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ABSTRACT
�e rapid increase of medical literature poses a signi�cant challenge
for physicians, who have repeatedly reported to struggle to keep
up to date with developments in research. �is gap is one of the
main challenges in integrating recent advances in clinical research
with day-to-day practice. �us, the need for clinical decision sup-
port (CDS) search systems that can retrieve highly relevant medical
literature given a clinical note describing a patient has emerged.
However, clinical notes are inherently noisy, thus not being �t to
be used as queries as-is. In this work, we present a convolutional
neural model aimed at improving clinical notes representation, mak-
ing them suitable for document retrieval. �e system is designed
to predict, for each clinical note term, its importance in relevant
documents. �e approach was evaluated on the 2016 TREC CDS
dataset, where it achieved a 37% improvement in infNDCG over
state-of-the-art query reduction methods and a 27% improvement
over the best known method for the task.
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1 INTRODUCTION & RELATEDWORK
�e amount of biomedical literature available to health experts
has increased dramatically in the last few years. For example, the
number of articles in PubMed1, one of the largest repositories of
biomedical literature, grows by approximately 1 million documents
each year2. �is growth is both a blessing and a curse for the
medical community: while it enables cu�ing-edge clinical practices
such as evidence-based medicine, it also represents a new set of

1h�ps://www.ncbi.nlm.nih.gov/pubmed/
2h�ps://www.nlm.nih.gov/bsd/licensee/baselinestats.html
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challenges for health professionals, who o�en struggle to keep
up-to-date with current literature [8].

�e interest in clinical decision support (CDS) search systems
that could assist physicians in reviewing relevant literature to their
clinical practice has been growing in recent years. Such systems are
designed to retrieve relevant medical literature given a clinical note
describing the conditions of a patient. Since 2014, the TREC CDS
shared task3 has been running as a mean to accelerate research for
this application. Several approaches have been proposed to improve
CDS search, focusing mostly on query expansion either through
domain speci�c resources (e.g., [7]), pseudo relevance feedback
(e.g., [9]), or a combination of the two (e.g., [1, 14, 16]). While
CDS TREC 2014 and 2015 relied on �ctional clinical descriptions
created by health experts, the TREC 2016 dataset [12] provided real
clinical notes as search topics. Compared with �ctitious clinical
descriptions, raw clinical notes present additional challenges for
CDS systems, due to “terse language and heavy use of abbreviations
and clinical jargon” [12].

In this work, we argue that query reduction techniques that
address such challenges ought to be studied, as they improve CDS
search by enabling the use of real clinical notes as queries. In
particular, we propose a convolutional neural model that is able to
predict, for each term in the clinical note, its importance in relevant
documents. To do so, it employs several convolutional �lters to
learn local interactions between terms appearing in clinical notes.
Predicted importance is then used to weight terms at retrieval time.

Several domain-agnostic query reduction techniques have been
proposed throughout the years. For example, Kumaran and Car-
valho [6] introduced a learning to rank approach to �nd the best
sub-query using a series of clarity predictors and similarity mea-
sures as features. Bendersky et al. [2] used a supervised method
for identifying key concepts in long queries, assigning di�erent
weights to concepts extracted from the query. While such tech-
niques are not explicitly designed to handle very long and verbose
queries, such as the clinical notes in our dataset, we use them as
baseline for the approach presented in this work. In the medical
domain, the closest e�orts to this work are medical concepts or
temporal information extraction from clinical notes (e.g., [3, 15]).
However, as noted in [1, 14] and further con�rmed in this work,
medical concepts alone are not su�cient to express the information
need in CDS search, thus justifying our approach.

2 METHODOLOGY
Similar to the work of Kumaran and Carvalho [6] and Bendersky
et al. [2], the approach proposed in this paper is designed to predict,

3h�p://trec-cds.appspot.com/
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Figure 1: Diagram of the proposed convolutional neural
model (CNN).�e term being evaluated is “requiring”, while
the context is “dropped slightly requiring blood transfusion”.

for each term in a clinical note, a coe�cient that encodes its impor-
tance. However, unlike these approaches, we do not use heuristics
to select informative query terms, nor we rely on feature engineer-
ing to train our supervised method; rather, we use a convolutional
neural network (CNN) to directly estimate the importance of each
query term by learning from terms in its proximity. Our approach
is described in Section 2.1.

To train our model, we use the same strategy employed by pair-
wise learning to rank methods: given a query, a relevant document
for the query, and a non-relevant document for the query, we �rst
use the CNN to determine the weights of terms in the query; then,
using these weights, we derive the scores of the two documents;
�nally, we backpropagate a positive loss if the non-relevant docu-
ment is scored higher than the relevant document. A more detailed
description of the learning strategy is provided in Section 2.2.

2.1 Neural model topology
As previously mentioned, we used a CNN to capture local interac-
tions between terms in clinical notes. On a high level, our system
includes several convolution �lters of di�erent sizes to exploit in-
teractions between terms in the proximity of each query term; the
output of the �lters is then reduced to a dense vector, which we
refer to as context representation Ĉi . �e context representation of
each term is then concatenated with a term representation vector
x̂i and used to derive the importance value �i for each term in the
query. A visual overview of the system is presented in Figure 1.
Term representation x̂i : For each query q = {q1, ..,qn }, we �rst
obtain its dense representation x = {x1, ..,xn }. Two source of evi-
dence were used to obtain, for each term qi , its word embedding
xi : GloVe vectors [10] pre-trained on the common crawl corpus4
and SkipGram vectors pre-trained on PubMed5. We found that
concatenating domain-speci�c with domain-agnostic embeddings
yielded the best results; this is consistent with �ndings in other
neural clinical applications [11]. We preserved the case of terms
when obtaining word embeddings: this ensures that medical abbre-
viations, which are o�en capitalized, are properly captured. In order
to reduce the dimensionality, the system learns a task dependent
representation of the term feature xi through a dense layer with
ReLU activation function, which we denote as x̂i .

4h�p://commoncrawl.org
5h�ps://github.com/cambridgeltl/BioNLP-2016/

Context representation Ĉi : For each term qi in query Æq, we de-
�ne the context of qi as the c terms preceding qi and the c terms
following it. In other words, the context of qi consists of the terms
appearing in a window of size 2c + 1 centered in qi . For each query
term qi , we stack the word embeddings (obtained as described
above under “term representation”) of the terms in its context to
obtain the context matrix Ci = {xi�c , ..,xi , ..,xi+c }. If less than c
terms precede qi or less than c terms follow it, we padCi with zeros
in order to keep its size consistent with other context matrices.

We chose to de�ne context as the terms appearing in window
around each query term, rather than the entire clinical note, as we
argue that terms in close proximity to each other contain strong
signals that can be used to estimate term relevance, while con-
sidering a larger window would add unnecessary noise. Results
supporting this observation are presented in Section 4.2. Overall,
the approach used to obtain a representation of the context of a
term was modeled a�er the architecture proposed by Severyn and
Moschi�i [13] to predict similarity between short documents.

To obtain the context representation Ĉi , we use convolutional
�lters of size k = 2, 3, 4, and 5, as proposed in [4]. �is approach
allows to capture local features with di�erent granularities. �e
convolution layer produces (c � 2bk/2c) features per �lter per size
(stride size was kept at 1). We indicate the number of �lters used for
each size as h; we use the same number of �lters for each �lter size.
To reduce dimensionality, we transform each �lter using a max
pooling layer of size k and stride bk/2c (i.e., from size 2 and stride 1
for k = 2 to size 5 and stride 2 for k = 5). Finally, a�er �a�ening and
merging all �lters, compact context representation Ĉi,c is obtained
through a dense layer with ReLU activation function.

We combine term representation x̂i and context representation
Ĉi by concatenation (Figure 1). �e resulting layer is �rst encoded
using an intermediate hidden layer with ReLU activation function;
then, the predicted importance value �i for term qi is obtained
by linearly combining the output of the hidden layer, as typically
done for regression networks. For simplicity, we will use the no-
tation �� (Æq) = {�1, . . . ,�n }> to indicate the vector of predicted
importance values for terms in Æq by the model with weights � .

2.2 Learning strategy
In order to learn to predict the importance �i of each query term qi ,
we train our model using triples hÆq, Æd+, Æd�i, where Æd+ is a relevant
document for the query, and Æd� is a non-relevant document for
the query. In particular, we proceeded as follows: let Sim( Æd, Æq) be a
function that estimates the similarity of document Æd with query Æq.
Many similarity functions used in information retrieval (including
BM25, which we used in our experiments), are linear with respect
to query term coe�cients, i.e., they can be wri�en as:

Sim( Æd, Æq) = w( Æd, Æq) · 1n (1)

where n is the length of query Æq, w( Æd, Æq) is a vector of size 1 ⇥ n
whose elements are the weight of each query term with respect to
document Æd , and 1n is a all-ones vector of size n ⇥ 1.

In the method we propose, the predicted importance values for
terms in Æq are integrated in the similarity function as follows:

Sim( Æd, Æq) = w( Æd, Æq) · �� (Æq) (2)

http://commoncrawl.org
https://github.com/cambridgeltl/BioNLP-2016/


Figure 2: Probability density function of likelihood of being
relevant for query terms in the 2014 (blue dashes & dots),
2015 (green dashes), and 2016 (solid red) datasets. Since the
distributions are comparable, we augment the training set
with the 2014 and 2015 datasets.

Leveraging this notation, we can �nally de�ne a pairwise max
margin loss function with respect to the training triple hÆq, Æd+, Æd�i
and model weights � :

L� (Æq, Æd+, Æd�) = max
⇣
0, 1 �w( Æd�, Æq)�� (Æq) +w( Æd+, Æq)�� (Æq)

⌘
(3)

We combine the loss function de�ned in Equation 3 with a reg-
ularizing function designed to prevent the model from assigning
negative importance to query terms:

O(Æq, Æd+, Æd�;� ) = L� (Æq, Æd+, Æd�) +
Õ
�i 2�� (Æq)min(0,�i )2 (4)

We train the proposed model by minimizing this objective function.

3 EXPERIMENTAL SETUP
3.1 Dataset
We studied the e�ectiveness of the proposed method on the 2016
TREC CDS dataset [12]. It is comprised of 30 topics (each containing
a clinical note), 1.25 million articles from the open access subset of
PubMed Central6, and 28,349 documents whose relevancy to topics
have been assessed. On average, clinical notes in this dataset have
a length of 184 terms and a median of 188; for each note, an average
of 182 documents were found to be relevant (median: 119).

Because of the limited amount of training data proved by the
2016 TREC CDS dataset, we expanded the training set using �cti-
tious clinical descriptions from previous years’ collections. While
descriptions are substantially shorter than actual clinical notes (av-
erage length: 81 terms), the distribution of query terms that are
likely to appear in relevant documents is su�ciently similar to the
one of query terms in the clinical notes dataset (Figure 2); the likeli-
hood of a query term being relevant was de�ned as the probability
of appearing in relevant documents for a query over the probability
of appearing in non-relevant documents for the query.

3.2 Model training
We partition the 2016 dataset in training, development, and test
sets. �e system was evaluated under three-fold cross validation by
rotating the subsets. For all three runs, the training set was always
expanded using the 2014 and 2015 TREC CDS datasets.

Optimal model topology was determined through empirical eval-
uation on the development set. �e size of the context and term
representation layers was set to 128, while the size of the hidden
layer was set to 64. To prevent over-��ing, outputs of all layers
(except the last one) were regularized using batch normalization;
batch size was set to 32. A 30% dropout was also applied at training
6h�ps://www.ncbi.nlm.nih.gov/pmc/tools/open�list/

�ery reduction approach
TREC CDS 2016

infNDCG P@10

ba
se
lin

es

i No query reduction 0.1138 0.1967
ii idf �lter 0.1312 0.2067
iii UMLS medical concepts �lter 0.1580 0.2400
iv Wikipedia medical concepts �lter 0.1670 0.2300

st
.o

ft
he

ar
t v QQP [6] 0.1312 0.2133

vi Health-QQP [14] 0.1520 0.2433
vii PCW [2] 0.1833 0.2900
viii NKU [18] (best at CDS TREC 2016) 0.1978 0.2900
ix CNN (this work) 0.2518 0.3167

Table 1: Performance of the proposed approach (ix), several
baselines (i to iv), and state of the art methods (v-viii) on the
TREC CDS 2016 dataset. �e proposed method (ix) shows
statistically signi�cant improvements over all other meth-
ods (paired Student t-test, p < 0.05).

time to the input of all layers denoted by a dashed line in Figure 1.
As illustrated in Section 4.2, we experimented with several �lter
sizes k ; the number of �lters per size was set to h = 256.

�e model was trained using the Adagrad optimizer [5]. Each
fold was trained until no improvement in infNDCG was achieved
on the development set for 30 epochs (at the end of training, the
model was rolled back to the last iteration with improvement).

4 RESULTS
4.1 Retrieving medical literature
Performance was measured using the two main metrics of 2016
TREC CDS track: inferred NDCG [17] (primary metric) and pre-
cision at 10 retrieved results (P@10). �e proposed method was
compared with several well-known query reduction techniques,
as well as the best approach from TREC CDS 2016. In detail, we
compared the proposed method with the following approaches
(reported in Table 1; i to iv are baselines, while v to viii are state-
of-the-art techniques):
(i) No query reduction: we le� the clinical note as-is, except
removing numbers, stop words, and units of measurement.
(ii) Idf �lter: we removed terms whose idf is less than 1 (term
appears in more than 10% of the documents) and more than 5.5
(term appears in less than 3 documents in the collection); values
were determined through manual tuning on the development set.
(iii) �ery reduction viaUMLS conceptmapping: wemapped
expressions in the query to concepts in UMLS medical thesaurus7
using �ickUMLS [15]; terms that are not in UMLS were removed.
(iv) �ery reduction using Wikipedia: for each term qi in a
clinical note, we estimated its probability of being a medical term by
calculating its likelihood of appearing in health pages onWikipedia.
(v) �ery quality predictors (QQP): we implemented themethod
proposed in [6] to reduce clinical notes. �is method uses quality
predictors as features to learn to rank sub-queries of clinical notes.
(vi) Medical QQP: we tested a variant of QQP introduced in [14];
this formulation is be�er tailored to this application, as it considers
health-oriented features alongside original predictors.

7�e Uni�edMedical Language System or UMLS is a thesaurus for medical terminology
maintained by the U.S. National libary of Medicine.

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/


Figure 3: Impact of context size c on method performances.

(vii) Parameterized conceptweighting (PCW): we implemented
the supervised model introduced by Bendersky et al. [2] to learn
weights of concepts in the query. �is model uses statistical features
(e.g., term and document frequency in target collection) to learn
the importance weight of three concept types: unigrams, bigrams
phrases, and proximity bigrams. We expanded the set of concept
types with medical concepts extracted with�ickUMLS [15], and
the set of features with term and document frequencies of candidate
concepts in several medical collections.
(viii) NKU team: we compared our system with the work of
Zhang and Liu [18], which obtained the best performance on clinical
notes at TREC 2016. �is method combines concept extraction,
query expansion using the MeSH8, and pseudo relevance feedback.

As shown in Table 1, the proposed CNN (Table 1, line ix) outper-
formed all baselines and state-of-the-art methods. �e di�erence
between the proposed CNN and the other methods’ performance
is more prominent in terms of inferred NDCG, as we observed an
improvement of 121% over the unmodi�ed clinical note (line i), 37%
over the best general domain query reduction (PCW, line vii), and
27% over the best system proposed for this task (NKU, line viii).

�e proposed CNN showed a less pronounced improvement
over state of the art methods in terms of P@10; nevertheless, it
outperforms all state of the art methods by at least 9% (line viii) and
up to 30% (line v). We a�ribute this outcome to the fact that the
proposed method was trained to maximize the di�erence in scores
between relevant and non-relevant documents; thus, it su�ers in
precision-oriented metrics with early cuto�, such as P@10.

Finally, we observed that approaches that explicitly take advan-
tage of domain speci�c resources, such as medical concept extrac-
tion using UMLS (iii) and Medical QQP (vi) outperform methods
that do not leverage such resources (iv and v). �is con�rms the
�nding of [1] and [14].

4.2 Choice of hyperparameters
We studied the impact of the hyperparameters detailed in section 2.1
on performance of the proposed method. In detail, we conducted
two experiments: we evaluated the impact of context size c on
infNDCG and P@10 (Figure 3), and we performed an ablation study
to quantify the impact of convolutional �lter sizes (Table 2).

We experimented with context sizes ranging from c = 2 (that is,
considering two terms before and two terms a�er each query term)
to using the entire clinical note as context (c = ALL). As shown in
Figure 3, the best performance is obtained when c = 10. While the
performance of the system is not a�ected by small deviations from
the optimal value, choosing a context that is too small (c 6 4) or
too large (c > 15) notably reduced its e�ectiveness. In particular,
we note that the model that uses the entire clinical note as context

8h�ps://www.nlm.nih.gov/mesh/

Size(s) of convolutional �lters used infNDCG P@10
k = 2 0.2342 0.2867

k = 2, 3 0.2435 0.3033
k = 2, 3, 4 0.2498 0.3100

k = 2, 3, 4, 5 0.2518 0.3167
Table 2: Ablation study on the size of convolutional �lters.

performed worse than any other context size c in terms of infNDCG,
supporting our decision to limit the context size.

Finally, we evaluated the impact of the convolutional �lters
size k using an ablation study. �e results presented in Table 2
suggest that using multiple values for k has positive impact on
capturing local features, as each �lter size learn speci�c aspects
of term interaction in the context. However, we note that the
improvement in performance got smaller as larger �lters were
introduced in the model.

5 CONCLUSIONS
We proposed a convolutional neural model to reduce noise in clini-
cal notes to be used for medical literature retrieval. For each term
in a clinical note, the proposed approach takes advantage of the
context surrounding the term to predict its importance. �e pro-
posed approach was evaluated on the TREC CDS 2016 dataset, and
compared several query reduction baselines, as well as state of the
art methods, outperforming them all.
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