
On the Integration of Structured Data and Text:
A Review of the SIRE Architecture

(An Invited Overview)

Ophir Frieder, Abdur Chowdhury, David Grossman, & M. Catherine McCabe

Information Retrieval Laboratory
Illinois Institute of Technology

{frieder, chowdhury, grossman, mccabe}@ir.iit.edu

1.0 Introduction
Over the past decade, members of the Information Retrieval Lab have designed, developed, and

deployed a variety of information retrieval systems. A central theme for all of our systems was the
integration of structured data and text. One of our more recent efforts, SIRE, a Scalable Information
Retrieval Engine [Grossman97, Grossman98, Lundquist99] is the focus of this paper. For completeness, I
review some of the functionality of SIRE although it is described, in greater detail, in other forums. We
describe the architecture of the prototype developed for the National Institutes of Health (NIH) National
Center for Complementary and Alternative Medicine (NCCAM) [Frieder00] by some of the members of
the laboratory. The version deployed at NCCAM is a more industrialized version of this prototype.

The mainstream approach in the development of information retrieval systems uses a customized
inverted index to represent the text. SIRE, on the other hand, is a relational information retrieval approach
and uses relations to model an inverted index. Storing the full text in a relational environment integrates
the search of unstructured data with the traditional structured data search of Relational Database
Management Systems (RDBMS). By using only standard SQL, SIRE leverages investment of the
commercial relational database industry, while providing all capabilities of a more traditional information
retrieval approach. RDBMS offer a wide variety of functionality such as concurrency control, recovery,
security, portability, scalability, and robustness. RDBMS vendors continuously improve these features and
incorporate advances made in hardware and software. Thus, an application using an RDBMS is able to
keep up with the technology curve with less investment than a custom solution.

SIRE is implemented strictly as a relational database application. Key information retrieval techniques
such as leading similarity measures, proximity searching, n-grams, passages, phrase indexing, and
relevance feedback are all implemented using standard SQL. By adhering to strictly standard SQL, SIRE is
completely portable across platforms and database management systems. Thus far, either laboratory
members or our industrial collaborators or sponsors implemented SIRE on the NCR DBC-1012, Microsoft
SQL Server, Sybase, Oracle, IBM DB2 and SQLD/S database management systems.

SIRE achieves good performance and scalability and is currently in production use in a variety of text
search applications both commercially as part of multiple industrial efforts and in various government
laboratories including the National Institutes of Health National Center for Complementary and Alternative
Medicine. The relational platform offers equivalent capabilities to traditional Information Retrieval (IR)
systems while providing a parallel, scalable, maintainable architecture with a unified platform for
integrating searches of structured and unstructured data.

2.0 SIRE Functionality Overview

In SIRE, relations are used to model an inverted index, see Figure 1[Grossman97]. As shown, three
relations, namely DOC, INDEX, and TERM, are used to represent the entire collection. The document
(DOC) relation stores all the metadata information about the individual documents. That is, the DOC
relation stores the document name, dateline, length, etc. The term (TERM) relation stores all terms in the
collection and their corresponding inverted document frequency (idf) score. The example demonstrates
only words as terms, but phrases can likewise be stored in the relation. Finally, the index (INDEX) relation
itemizes which terms appear in which documents and how many times the term appears within each
document.

Storing the full text in a relational environment integrates the search of unstructured data with the
traditional RDBMS search of structured data. The retrieval accuracy of SIRE, as measured by the metrics
precision and recall, is comparable with the state-of-the-art systems because leading scoring measures are

Figure 1: The Relational Structure of the Scalable IR Engine

implemented in standard SQL within SIRE. An example of such SQL is shown in SQL-1, using the cosine
similarity measure.

SQL-1: SELECT d.doc_name, SUM((i.tf * t.idf * q.tf * t.idf)/d.doclen)
 FROM Index i, Doc d, Query q, Term t
 WHERE d.doc_id = i.doc_id AND
 q.term = i.term AND
 t.term = q.term
 GROUP BY d.doc_id
 ORDER BY 2 DESC;

Modifications to the SUM() element permits implementation of mo st leading similarity measures. For
instance, with the additional computation and storage of some document statistics, (log of the average term
frequency), some collection statistics (average document length and the number of documents) and term
statistics (document frequency), the following measures are implemented. In the pivoted normalization
measure, the constant 0.20 is the pivot value proposed in [Singhal96]. In the OKAPI measure, the
constants are the values described in [Robertson98].

SQL-2: Pivoted normalization measure
 SUM(((1 + LOG(i.tf)) / ((d.LogAvgTF) * (AvgDocLen + (0.20 * d.doclen))))
 * (t.idf * ((1 + LOG(q.tf)) / (q.LogAvgTF))))

SQL-3: OKAPI Probabilistic measure
 SUM(LOG((((NumDocs - t.df) + 0.5) / (t.df + 0.5))
 * ((2.2*i.tf) / (.3 + ((.9 * d.doclen)/AvgDocLen) + i.tf))))

Techniques such as relevance feedback, proximity, phrases, and n-grams are common in traditional

information retrieval and are therefore also available in the SIRE system. For brevity, we only discuss
relevance feedback, as it is the more commonly used information retrieval technique. To implement
relevance feedback, the SQL shown is SQL-1 is executed and the best (using N*nidf ranking) terms from
the top-ranked documents are added to the original query terms (INSERTED into the Query table) and the
query is rerun [Lundquist99].

INDEX
X

TERM

doc_id term tf
1 dogs 1
1 walked 1
1 home 1
2 home 1
2 range 1
… … …

term idf
according 0.7782
commercial 1.0000
dogs 1.3222
home 1.2553
range 1.8451
walked 0.6021
... ...

doc_id doc_name date dateline doclen
1 WSJ870323-0180 3/23/87 Turin, Italy 56
2 WSJ870323-0181 1/21/95 Chicago 126
… … … … ….

DOC

QUERY
term tf
dogs 1
home 1

term doc_id tf-idf
dogs {(1 1.07),
 (7 3.02),
 (19 2.09),
 (44 1.76),
 (45 1.99),
 (63 2.65)}
(A) Term Processing

doc_id term tf-idf
1 {(dogs 1.07),

 (walked 3.33),
 (home 2.23),
 (cats 1.58),
 (climbed 1.36),
 (trees 2.11)}
(B) Relevance Feedback Processing

Figure 2. Clustered Indexes

The vector space model that weights terms according to how unique they are within the collection.

However, some applications rely either on just the Boolean model or on a combination of both the vector
space model and the Boolean model. In the Boolean, one operator TAND (threshold AND) is used to
require a certain number of the specified query terms from within the entire query terms to be present in a
document for it to qualify as relevant. This feature can be quite complex to implement in traditional
information retrieval systems. However, with SQL, TAND is easily achieved by adding a HAVING
COUNT(*) >= threshold_number_of_terms.

SQL-4: SELECT d.DocName
 FROM Index i, Doc d, Query q
 WHERE d.Docid = i.Docid AND
 q.term = i.term
 GROUP BY d.Docid

 HAVING COUNT(*) >= threshold_number_of_terms;

3.0 Performance Enhancements

The primary performance enhancements supported in SIRE are:

• Clustered Indexes
• Thresholding

• Index Thresholding
• Query Thresholding

3.1 Clustered Indexes

Physically implementing the relational structure of SIRE as illustrated in Figure 1 introduces
redundancy due to the repetition of the doc_id attribute in the RDBMS indexing of the INDEX relation.
Furthermore, for relevance feedback processing, the same duplication occurs in the indexing of the term
attribute. This redundancy increases the storage requirements, hence the I/O processing, and therefore the
total processing time. To nullify this situation, the actual SIRE implementation uses clustered indexes as
shown in Figure 2. As seen, the redundancy is eliminated. As an aside, also note that instead of the term
frequency value, the computed tf-idf value is stored. This reduces the computational time as repeated tf *
idf computations are eliminated.

 Figure 3. Relevant Retrieved and Computation Time as a Function of Query Threshold

3.2 Thresholding

Thresholding is a technique where terms in certain frequency ranges are eliminated from the search –
either removing them from the query or, equivalently, eliminating them from the index, saving space and
processing speed. Index Thresholding addresses the possibility that the large term weights of the
infrequently occurring terms may be artificially inflating the relevance ranking scores of documents. Our
experiments with TREC data indicate that eliminating terms occurring in fewer than 75 documents (.014%
of the collection) improves the precision/recall by 24%, reduces storage required by 26% and improves
runtime

In Query Thresholding, the most frequent terms are removed from the query since they are the worst
discriminators. In Figure 3, we show that a query threshold of 75% maintains a precision/recall level
approximating that obtained with 100% of the query terms but significantly reduces run time for a broad
range of queries.

4.0 System Software Architecture

The SIRE software architecture comprises of four parts:

• System Software: Operating Systems, Disk Striping
• Relational Database Management Systems
• Java servlets
• Web server

 The system software deals with the operating system layout, namely, the distribution of disk

resources, optimization of I/O throughput, memory usage, disk striping to reduce I/O contention, etc. The
second components are the use of an RDBMS to store structured and unstructured information. The third
and fourth component is the query software architecture, caching algorithms, and other optimizations for
efficiency and a web server providing the UI (User Interface) to the client via a traditional web interface,
respectively.

4.1 System Software Architecture

The SIRE system uses Solaris 2.7 as its operating system providing the interface to the underlying
hardware. The system is running on a Sun ES-450 with four 300MHz processors and 4 Gigabytes of
system memory. The system has approximately 300 gigabytes of disk space connected to three SCSI
controllers to distribute the I/O load for each controller. To reduce I/O contention for large data files, we
use Disk Suit 4.2 to build logical disks that stripe the file system over several controllers and disks in 16K
blocks. The disk layout for the data files is described in the next section.

475 950 1,736
5,215

13,181

33,989

0
500
1000
1500
2000
2500
3000
3500

0 20 40 60 80 100
Query Threshold (Percent)

 C

P
U

831
1505 1657 1856

2119 2138

0
500

1000
1500
2000
2500

0 20 40 60 80 100
Query Threshold (Percent)

R
el

ev
an

t R
et

.

Figure 4: RDBMS Disk Layout

4.2 RDBMS Software Architecture

The SIRE system uses a RDBMS to store data. We currently use Oracle 8.0.5 as the RDBMS. The
SIRE system uses indexes to speed up the retrieval of information for queries. We use logical disks to
reduce our I/O contention when running multiple queries at the same time as shown in Figure 4. The
indexes for each table are striped across two controllers and over two physical disks, I1 and I2. The data
files are striped across two controllers and four disks, D1-D4. We model the vector space model to search
unstructured text and provide relevance rankings. We search structured information with standard RDBMS
techniques.

Figure 5. Client Request Flow Chart

4.3 Query Software Architecture

The overall client request flow is illustrated in Figure 5. A user contacts the server via a web browser.
The web server provides static information via standard HTML pages. Information requests are static html
pages with forms. The form is filled out by the client and sent back to the server via an http get message.
The HTTP server passes the message to the Servlet Engine. The Servlet Engine builds a SQL request to

Sun ES 450

Index
I1

Index
D1

Index
I2

Data
D2

Data
D3

Data
D4

Oracle DBMS

Internet

User

Sun ES 450

HTTP Server

Jserv Servlet
Engine

Figure 6. Servlet Flow Chart

the RDBMS. The servlet then queries the database for the requested data and gets the results. The servlet
builds a result page and passes it back to the client’s browser for display.

As more and more clients access the system, performance becomes a greater and greater issue. To
optimize the request process several engineering optimizations were made. As requests come into the
servlet, the servlet builds a SQL statement to get the needed information from the RDBMS. That request is
passed on to a MRU (Most Recently Used) cache engine. The MRU cache keeps the most recently
requested queries in memory. If the current request was previously made and its results are still in the
cache, the results are returned to the servlet to be processed into an html results page. If the results are not
found the query is passed down to the query engine. The query engine keeps a cache of database
connections to speed up the request time. A pre-cached connection is pulled from the cache and the request
is sent to the database. The results are returned to the query engine. The engine passes the results up to the
MRU cache. The MRU cache stores the results in memory and returns a copy to the servlet. If the same
request is made again, the results can be returned right from the MRU cache without going to the RDBMS.
After the servlet has received the results, a dynamic HTML page is created. The formatted results are then
returned to the client’s browser for display. This query processing is illustrated in Figure 6.

5.0 Parallelism
We have investigated the use of a parallel database engine to support the SIRE backend. Experimental

evaluation results presented in [Lundquist99] demonstrated that nearly a 92% parallel efficiency was
achieved using an NCR Teradata database machine with 24 nodes. That is, roughly a 22-fold speed-up was
observed as compared to a single node system.

6.0 Conclusions
We overviewed an implementation SIRE and a corresponding performance analysis. Experimental

results demonstrated that SIRE supports a high degree of scalability. The relational environment offers a
single platform for the integration of searches across structured and unstructured data. In addition, it has
the advantages of portability, scalability and leverages advances of the RDBMS industry.

Acknowledgments
This entire effort would not be possible without the contributions of the entire Information Retrieval
Laboratory members. Special additional thanks are extended to Nazli Goharian for her commentary that

Generic Search Servlet

MRU Cache

Query Engine

RDBMS Connection
Pool

Dynamic HTML

HTTP Search Request

RDBMS

improved the clarity of this paper. This work was supported in part by grants from the National Science
Foundation, the National Institutes of Health, the US Army, and the IIT Research Institute.

References
[Frieder00] Frieder, O., et. al., “On the Development of the NIH Complementary and Alternative

Medicine Digital Library,”, www.ir.iit.edu/publications/2000/NCCAM.pdf. Also
available off the CAM Citation Index link of http://nccam.nih.gov/nccam/databases.html.

[Grossman97] Grossman, D., O. Frieder, D. Holmes, and D. Roberts, “Integrating Structured Data and
Text: A Relational Approach,” JASIS, 48(2), February 1997.

[Grossman98] Grossman, D. and O. Frieder, Information Retrieval: Algorithms and Heuristics , Kluwer
Academic Publishers, ISBN 0-7923-8271-4, 1998.

[Lundquist99] Lundquist, C., O. Frieder, D. Holmes, and D. Grossman, “A Parallel Relational DBMS
Approach to Relevance Feedback in IR,” JASIS, 50(5), April 1999

[Robertson98] Robertson S., S. Walker and M. Beaulieu, “Okapi at TREC-7: automatic ad hoc, filtering,
VLC and interactive,” Proceedings of TREC 7, 1998.

[Singhal96] Singhal, A., C. Buckley and M. Mitra, “Pivoted Document Length Normalization,”
Proceedings of Nineteenth SIGIR, 1996.

