoint. After these splittings, the oriented Eulerian tour is then

 There is an edge between an open chain and a chord ifand decomposed into valid (closed) chains by walking along
only if one endpoint of the chord is the origin or termi- the oriented Eulerian tour from nodend output a valid
nation of the chain and the other endpoint is outside the (closed) chain whenever reaching nad&top the algo-
chain. rithm.

We then find the maximum matching in the graph. For each t js obvious that the algorithm has polynomial run-time and
edge in the obtained maximum matching, we do the followingenerates a set of valid chains. It is shown in [3] that the ap-
processing. proximation ratio of the above algorithm is at most 3/2. The fol-

« If the edge is between two open chains, merge these tloaving example shows that the approximation ratio of the algo-
chains to obtain a larger valid open chain. rithm presented in this section is at least 3/2.

After these splittings, the invalid chaifi is then decom-

posed into valid chains by walking alorg from o(C"),

and output a valid chain whenever reachi{g”). Stop

the algorithm.
« Step 6 Find a node through which the smallest number
of arcs in the oriented Eulerian tour pass. Break the ties
arbitrarily.
Step 7 For any circular are in the oriented Eulerian tour
that passes through split it into two arcs
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Example 14:Let » be odd. Consider the following set ofa restricted ring grooming of at most twice the cost as follows.
chords: Consider a ring grooming consisting df groups of sizes
ki,ko, ..., ke, respectively. Reorder the indices2,...,m
C ={co,c1y. .. 0nos,d, "} such that for each < i < /, theith group consists ofk;

; rimitive rin
where for0 < i < n — 3, the endpoints of; are the nodes P uve M1ngs

and: + 2, the endpoints of’ are 0 and 1, and the endpoints of A
¢ aren — 2 andn — 1. >
The Eulerian tour selected by the algorithm is

J=1 j=1

i—lkj_i_l,AE;;ikj_i_Q,...,Azi kj—l—l}'

Now construct a restricted grooming in which thiegroup con-
1 sists ofg primitive rings

Cpn—3,Cn—>5,---,C0, C/, C1,€3,-..,Cn—4,C .
The chords?, ¢y, cs,...,c,_4,c” are oriented clockwise, and {AgG—1)41, Ag—1)t2, -+ Agi}
the chords:, 3, ¢,—s, . . ., co are oriented counterclockwise. Infor 1 < 4 < [m/g], and the remaining primitive rings, if there
Step 6, node 0 is selected. Then all the agess, ¢, —5,- -, ¢2 s any, form another group. Thus, each group of the original ring
are going to be splitin Step 7, obtaining a solution of cost  grooming is either entirely contained in a group of the restricted
n—3 3(n—1) ring grooming, or split into two subgroups which are contained
n+ 9 2 in two different groups of the restricted ring grooming. There-

fore, the cost of the restricted ring grooming is at most twice the
cost of the original ring grooming.

In general, the minimum ADM cost may not be achieved
by any restricted ring grooming. However, when= 2, such
fminimum ADM cost can be achieved by a restricted ring
grooming. Furthermore, such restricted ring grooming can be
found in polynomial time by a reduction to maximum-weighted
rEerfect matching. The reduction relies on the concephtef-

ection graptof a groupingll. For any collection of setd, its
intersection graphdenoted by&(II), is a weighted graph con-
structed as follows: the vertex setlls an edge exists between
two groupsP’ and@ if and only if | P| + |Q| < g; the weight

An instance of the ring grooming is the grooming granularitgf each edgér, Q) is equal to|(U 4 p 4) N (U 4cq 4. For
g, and a collection of primitive rings represented by a collectiosimplicity, a (perfect) matching off(II) is also simply called
of setsAy, A, ..., A, from the universe{0,1,...,n — 1}. as a (perfect) matching dl. Let I, be the 1-grouping of the
A solution is a partition of the collection of primitive rings (orinput the input primitive rings. Then an optimal solution for
sets) into groups of size at magtA group of sizek is referred ¢ = 2 is to find a maximum-weighted (perfect) matchinglof
to as ak-group. If all groups in a partition ark-groups, the and then groom every matched pair of 1-groups into a 2-group.
partition is referred to as A-grouping. For each group, the This solution achieves not only the minimal total ADM cost,
ADM cost of P is defined by| |, » A|, and the ADM savings but also the least number of grougs(/2]).
of Pisdefinedby}" , . |Al—|U.cp Al The total ADM cost ~ Wheng > 2, both ring grooming and restricted ring
(savings) of a grooming is thus the sum of the costs (savings)asboming are NP-hard. In the following, we assume that
the all groups. The objective is to find a grooming with minimanod ¢ = 0, by adding dummy empty sets if necessary. When
total ADM costs. Note that a grooming with minimal total ADMy is a power of two, we propose the following algorithm called
costs must have maximal total ADM savings, and vice versaiterative matchingfor optimal restricted ring grooming. It

While a ring grooming should have as low ADM cost as posonsists ofog g iterations. Letlly be the original sets. Theh
sible, it is also desirable for a ring grooming to partition théeration starts withll;_;, a 2=*-grouping ofll,, and finds
primitve rings to as few groups as possible so as to minimizemaximum-weightegherfectmatching ofll;. Then for each
the wavelength requirement. A ring grooming is said tortzx- edge in the obtained matching, the two sets incident to the edge
imalif no two groups can be merged into a larger group. One care merged. Thus thigh iteration outputs &'-grouping ofIly,
always convert a ring grooming into a maximal ring groomingenoted byi1;.
of the same or less cost by repeatedly merging any two groupd he above algorithm has polynomial run-time. A trivial upper
whose total size is at mogtinto a larger group. In addition, in bound on its approximation ratio ig/2, which can be proved
any maximal ring grooming, at most one group contdipé2| as follows. For anyl < ¢ < logg, let S; denote the weight
or less primitive rings, and thus the number of groups is at ma¥tthe maximum-weighted perfect matching df. Then it's
1+ [(m/[g/2])] < 2[m/g]. This implies that there always easy to verify that the total savings of tBe-groupingll; is
exists an optimal ring grooming in which the number of groupE;i=1 S; foranyl < ¢ < logg. In particular, the total sav-
is at most twice the leasf+:/g]1). ings of theg-groomingll,,s, output by the iterative matching

Obviously, any ring grooming must contain at le@st/g| is Z}ff S,;. Thus we also refe§; to as the ADM savings at
groups. A ring grooming is said to lrestrictedif it contains theth iteration. We fix an optimal restricted ring grooming in
exactly[m/g] groups. Any ring grooming can be converted tavhich thekth group is{A4;.|1 < i < g} foranyl < k <

since there are chords and. — (3/2) of them are split.

However, an optimum of cost-2 exists: orient all the chords
clockwise and produce two open chairsg;co, . .., c¢,—3 and
d,c1,¢e3,...,cn_4,c”. Therefore, the cost ratio of the outpu
of the algorithm to the optimum i3/2) - (n — 1/n + 2). If we
let » large enough, this ratio gets arbitrarily close to 3/2.

In conclusion, we have the following theorem.

Theorem 15: The approximation ratio of the chord-versio
Eulerian rounding is exactly 3/2.

V. GROOMING OF PRIMITIVE RINGS
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(m/g). Letopt, denote the minimum cost. Then the cost of thBIP-hard. Various approximation algorithms are proposed to
iterative matching is each subproblem, and their performances are analyzed.
There are a number of open issues that are very challenging.

logg m/g 9/2 First of all, the exact approximation ratios of most algorithms
opty — Y Sj<optz <Y D |Aw U Ak, | presented in this paper remain unknown despite that certain
j=2 k=1 j=1 bound obtained in this paper. Second, the overall performance of
g m/g | g g the two-phased approach is still open although the performance
=5 Ap | = 9 optg. of algorithms for each phase has been analyzed. Third, for all
k=1 li=1 the problems studied in this paper, it is unknown whether they

Wheng = 4 and 8, a very sophisticated analysis in [1£
showed tighter bounds on the approximation ratios of the
iterative matching

Theorem 16:The approximation ratio of the iterative
matching for restricted ring grooming is exactly 1.5 when (1
g = 4 and at most 2.5 wheq = 8. 2]

Wheng is greater than 8, [1] made the following conjecture
on the approximation ratio of theerative matching (3l

Conjecture 17: For anyg = 2% with k& > 4, the approxima- [4]
tion ratio of the iterative matching for restricted ring grooming
is at most(g/4) + (1/2).

Theiterative matchingcan be extended for the case thas
not a power of two. The generdérative matchingalgorithm
maintains the group size for each group. The initial grouping
is the 1-grouping of the input primitive rings. At each iteration, (7]
find a maximum-weighted matching in the intersection graph
of the current grouping, merge the two groups incident to each

: 2 . : (8]
edge withnonzeroweight in the obtained matching, and update
the group sizes accordingly. Such an iteration is repeated until
the intersection graphs of the current grouping have no edges[.9
At this moment, we merge the groups by applying any approx-
imation algorithm [6] for the bin-packing problem to reduce [10]
the number of groups used. Note that even whés a power [11]
of two the generalterative matchingcan perform potentially
better than the restrictetrative matchingFor example, if two
groups have empty intersection in an iteration, they are left alon
so that they can be potentially matched with some other group@
[13]

(5]
(6]

in the future to save some ADMSs.

We suggest another algorithm, running in time polynomial in
(m?/g'). We can model the unrestricted ring grooming problemyy 4]
as a set cover problem as follows: the elementd a2e. . . , m,
the sets are thé((mg)?/¢') subsets of1,2,...,m} of size [15]
at mostg, and each seB has cosf|J;. 4;|. A solution to
the ring grooming corresponds to a solution to the set cover
problem we defined, while from a set cover solution we car®!
construct easily a ring grooming solution (which is a partition,
not just a collection of sets) without increasing the cost. Thus wéL7]
can use Chvatal’s algorithm [5] to approximate within a factor
of O(log ¢) this set cover problem. In conclusion, there is an
algorithm for ring grooming with running time polynomial in
m? /¢! and performance rati®(log g).

ave polynomial-time approximation scheme. We would like to
ddress these issues in the future.
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