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Grooming of Arbitrary Traffic in SONET/WDM
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Abstract—SONET add–drop multiplexers (ADMs) are the
dominant cost factor in the SONET/WDM rings. They can
potentially be reduced by optical bypass via optical add–drop
multiplexers (OADMs) and traffic grooming. In this paper we
study the grooming of arbitrary traffic in WDM bidirectional
line-switched rings (BLSRs) so as to minimize the ADM cost. Two
versions of the minimum ADM cost problem are addressed. In
the first version, each traffic stream has a predetermined routing.
In the second version, the routing of each traffic stream is not
given in advance; however, each traffic stream is fully duplex with
symmetric demands, which must be routed along the same path
but in opposite directions. In both versions, we further consider
two variants depending on whether a traffic stream is allowed
to be split at intermediate nodes. All the four combinations are
NP-hard even for any fixed line-speed. General lower bounds
on the minimum ADM cost are provided. Our traffic grooming
follows a two-phased approach. The problem targeted at in each
phase is NP-hard itself, except the second phase when the line
speed is two. Various approximation algorithms are proposed in
both phases, and their approximation ratios are analyzed.

Index Terms—Approximation ratio, grooming, optical, SONET,
WDM.

I. INTRODUCTION

COUPLING wavelength division multiplexing (WDM)
technology with synchronous optical network (SONET)

rings [11] is a very promising network architecture that has
attracted much attention recently [7]–[10], [4], [14], [15].
In this network architecture, each WDM channel carries a
high-speed (e.g., OC-48) SONET ring. Each SONET ring
can further carry a number of low-speed (e.g., OC-3) traffic
streams. The number of the low-speed streams that can be
carried in a SONET ring is referred to as thetraffic granularity,
denote by a parameter. The key terminating equipments are
optical add–drop multiplexers (OADMs) and SONET add/drop
multiplexers (ADMs). Each node is equipped with one OADM.
The OADM can selectively drop wavelengths at a node.
Thus, if a wavelength does not carry any traffic from or to a
particular node, the OADM allows that wavelength to optically
bypass that node rather than being electronically terminated.
Consequently, in each SONET ring a SONET ADM is required
at a node if and only if it carries some traffic terminating at this
node. Therefore, the SONET/WDM ring architecture cannot
only greatly increase the capacity, thereby reducing the amount
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of required fiber and allowing for more graceful upgrades, but
also potentially reduce the amount of required SONET ADMs.
As SONET ADMs typically cost on the order of hundreds of
thousands of dollars, a fundamental bandwidth management
problem is how to route and groom the traffic demands to
minimize the total SONET ADM cost. This problem is referred
to as theminimum ADM cost problem.

In this paper, we assume that the physical ring network is a
bidirectional line-switched ring (BLSR) with either two fiber
rings (i.e., BLSR/2) or four fiber rings (BLSR/4) [10]. All wave-
length channels are assumed to have the same line-speed, de-
noted by . By allowing parallel traffic streams between the
same pair of nodes, each traffic steam is assumed to have aunital
traffic demand. However, each traffic stream can occur between
anyarbitrary pair of nodes, as opposite to the all-to-all traffic
[7], [8], [4], [14], [15], [17] and one-to-all traffic [10], [12], [4],
[14]. Two versions of the minimum ADM cost problem will be
addressed. In the first version, each traffic stream has its prede-
termined routing, such as short-path routing. Thus we can deal
with the two (working) fiber rings separately. In each fiber ring,
a traffic stream can be represented as a (directed) circular arc.
Depending on the implementation, the arcs may or may not be
allowed to be split at intermediate nodes. If the splitting is not
allowed, a valid traffic grooming corresponds to a partition of
into groups of -colorable arcs. If the splitting is allowed, then
a valid traffic grooming consists of a choice of splitting each arc
of , thus obtaining , and then a partition of into groups of
-colorable arcs. In either case, each group of-colorable arcs

can be carried in a wavelength and thus form a logical SONET
ring. This version is referred to as thearc-versionthe minimum
ADM cost problem.

In the second version, the routing of each traffic stream is
not given in advance. However, each traffic stream is fully du-
plex with symmetric (unital) demands, which must be routed
along the same path but in opposite directions. Thus we can
treat the two (working) fiber rings as one (undirected), and each
traffic stream as a (undirected) chord. Similarly, depending on
the implementation, the chords may or may not be allowed to be
split at intermediate nodes. If the splitting is not allowed, a valid
traffic routing and grooming corresponds to a partition ofinto
groups of -colorable chords (a set of chords is said to be-col-
orable if they can be routed as-colorable arcs). If the splitting
is allowed, then a valid traffic routing and grooming consists of
a choice of splitting each chord of, thus obtaining , and then
a partition of into groups of -colorable chords. In either case,
each group of -colorable chords can be carried in a wavelength
and thus form a logical SONET ring. This version is referred to
as thechord-versionminimum ADM cost problem.
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Both versions of the minimum ADM cost problem are
NP-hard when in [12] and [3], respectively. The re-
ductions made in [12] and [3] can be generalized to show the
NP-hardness of both versions for anyfixed constant
(for the arc-version without splits, a proof can be found in
[16]). Due to hardness of this problem, we adopt the following
two-phased approach as did in [16] and [17].

A. Generation of Primitive Rings

In its arc-version, split the arcs as necessary if the splitting is
allowed, and partition the resulting arcs or chords into groups
of nonoverlapping arcs of chords (a set of arcs are said to be
nonoverlappingif their interiors have empty intersection; a set
of chords are said to be nonoverlapping if they can be routed
as nonoverlapping arcs). In its chord version, split the chords as
necessary if the splitting is allowed, and partition the resulting
chords into groups of nonoverlapping chords (a set of chords
are said to benonoverlappingif they can be routed as nonover-
lapping arcs). In both versions, each group of nonoverlapping
arcs or chords in the partition can be arranged in a single ring,
referred to as aprimitive ring. The cost of each primitive ring is
defined as the number of nodes appearing in this primitive ring,
and the cost of a partition is defined as the sum of the costs of all
primitive rings within this partition. The objective in this phase
is then to find a partition with minimum cost.

B. Grooming of Primitive Rings

Partition those primitive rings that are constructed in the first
phase into groups of at mostprimitive rings. Each group then
forms a logical SONET ring. Once again, the ADM cost of each
group or SONET ring is the number of nodes contained in this
group, and the total ADM cost of a partition is the sum of ADM
costs of all groups in this partition. The objective of this phase
is thus to find a partition with the minimum total ADM cost.

Notice that the first phase is essentially the minimum ADM
cost problem with , and thus is NP-hard itself. Especially,
its arc version can be interpreted as the wavelength assignment
to lightpaths to minimize ADMs, which was studied in a series
of papers including [9], [12], [2], [3]. The second phase can be
solved optimally in polynomial time when . However,
for any fixed constraint , [1] proves the NP-hardness
of restricted ring grooming, a grooming of primitive rings with
the constraint that the number of groups of the primitive rings
should be the least. The same reduction used in [1] can be used to
show the NP-hardness of the unrestricted ring grooming for any
fixed constraint . Thus both phases remain challenging.

The remainder of this paper is organized as follows. In Sec-
tion II, we present two lower bounds on the minimum ADM
cost. In Sections III and IV, we provide a number of heuristics
for both versions of generation of primitive rings respectively.
In Section V, we present approximation algorithms for optimal
grooming of primitive rings. Finally we conclude this paper in
Section VI.

II. GENERAL LOWER BOUNDS

One straightforward but rather loose lower bound on the min-
imum ADM cost can be obtained in the following way. We begin

with the arc version. Let be the set of input (clockwise) arcs.
For any node, let denote the total number of arcs in
that originate from node, and denote the total number of
arcs in that terminate at node. Then the node must use at
least

ADMs. Hence, the total ADM cost is at least

This lower bound is a generalization of the one in given in [9]
for .

Now we consider the chord version. Let be the set of
input chords. For any node, let denote the total number
of chords in that contain node as one endpoint. As each
ADM can terminate at most chords, node must use at least

ADMs. Hence the total ADM cost is at least

In the remaining of this section, we develop another lower
bound by calculating themaximum ADM efficiency, as defined
later. We notice that similar lower bounding technique was used
in [4] for only , but no general lower bound was es-
tablished in [4]. The lower bound derived below is general and
applicable to any values of and . Given any two positive in-
tegers and , let denote the maximal number of arcs
with differentendpoint pairs over a ring of nodes whose load
is , and let

Then themaximal ADM efficiencywith line-speed is defined
as

Intuitively, puts an upper bound on the average number of
arcs that can be carried by one ADM. Thus, the total number
of ADMs required by a set of arcs (or chords) with different
endpoint pairs is at least the total number of arcs (or chords
respectively) divided by the .

When is small, can be calculated easily. For example,
when or ,

if

if
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In general, the calculation of relies on the concept of
canonicalset of arcs. A set of arcs with different endpoint pairs
is said to becanonicalif it satisfies the following property: if
an arc of length is in this set, then all arcs of length less than

are also in this set. It is easy to show that any set of arcs over
a ring can be transformed to a canonical set of arcs of thesame
cardinality over the same ring with the same or less load. Thus
there is always a canonical set of arcs over a ring ofnodes
whose load is . A canonical set of arcs can be generated in the
following greedy manner: we first add all arcs of length one,
then we add all arcs of length two, and so on until we cannot
add all arcs of some length; in this case, we add as many arcs
of such length as possible. The following lemma gives the load
of the set of arcs of length no more than.

Lemma 1: For any , the load of all arcs of length
no more than over a ring of size is .

Proof: For any , there are arcs of length .
These arcs of length contribute a load of to each link. Thus
the load contributed to each link by those arcs of length at
most is

Let be the largest integer satisfying that .
If , then the load of all arcs over an -node
ring is no more than , and thereby

Now we assume that . If , then the
load of all arcs of length at most over an -node ring is
exactly , and thereby

If , then is equal to the maximal
number of arcs of length which contribute a load of no
more than to each link. The cumulative link
load contributed by these arcs of length is at most

. As each arc of length contributes a unit load
to links, the total number of such arcs is

On the other hand, it is obvious that

Hence,

TABLE I
MAXIMAL ADM EFFICIENCY WITH VARIOUS LINK CAPACITIES

In particular, when is a multiple of ,

Therefore,

The next lemma summarizes the above discussion.
Lemma 2: For any positive integer, the maximal node effi-

ciency is where is the largest integer satis-
fying that .

Table I lists the values of when 2, 4, 8, and 16.
From Lemma 2, we have the following lower bound on the

minimal ADMs required.
Lemma 3: Let be the line-speed and be any set of arcs

with different endpoint pairs in the arc version (or chords with
different endpoint pairs in the chord version). If the splitting
is not allowed, then the minimum ADM cost of is at least

, where is the largest integer satis-
fying that .

III. GENERATION OFPRIMITIVE RINGS FROMARCS

Assume that the ring network consists ofnodes numbered
clockwise by . An (clockwise) arc is represented
by , where is the origin of and is the
termination of . Thenormalized length, or length in short, of
an arc is defined as the number of links individed by .
Let be any set of arcs. The (normalized) length of, denoted
by , is defined as the sum of the (normalized) lengths of
the arcs in . For any node , the difference between
and , denoted by , is referred to as thesurplusof a
node with respect to . Thedeficiencyof a node with respect
to is . The deficiency of , denoted by

, is defined as the sum of the deficiencies of all nodes with
respect to , i.e., . In all these notations,
the subscripts may be omitted if understood from the context.

A sequence of arcs is called as achain if the termination of
each circular arc (except the last one) is the origin of the subse-
quent circular arc. A chain is said to beclosedif the termination
of the last circular arc is also the origin of the first circular arc,
or openotherwise. The origin and termination of an open chain

, denoted by and , respectively, are defined as the
origin of the first arc and the termination of the last arc, respec-
tively. An open chain in a set of arcs is said to betight with
respect to if has a negative surplus with respect toand

has a positive surplus with respect to. For each chain ,
thecostof is the number of nodes in; thesizeof , denoted
by , is the number of arcs in . A chain of size is called as
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a -chain. A chain is said to be anodd(or even) chain if its size
is odd (or even respectively). If the arcs in a chain do not overlap
with each other, then the chain is said to bevalid; otherwise it
is said to beinvalid.

Any primitive ring generation, with or without splits, induces
naturally a set of disjoint valid chains. The cost of a primitive
ring generation is simply the sum of the costs of all these valid
chains or, equivalently, the sum of the sizes of all valid chains
plus the number of open valid chains. In particular, if all arcs are
not splittable, the cost of any primitive ring generation equals the
total number of arcs plus the number of open valid chains; there-
fore, an optimal primitive ring generation corresponds to the one
having minimal number of open valid chains. Based on this ob-
servation, a set of primitive rings can be generated in two stages.
In the first stage, called asvalid chain generation, the arcs are
split if splitting is allowed and then grouped into valid chains;
in the second stage, called asvalid chain coloring, these valid
chains are grouped into minimum number of primitive rings.
The second stage only affects the number of primitive rings, but
has no impact on the total cost of these primitive rings. As the
second stage is the well-studied circular-arc coloring problem,
we focus only on the first stage.

In general, the optimal primitive ring generation, with or
without splits, is NP-hard as it is essentially the minimum ADM
problem when . So is the optimal valid chain generation.
In addition, from the discussion in Section II, a lower bound on
the minimum cost of a set of arcs is

This lower bound can also follow from the fact that the total
sizes of all valid chains is at least and the number of open
valid chains is at least . In this section, we will present
five approximation algorithms for optimal valid chain genera-
tion without splits in Subsection A, and one approximation al-
gorithm for optimal valid chain generation with splits in Section
III-B. The performance ratios of all these approximation algo-
rithms are analyzed.

A. Unsplittable Arcs

In this subsection, we assume that all arcs are not allowed to
be split. A valid chain generation is said to bemaximalif no two
valid chains can be merged to a larger valid chain, i.e., any pair
of valid chains are either disjoint or overlapping. The following
lemma provides acoarseanalysis of the cost of any maximal
valid chain generation.

Lemma 4: The cost of any maximal valid chain generationis
within 7/4 times of the minimum cost.

Proof: Let be any optimal valid chain generation,
and be any maximal valid chain generation. Assume that there
are odd open (valid) chains in . Then the optimum cost
is . We call an arcunmatchedin a valid chain generation
if it forms a (valid) chain by itself alone. Then out of any two
consecutive arcs in any (valid) chain of , at most one is
unmatched in . Let be any (valid) chain in . If is
closed, then at most arcs in are unmatched in. If

is open, then at most arcs in are unmatched in.

Suppose that there areunmatched arcs in. Then
. These unmatched arcs formopen (valid) 1-chains in.

As the sizes of the other (valid) chains inare all at least two,
the total number of (valid) chains in is at most

Thus, the cost of is at most

In the following, we will present five maximal valid chain
generations.

1) Assign First—Revisited:If all arcs in do not cross over
some link, say the link from to 0, then the arcs form an
interval graph and the optimal valid chain generation of such
instance can be found in polynomial time. A simple greedy al-
gorithm given in [9] works as follows. The arcs are sorted ac-
cording to their source endpoints. We then consider each cir-
cular arc one by one in this order. For each circular arc, if it
can be merged with some existing valid chain to form a larger
valid chain, then merge them; otherwise we create a new valid
chain consisting of only this circular arc. Obviously, the cost of
the resulting (valid) chains is and
therefore the greedy algorithm is optimal.

Theassign firstheuristic presented in [9] initially puts each
circular arc that passes through a carefully selected link into
a unique 1-chain. The remaining arcs, which form an interval
graph, are then greedily grouped into valid chains as above. This
heuristic cannot generate a valid solution in general [13]. In the
following, we present a modifiedassign-first. Consider any

. Let denote the set of arcs passing through the link.
We first greedily generate valid chains out of the arcs not in.
We then construct a weighted bipartite graphover and
the obtained chains as follows: there is an edge between an arc
in and an obtained chain if and only if they do not overlap
and share at least one endpoint; the number of shared endpoints
is set to the weight of the edge. We find a maximum-weighted
matching in . For each edge in the matching, we merge the arc
and the chain corresponding to the two vertices of the edge into
a larger (valid) chain. The arcs in that are not in the matching
then each form a unique 1-chain. Let denote the cost of the
resulting (valid) chains. We repeat the above procedure over all

and output

It is obvious that

Thus,

Therefore, the algorithm uses no more than twice the minimum
link load than the optimum. On the other hand, this algorithm
is a maximal valid chain generation, and thus its approximation
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ratio is at most 7/4 from Lemma 4. However, its exact approxi-
mation ratio is still unknown.

2) Iterative Merging: Initially each valid chain consists of
one circular arc. At each iteration, one of the following three
possible operations is performed in decreasing priority.

Operation 1: Merge two open (valid) chains into a closed
valid chain.

Operation 2: Split an open (valid) chain into two open
(valid) chains and then merge one of them with another open
(valid) chain into a closed valid chain.

Operation 3: Merge two open (valid) chains into a larger
open valid chain.

Operation 1 decreases the number of open valid chains by
two, and Operation 2 and Operation 3 both decrease the number
of open valid chains by one. Thus, the total number of iterations
before the algorithm terminates is less than the total number of
arcs. The algorithm is a maximal valid chain generation. Thus,
its approximation ratio is at most 7/4 from Lemma 4. In the next,
we will use a bad example to show that the approximation ratio
of the algorithmiterative mergingis at least 3/2.

Example 5: Let and where

Note that the three arcs in form a closed valid chain, so do
the three arcs in . Thus, the minimum cost is . On the
other hand, the algorithm may output the following three open
valid chains:

The cost of these three chains is 9, which is 3/2 times of the
minimum cost. This example can be scaled to the rings whose
sizes are multiple of five. Thus, the approximation ratio of the
algorithmiterative mergingis at least 3/2.

In summary, we have the following theorem.
Theorem 6: The approximation ratio of the algorithmitera-

tive mergingis between 3/2 and 7/4.
3) Iterative Matching: Initially each valid chain consists of

one circular arc. At any iteration, we construct a weighted graph
over the current set of (valid) chains as follows. There is an edge
between two (valid) chains if and only they do not overlap but
share at least one endpoint. The weight of an edge is the number
ofendpointssharedby the two(valid)chains incident to thisedge.
Wethenfindamaximumweightedmatchinginthegraph.Thetwo
(valid) chains incident to each edge in the obtained matching are
thenmerged intoa larger (valid) chain.Thisprocedure is repeated
until no matching can be found any more.

It is obvious that the algorithm has polynomial run-time. The
algorithm is a maximal valid chain generation, and thus has an
approximation ratio of at most 7/4 from Lemma 4. A more com-
plicated analysis in [2] shows that the approximation ratio is at
most 5/3. On the other hand, the same instance in Example 5
leads to a 3/2 lower bound on the approximation ratio of the al-
gorithmiterative matching. In fact, the first iteration may create
the following matching over :

It is easy to verify that the chains induced by such matching
overlap with each other and thus the algorithm stops. The cost
of these three chains is 9, which is 3/2 times of the minimum
cost. Therefore, we have the following theorem.

Theorem 7: The approximation ratio of the algorithmitera-
tive matchingis between 3/2 and 5/3.

4) Minimum-Weighted Cycle Cover:We call a pair of arcs
complementaryif they form a closed valid chain. Suppose there
are two complementary arcs in. Then it is routine to verify that
there is an optimal solution in which these two complementary
arcs form a closed chain. Thus we can find the maximal pair of
complementary arcs in , and form a closed valid chain from
each pair of complementary arcs. From now on, we assume that
no pairs of arcs in are complementary.

We first construct a weighted directed graph over as
follows. The vertex set is . For any pair of nonoverlapping arcs

and , add one link from to and one link from to .
If and do not share any endpoints, the weights of both links
are set to two. If the termination endpoint of , the
weight of the link from to is set to one and the weight of
the link from to is set to two. If , the weight
of the link from to is set to one and the weight of the link
from to is set to two. In addition, there is one loop link with
weight two at each arc. We then find a minimum-weighted cycle
cover of . Note that any valid chain generation induces
naturally a cycle cover whose weight is equal to the cost of the
valid chain generation. Thus the weight of the obtained cycle
cover is a lower bound of the minimum cost.

From each cycle in the minimum-weighted cycle cover, we
remove all links of weight two and obtain a collection of paths.
Each path induces a chain of the original arcs. We split those
invalid chains into valid chains. An invalid open chain can be
split into valid chains by walking along the chain from the origin
of the chain and generating a valid chain whenever there is an
overlap. If the invalid chain is closed, a splitting is conducted by
choosing each node in the chain as the starting point, and then
the best one is selected to split the chain.

It is obvious that the above algorithm has polynomial run-
time. The algorithm produces a set of valid chains, and thus
its approximation ratio is at most 7/4 from Lemma 4. A tighter
analysis in [2] shows that the approximation ratio is at most 1.6.
Thus we have the following theorem on the performance of the
above algorithm.

Theorem 8: The approximation ratio of the algorithm based
on minimum weighted cycle cover is at most 1.6.

5) Closed ChainFirst: In this subsection we present yet an-
other greedy algorithm, calledclosed chain first(CCF). The al-
gorithm consists of two phases. In the first phase, the algorithm
repeatedlyobtainsclosedvalidchainsuntilnovalidclosedchains
are left. In the second phase, a maximum matching algorithm is
used iteratively to reduce the number of valid open chains.

The first phase applies the following procedure which outputs
aclosedvalidchaincontainingaspecifiedarc, if there isany, from
a setofarcs .Let be anychord in . We builda directedacyclic
graph(dag) thatconsistsofonly thosearcs inthatdonotoverlap
with .Obviously there isapath from to in thedag if and
only if there is a closed valid chain inthat contains . By using
breadth-firstsearchin thedag,wecanobtainapath, if there isany,
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from the from to . Once this path is obtained, we merge
it with to obtain a closed valid chain.

In the first phase, we start with ( is the initial set
of arcs). For every arc , the procedure from the previous
paragraph is applied to determine if there is a valid closed chain
containing . If a valid closed chain is found, it is output as part
of the solution, its arcs are removed from, and we iterate. If
there is no valid closed chain with arcs from, we proceed to
the second phase.

The second phase applies maximum matching algorithm iter-
atively to group the remaining arcs into open valid chains. Ini-
tially each open valid chain consists of one red circular arc. At
any iterative step, we construct a graph over the current set of
open(valid) chainsas follows.There isanedgebetweentwoopen
(valid) chains if and only there do not overlap and share one end-
point (note that they can share at most one endpoint). We then
find the maximum matching in the resulting graph. The two open
(valid) chains incident to each edge in the obtained maximum
matching are then merged into a larger open (valid) chain. This
procedure is repeated until no matching can be found any more.
Then each remaining circular arc forms an open chain by itself.

The algorithm also has polynomial run-time. The algorithm
produces a set of maximal valid chains, and thus has an approxi-
mation ratio of at most 7/4 from Lemma 4. A sophisticated anal-
ysis in [2] shows that the approximation ratio is at most 3/2.
The following example shows that the approximation ratio of
the proposed algorithm is at least 4/3.

Example 9: Let , and where

Note that for any , the three arcs in form a closed
valid chain. Thus, the minimum cost is . The al-
gorithm we proposed, if unlucky, chooses the closed valid chain

The remaining 6 arcs do not contain a closed valid chain. The
iterative matching generates three open valid chains

Thus, the total ADM cost of all these valid chains is
. This example can be scaled to the rings whose sizes are

multiples of six.
In summary, we have the following theorem.
Theorem 10:The approximation ratio of the algorithm

closed chain firstis between 4/3 and 3/2.

B. Splittable Arcs

In this subsection, we assume that each arc is allowed to be
split. We call each input circular arc anoriginal arc, and an arc
resulting from splitting an original arc afragment. A chain is
said to beunsplit if all arcs in it are original. Obviously, the
optimum with splits is at most the optimum without splits. Ac-
tually, the optimum with splits can be 25% lower, as shown by
the following example.

Example 11: Let and , with
, , , , and

. The optimum without splits is 8, while with splits
a solution of cost 6 can be obtained by splittinginto and

at node 0 with , and then form
one valid chain and form another valid chain.

Not only can splits improve the optimum, but with splits we
can approximate the optimum better. Indeed, we will present a
polynomial algorithm with splits that has approximation ratio of
at most 5/4. We start by describing a procedure calledEulerian
rounding. Let be a set of arcs. The Eulerian rounding first adds
a set of fake arcs such that . This can be
easily done by adding one-by-one fake arcs with the origin being
a node of positive surplus and the termination being a node of
negative surplus, thus each fake arc decreasing the deficiency
by one. Now the directed graph with edges is Eulerian.
Choosing any Eulerian tour and then removing all fake arcs re-
sults in open chains. Every invalid open chainis then
split at its origin into closed valid chains and one
open valid chain. Every invalid closed chainis then split into

valid closed chains.
In general, Eulerian rounding cannot guarantee a good perfor-

mance ratio if the arcs have large lengths. To make the Eulerian
rounding effective, we preprocess the input arcs by forming
valid chains out of arcs as long as possible. Letbe the set
of input arcs. Note that if two arcs are complementary, then it is
easy to verify that there is an optimal solution in which they form
a closed valid chain. Therefore, we assume thatdoes not con-
tain any pair of complementary arcs. We propose the following
algorithm with splits.

• The input is a set of arcs. Initialize .
• Phase 1: While contains a closed valid 3-chain, un-

split the arcs in , then set , , and
.

• Phase 2: While containstight valid 1-chain of length
at least 1/2, find the longest one. Unsplit the arc in, then
set , , and .

• Phase 3: While containstight valid 2-chain , find the
longest one. Unsplit the arcs in, then set ,

, and .
• Phase 4: Do the Eulerian rounding of.

It is shown in [2] that the approximation ratio of the above
algorithm is at most 5/4. The same instance in Example 9
shows that, even after the practical improvements above, the
approximation ratio of the algorithm is at least 10/9. Indeed,
the optimum has cost 9. If our algorithm, if unlucky, chooses
the closed chain

in phase two, it produces a solution of cost 10.
Theorem 12:The performance ratio of algorithm above is

between 10/9 and 5/4.

IV. GENERATION OFPRIMITIVE RINGS FROMCHORDS

Assume that the WDM self-healing ring consists ofnodes
numbered clockwise by . For any chord , let
be the circular arc between the two endpoints ofthat passes
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through the link between node and node 0, and let be
the arc complementary to . We call and the counter-
clockwise and clockwise orientations of, respectively.

As the optimal primitive ring generation from chords is
NP-hard, we will develop two 1.5-approximation algorithms
with or without splits, respectively.

A. Unsplittable Chords

In this section, we assume that all chords are unsplittable. The
algorithm we will propose is a modification of the arc-version
closed chain first(CCF). The chord-version CCF algorithm is
also a greedy two-phased algorithm. In the first phase, the algo-
rithm repeatedly obtains closed valid chains until no valid closed
chains are left. In the second phase, a maximum matching al-
gorithm is used iteratively to reduce the number of valid open
chains.

The first phase applies the following procedure which outputs
a closed valid chain containing a specified chord, if there is any,
from a set of chords . Let be any chord in . Let ( ,
respectively) be the set of chords in whose two endpoints
are both in ( , respectively). Let ( , respectively) be
the directed graph with the nodes in ( , respectively) as its
vertices and directed edges obtained from orienting the chords
in clockwise (orienting the chords in counterclockwise,
respectively). There is a closed valid chain inthat contains
if and only if there is a path between the two endpoints ofin

. Similarly, there is a closed valid chain inthat contains
if and only if there is a path between the two endpoints ofin

. After constructing and , such a path, if there is any,
can be found by breadth-first search. Once this path is obtained,
we add to it to obtain a closed valid chain.

In the first phase, we start with ( is the initial set of
chords). For every arc , the procedure from the previous
paragraph is applied to determine if there is a valid closed chain
containing . If a valid closed chain is found, it is output as part
of the solution, its chords are removed from, and we iterate.
If there is no valid closed chain with chords from, we proceed
to the second phase.

The second phase applies maximum matching algorithm it-
eratively to group the remaining chords into open valid chains.
Initially the set of open valid chains isempty. At each iteration,
we construct a graph over the obtained valid open chains and
the remaining chords as follows.

• There is an edge between two open chains if and only if
they do not overlap with each other and share one end-
point.

• There is an edge between two chords if and only if they
share one endpoint.

• There is an edge between an open chain and a chord if and
only if one endpoint of the chord is the origin or termi-
nation of the chain and the other endpoint is outside the
chain.

We then find the maximum matching in the graph. For each
edge in the obtained maximum matching, we do the following
processing.

• If the edge is between two open chains, merge these two
chains to obtain a larger valid open chain.

• If the edge is between two chords, orient these two chords
in the unique way to form a valid open chain.

• If the edge is between an open chain and a chord, orient
the chord in the unique way and merge the resulting arc
with the open chain to form a larger valid open chain.

This iteration is repeated until no matching can be found any
more. Then each remaining chord forms an open chain by itself.

By using the similar argument to that to Theorem 10, we can
prove the following performance of the above algorithm.

Theorem 13:The approximation ratio of the chord-version
closed chain firstis between 4/3 and 3/2.

B. Splittable Chords

Let be a set of input chords. Thedegreeof a node is the
number of chords in that contain nodeas one endpoint. Then
the number of nodes with odd degree is even. Our algorithm
is the chord-version Eulerian rounding, which is described as
follows.

• Step 1: Divide the set of nodes with odd degree into dis-
joint pairs. We then add onefakechord between the two
nodes in each pair. Let be the set of fake chords. Then
the undirected graph with edges is Eulerian.

• Step 2: Choose any Eulerian tour in this undirected graph.
• Step 3: This Eulerian tour can be oriented in two opposite

directions, and we choose the one which has shorter total
length of nonfake arcs and break the ties arbitrarily. If there
is no fake arc, go to Step 6.

• Step 4: Remove all fake arcs from the oriented Eulerian
tour to get (open) chains.

• Step 5: For every invalid (open) chain output by Step 4,
split it into valid chains as follows: for each circular arc
in that passes through , the origin of , split it into
two arcs

After these splittings, the invalid chain is then decom-
posed into valid chains by walking along from ,
and output a valid chain whenever reaching . Stop
the algorithm.

• Step 6: Find a node through which the smallest number
of arcs in the oriented Eulerian tour pass. Break the ties
arbitrarily.

• Step 7: For any circular arc in the oriented Eulerian tour
that passes through, split it into two arcs

After these splittings, the oriented Eulerian tour is then
decomposed into valid (closed) chains by walking along
the oriented Eulerian tour from nodeand output a valid
(closed) chain whenever reaching node. Stop the algo-
rithm.

It is obvious that the algorithm has polynomial run-time and
generates a set of valid chains. It is shown in [3] that the ap-
proximation ratio of the above algorithm is at most 3/2. The fol-
lowing example shows that the approximation ratio of the algo-
rithm presented in this section is at least 3/2.
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Example 14: Let be odd. Consider the following set of
chords:

where for , the endpoints of are the nodes
and , the endpoints of are 0 and 1, and the endpoints of

are and .
The Eulerian tour selected by the algorithm is

The chords are oriented clockwise, and
the chords are oriented counterclockwise. In
Step 6, node 0 is selected. Then all the arcs
are going to be split in Step 7, obtaining a solution of cost

since there are chords and of them are split.
However, an optimum of cost exists: orient all the chords

clockwise and produce two open chains: and
. Therefore, the cost ratio of the output

of the algorithm to the optimum is . If we
let large enough, this ratio gets arbitrarily close to 3/2.

In conclusion, we have the following theorem.
Theorem 15:The approximation ratio of the chord-version

Eulerian rounding is exactly 3/2.

V. GROOMING OFPRIMITIVE RINGS

An instance of the ring grooming is the grooming granularity
, and a collection of primitive rings represented by a collection

of sets from the universe .
A solution is a partition of the collection of primitive rings (or
sets) into groups of size at most. A group of size is referred
to as a -group. If all groups in a partition are-groups, the
partition is referred to as a-grouping. For each group, the
ADM cost of is defined by , and the ADM savings
of is defined by . The total ADM cost
(savings) of a grooming is thus the sum of the costs (savings) of
the all groups. The objective is to find a grooming with minimal
total ADM costs. Note that a grooming with minimal total ADM
costs must have maximal total ADM savings, and vice versa.

While a ring grooming should have as low ADM cost as pos-
sible, it is also desirable for a ring grooming to partition the
primitve rings to as few groups as possible so as to minimize
the wavelength requirement. A ring grooming is said to bemax-
imal if no two groups can be merged into a larger group. One can
always convert a ring grooming into a maximal ring grooming
of the same or less cost by repeatedly merging any two groups
whose total size is at mostinto a larger group. In addition, in
any maximal ring grooming, at most one group contains
or less primitive rings, and thus the number of groups is at most

. This implies that there always
exists an optimal ring grooming in which the number of groups
is at most twice the least ( ).

Obviously, any ring grooming must contain at least
groups. A ring grooming is said to berestrictedif it contains
exactly groups. Any ring grooming can be converted to

a restricted ring grooming of at most twice the cost as follows.
Consider a ring grooming consisting of groups of sizes

, respectively. Reorder the indices
such that for each , the th group consists of
primitive rings

Now construct a restricted grooming in which theth group con-
sists of primitive rings

for , and the remaining primitive rings, if there
is any, form another group. Thus, each group of the original ring
grooming is either entirely contained in a group of the restricted
ring grooming, or split into two subgroups which are contained
in two different groups of the restricted ring grooming. There-
fore, the cost of the restricted ring grooming is at most twice the
cost of the original ring grooming.

In general, the minimum ADM cost may not be achieved
by any restricted ring grooming. However, when , such
minimum ADM cost can be achieved by a restricted ring
grooming. Furthermore, such restricted ring grooming can be
found in polynomial time by a reduction to maximum-weighted
perfect matching. The reduction relies on the concept ofinter-
section graphof a grouping . For any collection of sets , its
intersection graph, denoted by , is a weighted graph con-
structed as follows: the vertex set is; an edge exists between
two groups and if and only if ; the weight
of each edge is equal to . For
simplicity, a (perfect) matching of is also simply called
as a (perfect) matching of . Let be the 1-grouping of the
input the input primitive rings. Then an optimal solution for

is to find a maximum-weighted (perfect) matching of
and then groom every matched pair of 1-groups into a 2-group.
This solution achieves not only the minimal total ADM cost,
but also the least number of groups ( ).

When , both ring grooming and restricted ring
grooming are NP-hard. In the following, we assume that
mod , by adding dummy empty sets if necessary. When

is a power of two, we propose the following algorithm called
iterative matchingfor optimal restricted ring grooming. It
consists of iterations. Let be the original sets. Theth
iteration starts with , a -grouping of , and finds
a maximum-weightedperfectmatching of . Then for each
edge in the obtained matching, the two sets incident to the edge
are merged. Thus theth iteration outputs a -grouping of ,
denoted by .

The above algorithm has polynomial run-time. A trivial upper
bound on its approximation ratio is , which can be proved
as follows. For any , let denote the weight
of the maximum-weighted perfect matching of. Then it’s
easy to verify that the total savings of the-grouping is

for any . In particular, the total sav-
ings of the -grooming output by the iterative matching
is . Thus we also refer to as the ADM savings at
the th iteration. We fix an optimal restricted ring grooming in
which the th group is for any
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. Let denote the minimum cost. Then the cost of the
iterative matching is

When and 8, a very sophisticated analysis in [1]
showed tighter bounds on the approximation ratios of the
iterative matching.

Theorem 16:The approximation ratio of the iterative
matching for restricted ring grooming is exactly 1.5 when

and at most 2.5 when .
When is greater than 8, [1] made the following conjecture

on the approximation ratio of theiterative matching.
Conjecture 17: For any with , the approxima-

tion ratio of the iterative matching for restricted ring grooming
is at most .

The iterative matchingcan be extended for the case thatis
not a power of two. The generaliterative matchingalgorithm
maintains the group size for each group. The initial grouping
is the 1-grouping of the input primitive rings. At each iteration,
find a maximum-weighted matching in the intersection graph
of the current grouping, merge the two groups incident to each
edge withnonzeroweight in the obtained matching, and update
the group sizes accordingly. Such an iteration is repeated until
the intersection graphs of the current grouping have no edges.
At this moment, we merge the groups by applying any approx-
imation algorithm [6] for the bin-packing problem to reduce
the number of groups used. Note that even whenis a power
of two the generaliterative matchingcan perform potentially
better than the restrictediterative matching. For example, if two
groups have empty intersection in an iteration, they are left alone
so that they can be potentially matched with some other groups
in the future to save some ADMs.

We suggest another algorithm, running in time polynomial in
. We can model the unrestricted ring grooming problem

as a set cover problem as follows: the elements are ,
the sets are the subsets of of size
at most , and each set has cost . A solution to
the ring grooming corresponds to a solution to the set cover
problem we defined, while from a set cover solution we can
construct easily a ring grooming solution (which is a partition,
not just a collection of sets) without increasing the cost. Thus we
can use Chvatal’s algorithm [5] to approximate within a factor
of this set cover problem. In conclusion, there is an
algorithm for ring grooming with running time polynomial in

and performance ratio .

VI. CONCLUSION

This paper addresses the traffic grooming of arbitrary traffic
in SONET/WDM rings. We first prove the NP-hardness of this
problem. We then present two general lower bounds on the min-
imum ADM cost. After that we decompose the minimum ADM
cost problem into two subproblems. Both subproblems remain

NP-hard. Various approximation algorithms are proposed to
each subproblem, and their performances are analyzed.

There are a number of open issues that are very challenging.
First of all, the exact approximation ratios of most algorithms
presented in this paper remain unknown despite that certain
bound obtained in this paper. Second, the overall performance of
the two-phased approach is still open although the performance
of algorithms for each phase has been analyzed. Third, for all
the problems studied in this paper, it is unknown whether they
have polynomial-time approximation scheme. We would like to
address these issues in the future.
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