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Abstract—Sensor networks pose a number of challenging conceptual and optimization
problems such as location, deployment, and tracking [1]. One of the fundamental problems
in sensor networks is the calculation of the coverage. In [1], it is assumed that the sensor
has the uniform sensing ability. In this paper, we give efficient distributed algorithms to op-
timally solve the best-coverage problem raised in [1]. Here, we consider the sensing model:
the sensing ability diminishes as the distance increases. As energy conservation is a major
concern in wireless (or sensor) networks, we also consider how to find an optimum best-
coverage-path with the least energy consumption. We also consider how to find an optimum
best-coverage-path that travels a small distance. In addition, we justify the correctness of
the method proposed in [1] that uses the Delaunay triangulation to solve the best coverage
problem. Moreover, we show that the search space of the best coverage problem can be
confined to the relative neighborhood graph, which can be constructed locally.

I. INTRODUCTION

Sensor networks pose a number of challenging conceptual and opti-
mization problems such as location, deployment, and tracking [1]. In
a pioneering work by Meguerdichian, et al.[1], they addressed one of
the fundamental problems, namely coverage, which in general answers
the questions about the quality of service that can be provided by a
particular sensor network. They gave polynomial time algorithms to
solve the questions optimally. However, their algorithms rely heavily
on some geometrical structures such as the Delaunay triangulation and
the Voronoi diagram which can not be constructed locally or even ef-
ficiently in a distributed manner. In addition, the correctness of using
these two geometry structures is not presented in their paper.

In a wireless ad hoc network (or sensor network), each wireless node
has a maximum transmission power so that it can send signals to all
nodes within its transmission range. If a node v is not within the trans-
mission range of the sender u, nodes u and v communicate through
multi-hop wireless links by using intermediate nodes to relay the mes-
sage. Each node in the wireless network also acts as a router, forward-
ing data packets for other nodes. We assume that each static wireless
node knows its position information, either through a low-power Global
Position System (GPS) receiver or through some other approach. For
simplicity, we also assume that all wireless nodes have the same maxi-
mum transmission range, and we normalize it to one unit. By a simple
broadcasting, each node u can gather the location information of all
nodes within the transmission range of u. We also assume that all wire-
less nodes have distinctive identities. Consequently, all wireless nodes
S together define a unit disk graph UDG(S), which has an edge uv if
and only if the Euclidean distance between u and v is less than one unit.
We call all nodes within a constant k hops of a node u in the unit disk
graph UDG(S) as the k-local nodes of u. Usually, here the constant
k is 1 or 2, denoted by Nk(u), which will be omitted if it is clear from
the context.

A distributed algorithm is a localized algorithm if it uses only the in-
formation of all local nodes plus the information of a constant number
of additional nodes. A graph G can be constructed locally in the ad hoc
wireless environment if each wireless node u can compute the edges
of G incident on u by using only the location information of all local
nodes. We are interested in designing a localized algorithm that finds a
path connecting a point s and a point t, which maximizes the smallest
observability of all points on the path. It is called the best coverage
problem. On the other hand, the minimum exposure problem [2] is to
find a path that connecting two points in the domain with the minimum
integral observability. While the worst coverage problem is to find the
path that maximizes the distance of the path to all sensor nodes. We
provide efficient distributed algorithms to solve the best coverage prob-
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lems. In addition, we justify the correctness of using the Delaunay
triangulation to solve the best coverage problem. Moreover, we show
that the search space of the best coverage problem can be confined to
the relative neighborhood graph, which can be constructed locally.

The rest of the paper is organized as follows. In Section II, we
give some preliminary definitions and notations that will be used in
presenting our algorithms. We also briefly review the algorithms by
Meguerdichian, et al.[1] and outline some discrepancies in their al-
gorithms. In Section III, we present the first localized algorithm that
solves the best coverage problem efficiently. We also discuss several
extensions of the best-coverage problem. Specifically, we consider how
to find an optimum best-coverage-path that conserves the energy, and
how to find an optimum best-coverage-path with small travelling dis-
tance. Both the correctness of our algorithm and the correctness of
the algorithm by Meguerdichian et al. are justified in Section IV. We
conclude our paper and discuss possible future research directions in
Section V.

II. PRELIMINARIES

A. Problem formulation

We assume that the wireless sensor nodes are given as a set of n
points S distributed inside a two-dimensional domain 
. For simplic-
ity, we assume that the domain 
 is given as a planar-straight-line
graph (PSLG), which is a collection of line segments and points in the
plane, closed under intersection. Let B be the set of points that define
the domain boundary. For simplicity, we assume that the convex hull
CH(S) of the set of sensors S is contained inside the domain 
. We
also assume that every wireless node has the same maximum transmis-
sion range. Then the set of wireless sensors S defines a unit disk graph
UDG(S). We always assume that the graph UDG(S) is connected.

We first give some geometry notations that are used in the remainder
of this Section to mathematically formulate the problems considered.
Let kxyk denote the Euclidean distance of two points x and y.

Definition 1: The distance of a point x to a set of points V , denoted
by dist(x ;V ), is the smallest distance of x to all points of V . In other
words, dist(x ;V ) = miny2V kxyk:

Notice that the point set V may be infinite. For example, V could
be all points lying on a segment uv. We use dist(x ; uv) to denote the
smallest distance from x to all points on the segment uv.

Definition 2: The coverage-distance of a point set U by another
point set V , denoted by cover (U ;V ), is the maximum distance of ev-
ery point x 2 U to V . That is, cover (U ;V ) = maxx2U dist(x ;V ):

Notice that the breach distance dist(U ;V ) is symmetric, i.e.,
dist(U ;V ) = dist(V ;U ), while the coverage distance cover (U ;V )
is not symmetric and that both point sets U and V can be infinite. For
example, U can be a path connecting two points s and t and V all
sensor nodes. Given a path �(s; t) inside 
 connecting s and t, the
coverage-distance maxx2�(s;t) dist(x ; S) of the path �(s; t) specifies
how well the path is protected by the sensors, while, on the reverse
side, the breach distance minx2�(s;t) dist(x ; S ) specifies how far the
path is from all sensors. Thus, for wireless sensor networks, the cover-
age problem has two folds: the best coverage and the worst coverage,
which are defined as follows.

Given a set of sensors S inside a two-dimensional domain 
, a
starting point s 2 
, and an ending point t 2 
, we find a path
�(s; t) inside 
 to connect s and t such that the coverage distance
cover (�(s; t); S) = maxx2�(s;t) dist(x ; S) is minimized. In other



words, we try to find a path connecting s and t such that every point x
of the path is covered by some sensor nodes with small distance.

Definition 3: A path �(s; t) that achieves the minimum coverage-
distance cover (�(s; t); S) is called a best-coverage-path. The min-
imum coverage-distance cover (�(s; t); S) of all paths connecting s
and t is called the best-coverage-distance or the support-distance.

This problem has several interesting applications. For example, con-
sider a war-field denoted by a two-dimensional domain 
. Assume
that a postman soldier wants to travel from position s to position t in

. There are some randomly distributed protection soldiers, denoted
by a set of points S, which will protect the postman soldier. Then it is
always desirable to find a path in 
 such that the maximum distance of
the postman soldier from the protection soldiers is minimized.

There are several variations for the best coverage problem. No-
tice that, as shown later, there are many paths that achieves the best-
coverage-distance. As the energy consumption is a critical issue in the
wireless networks, we wish to find a path that consumes the least en-
ergy possible while it still achieves the best-coverage-distance. The
other variation is to find a path with the minimum total travelling dis-
tance among all optimum paths with the best-coverage-distance. This
is justified by the above postman soldier example.

Sensing devices generally have widely different theoretical and phys-
ical characteristics. Interestingly, in most sensing device models, the
sensing ability diminishes as distance increases. Let S(s; p) be the
sensing ability of sensor s at point p. When point p is out of the sens-
ing range of the sensor s, i.e., kspk > 1, then S(s; p) = 0 . Notice that
the sensing range is normalized to one unit here. In [2], they assumed
that S (s; p) = �

kspk� for sensor-technology dependent parameters �
and � for conducting simulations. In this paper, we adopt the following
sensing model.
1. The sensing ability of every sensor device is uniform. In other
words, S(si ; u) = S(sj ; v) if ksiuk = ksjvk.
2. The sensing ability satisfies a monotone property: S(s; u) >
S(s; v) if ksuk < ksvk.

Given a point p, its closest-sensor observability Ic(p) is defined as
S(sp ; p), where sp is the closest sensor to point p. The all-sensor ob-
servability of point p, denoted by Ia(p), is defined as

P
si
S(si ; p).

Given a path �(s; t) connecting points s and t, its closest-sensor ob-
servability is defined as Ic(�(s; t)) = minp2�(s;t) Ic(p): Similarly, we
define the all-sensor observability as Ia(�(s; t)) = minp2�(s;t) Ia(p).
In this paper, we are interested in finding a path with the maximum
closest-sensor observability. In other words, we try to find a path con-
necting s and t such that all point on the path is well-observed by
the sensors. From the definitions of the best-coverage-path and the
closest-sensor observability, it is easy to show that the best-coverage-
path also achieves the maximum closest-sensor observability. Conse-
quently, in the rest of the paper, we only have to study how to find the
best-coverage-path, which also achieves the maximum closest-sensor
observability.

B. Geometry Notations

Delaunay triangulation and Voronoi diagram are widely used in
many areas. We begin with definitions of the Voronoi diagram and the
Delaunay triangulation. We assume that all wireless nodes are given as
a set S of n vertices in a two dimensional space. Each node has some
computational power. We also assume that there are no four vertices of
S that are co-circular. A triangulation of S is a Delaunay triangulation,
denoted by Del(S), if the circumcircle of each of its triangles does not
contain any other vertices of S in its interior. A triangle is called the
Delaunay triangle if its circumcircle is empty of vertices of S. The
Voronoi region, denoted by Vor(p), of a vertex p in S is a collection of
two dimensional points such that every point is closer to p than to any
other vertex of S. The Voronoi diagram for S is the union of all Voronoi
regions Vor (p), where p 2 S. The Delaunay triangulation Del(S) is

also the dual of the Voronoi diagram: two vertices p and q are connected
in Del(S) if and only if Vor (p) and Vor(q) share a common bound-
ary. The shared boundary of two Voronoi regions Vor(p) and Vor(q)
is on the perpendicular bisector line of segment pq. The boundary seg-
ment of a Voronoi region is called the Voronoi edge. The intersection
point of two Voronoi edge is called the Voronoi vertex. When there is
no four points of S that are co-circular, then every Voronoi vertex has
only exactly three Voronoi edges incident on it. The Voronoi vertex is
the circumcenter of some Delaunay triangle.

It is not appropriate, however, to require the construction of the De-
launay triangulation in the wireless communication environment be-
cause of the possible massive communications it requires. Using cen-
tralized method, it requires at least O(n log n) bits-communications
to collect all nodes’ coordinates. It also requires massive communi-
cations to broadcast the triangulation to all nodes. Therefore, Li [3]
studied a subset of the Delaunay triangulation. Let UDel(S) be the
graph by removing all edges of Del(S) that are longer than one unit,
i.e., UDel(S) = Del(S ) \ UDG(S). Call UDel(S) the unit Delau-
nay triangulation. Li, et al. [3], [4] provided an efficient localized
algorithm that constructs a planar graph, called localized Delaunay tri-
angulation LDel(S), which contains UDel(S) as a subgraph. Thus,
the constructed graph can be used by almost all algorithms that require
to use the structure UDel(S) or even Del(S). The graph LDel(S) is
constructed as follows [4]:
1. Each node u broadcasts its identity and location and listens to messages from other
nodes. Node u then computes Del(N1 (u)) of its 1-neighbors N1(u), including u itself.
Node u marks all Gabriel edges uv, which will never be deleted.
2. Fro each 4uvw 2 Del(N1 (u)) such that \wuv � �

3 , node u broadcasts a mes-

sage proposal(u; v; w) to form a triangle4uvw in LDel(1)(V ).
3. When node v receives proposal(u; v; w), v accepts it by broadcasting ac-
cept(u; v; w) if 4uvw 2 Del(N1 (u)); otherwise, it rejects it by broadcasting re-
ject(u; v;w). Similarly does node w. Node u accepts 4uvw if both nodes v and w
accept proposal(u; v; w). Similarly do node v and w.

This constructs LDel(1)(S). Each node v broadcasts the edges of
LDel (1)(S) incident on v. Assume node u gathered 1-local Delaunay
triangles of each v 2 N1(u). For two intersected triangles 4x1y1z1
and4x2y2z2 known by u, u removes 4x1y1z1 if its circumcircle con-
tains a node from fx2; y2; z2g. Node u broadcasts all remaining trian-
gles incident on u to N1(u). Node u keeps triangle 4uvw if both v
and w have triangle 4uvw remained. The collection of edges kept by
all nodes is called planar LDel(S).

Various proximity subgraphs of the unit disk graph were studied [5],
[6]. For convenience, let disk (u; v) be the closed disk with diame-
ter uv; let disk(u; v ;w) be the circumcircle defined by the triangle
4uvw; let B(u; r) be the circle centered at u with radius r. Call the
interior of the intersection B(u; kuvk)\B(v ; kuvk) the lune, denoted
by lune(u; v), defined by two points u and v. The constrained relative
neighborhood graph RNG(V ) over a point set V has an edge (u; v) if
the lune(u; v) does not contain any point from V in the interior. The
constrained Gabriel graph of a point set V , denoted by GG(V ), con-
sists of all edges uv such that kuvk � 1 and the disk(u; v) does not
contain any node from V .

C. Discussion of Previous Algorithms

In [1], Meguerdichian, et al. developed centralized algorithms to
solve the best coverage problem using the Delaunay triangulation. No
justification as to why the search space can be confined to the Delaunay
triangulation for the best coverage problem was provided. We later
provide a formal proof that there is an optimum best-coverage-path that
uses only the edges of Delaunay triangulation. See Section IV. In their
algorithm, they connect the starting point s to its closest sensor node
us and connect the ending point t to its closest sensor node ut. This
is based on intuition [1]. We formally prove that there is an optimum
best-coverage-path with this property if the unit disk graph UDG(S)
is connected.

To find an optimum best-coverage-path, they assign each Delau-
nay edge a weight equal to its Euclidean distance and then apply
some graph algorithms on it. We show that this is likewise erro-



neous. Here the weight of an edge uv denotes the maximum distance
maxx2uv dist(x ; S) of every point x on uv to its closest sensor. Re-
member that we want to find a path such that the maximum distance
of all points of this path to its closest sensor node is minimized. Thus,
the weight of an edge uv should be maxx2uv dist(x ; S), which is at
most 1

2
kuvk. It is insufficient to just consider the midpoint of a De-

launay edge uv to compute its weight maxx2uv dist(x ; S ). This is
because it is possible that there is some other sensor node w that lies
inside dist(u; v). See Figure 1. The weight of the Delaunay edge uv is
less than 1

2
kuvk. We later will show that the search space can be con-
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Fig. 1. Left: The weight of a Delaunay edge uv is less than 1
2kuvk. Right: Each sensor

node has a disk specifying the region covered by it. All disks have the same radius and
grow with the same speed.

fined to a much smaller graph, namely the relative neighborhood graph.
Moreover, the weight of each edge uv in that graph is guaranteed to be
exactly 1

2
kuvk.

D. Growing Disks

Assume that every sensor node originally has a disk centered at it
with radius 0 and every disk starts growing with the same speed. See
Figure 1. Let D(S; r) be the region covered by all disks centered at
points of S with radius r. Let D(S; r) be the complementary region
of D(S; r) in domain 
. Then the best coverage problem asks what is
the smallest radius value r such that there is a path, inside the region
D(S; r), connecting points s and t. On the other hand, the worst cov-
erage problem asks what is the largest radius value r such that there is
a path, inside the region D(S; r), connecting points s and t.

III. THE BEST COVERAGE PROBLEM

A. Algorithm

We first give an efficient distributed algorithm that solves the best
coverage problem optimally. Here assume that we are given a set of
sensors S, a starting point s, and an ending point t in a two-dimensional
domain 
 such that the unit disk graph UDG(S ) is connected and the
convex hull CH(S) of S is contained inside 
.

Algorithm 1: FindBestCoverage(S;
; s; t)
1. Find the closest sensor node of the starting point s if itself is not a sensor node. Assume

us is the closest sensor node. Similarly, find the closest sensor node ut of the ending point

t.

2. Each sensor node u locally constructs all edges uv of the relative neighborhood graph

RNG(S), where v is also a sensor node. This can be constructed as follows. Each node

u broadcasts its location information and listens to the broadcasting by its neighbors. Thus,

after this step, we assume that each node u has the location information of N1(u). Node

u adds an edge uv if and only if the lune(u; v) does not contain any nodes from N1(u)

inside.

3. Assign each constructed edge uv with weight 1
2kuvk.

4. Run a distributed shortest path algorithm to compute the shortest path connecting us
and ut . Here, the weight of a path is the maximum weight of all of its edges. Here a path is

the shortest path if it has the minimum weight among all paths connecting us and ut .The

Bellman-Ford algorithm [7] can be modified to solve this shortest path problem.

5. Let �(us; ut) be a computed path and k�(us; ut)k be the weight of the path. Then

the path concatenating the edge sus, path�(us; ut), and the edgeutt is an optimum best-

coverage-path. The best-coverage-distance is max(ksusk,k�(us; ut)k,kuttk). Here

ksusk and kuttk are the Euclidean distance between points.

B. The time and communication complexity

constructing the relative neighborhood graph RNG(S), and then ap-
ply the Bellman-Ford algorithm [7] to find the shortest path between
nodes us and ut. The time complexity of this centralized algorithm
is O(n log n): The first step costs O(n) time; we can construct the
relative neighborhood graph in O(n log n) time; and we can compute
the shortest path connecting two vertices in a planar graph in time
O(n log n). This algorithm is much more efficient than that given in
[1], which has time complexity O(n2 log n).

For wireless sensor networks, however, it is impractical to collect the
location information of all sensors due to the massive communication
it requires. Thus, a distributed algorithm is a must. Notice that the
relative neighborhood graph of all sensors S can be constructed effi-
ciently by using a localized approach. Therefore, the communication
cost is also small as compared to collecting the locations information
of all sensor nodes. The communication cost of constructing the graph
RNG(S) using a distributed manner is O(n log n) bits. We assume
that the identity of each wireless node can be represented by O(log n)
bits and the geometry information can be represented by O(1) bits.

C. Extensions

In addition, we consider some extensions of the best coverage prob-
lem by presenting efficient distributed algorithms to solve them. No-
tice that, the coverage-distance of two points s and t depends on their
distances to the closest sensors. If we want to improve the coverage-
distance of all pairs of points in the domain by adding more sensors,
these new sensors should be placed at the circumcenters of Delaunay
triangles that have the largest circumradii.

C.1 Energy Conservation

The first extension is to find a path with the best-coverage-distance
while the total energy consumed by this path is minimized among all
optimum best-coverage-paths. We assume that the energy needed to
support a link uv is proportional to kuvk�, where � is a real constant
between 2 and 5. In best-coverage problem, finding areas of high ob-
servability from sensors and identifying the best support and guidance
regions are of primary concern [1]. For example, in a fire detection sen-
sor networks, it is not only required that the sensor networks observe
well a given region and it is also necessary that the sensor that detects
the fire can report the fire to a center station efficiently.

Algorithm 2: EnergyConsrvngBestCoverage(S;
; s; t)
1. Run a distributed shortest path algorithm to compute the coverage distance of the best-

coverage-path connecting us and ut. Let � be the best coverage distance.

2. Construct the Gabriel graph GG(S) and prune out all edges of the Gabriel graph

GG(S) with weight larger than �, and call the remaining graph the residue graph G.

3. Assign each edge uv of the residue graph G the weight equal to kuvk� , where � is

the propagation constant depending on the environment.

4. Run a distributed shortest path algorithm to compute the shortest path connecting us
and ut . Here, the weight of a path is the total weight of all of its edges. A path is the

shortest path if it has the minimum weight among all paths connecting us and ut .

5. Let �(us; ut) be a computed path and k�(us; ut)k be the weight of the path.

The path concatenating the edge sus , path �(us; ut), and the edge utt is an optimum

best-coverage-path with the minimum energy consumption. The best-coverage-distance

is max(ksusk,�,kuttk). Here ksusk and kuttk are the Euclidean distance between

points.

The correctness of the algorithm is based on the following observa-
tion. Consider an edge uv of the best-coverage-path that consumes the
minimum energy among all best-coverage-paths. If there is a sensor
node w inside disk(u; v), then kwuk � kuvk and kwvk � kuvk. It
is obvious that the path uwv is in the residue graph G. Thus, the path
by substituting edge uv with edges uw and wv is still a best-coverage-
path and consumes less energy, which is a contradiction. Consequently,
edge uv must be a Gabriel edge.



The time complexity of the above algorithm is O(n log n) if it is im-
plemented using a centralized manner. The total communication cost
by all wireless nodes of the above algorithm is O(n log n) bits if it is
implemented in a distributed manner. Here, we assume that we use
a synchronized distributed algorithm to construct the shortest path be-
tween two given wireless nodes.

C.2 Travel Distance

The second extension is to find a path with the best-coverage-
distance with the total length of the edges of this path is not more than
5=2 times the shortest path among all optimum best-coverage-paths.

Algorithm 3: SmallTravellingBestCoverage(S;
; s; t)
1. Run a distributed shortest path algorithm to compute the coverage distance of the best-

coverage-path connecting us and ut . Let � be the best coverage distance.

2. Construct the local Delaunay triangulation. Prune out all edges of the local Delaunay

triangulation LDel(S) with weight larger than �, and call the remaining graph the residue

graph G.

3. Assign each edge uv of the residue graph G the weight equal to kuvk.

4. Run a distributed shortest path algorithm to compute the shortest path connecting us
and ut . Here, the weight of a path is the total weight of all of its edges. A path is the

shortest path if it has the minimum weight among all paths connecting us and ut .

5. Let �(us; ut) be a computed path and k�(us; ut)k be the length of the path.

The path concatenating the edge sus, path �(us; ut), and the edge utt is an opti-

mum best-coverage-path with small travelling distance. The best-coverage-distance is

max(ksusk,�,kuttk). Here ksusk and kuttk are the Euclidean distance between

points.

Recently, Li, et al. [4] proposed a new method that can construct the
local Delaunay triangulation LDel(S) using O(n log n) communica-
tion cost in bits. The communication complexity of the above algorithm
is thus O(n log n).

The correctness of the algorithm is based on the following observa-
tion. Consider an edge uv of the best-coverage-path that has the min-
imum total edge lengths among all best-coverage-paths. It is proved
in [3] that if edge uv is not in the localized Delaunay triangulation
LDel(S), then there exists a path �(u; v) in LDel(S) such that all
edges of �(u; v) are shorter than uv and the total length of all edges of
�(u; v) is no more than 4

p
3�
9

kuvk. It is obvious that the path �(u; v)
is in the residue graph G. Consequently, the shortest path in the residue
graph G has length no more than 4

p
3�
9

(which is less than 5=2) factor
of the length of the shortest best-coverage-path in the unit disk graph
UDG(S). In other words, here we have a trade-off between the qual-
ity performance and the time-complexity. If the graph UDG(S) is
used, we get the shortest best-coverage-path but the communication
complexity of the algorithm is O(m log n), where m is the number of
edges in UDG(S) which could be as large as O(n2). On the other
hand, our algorithm appropriates the shortest best-coverage-path with
total communication cost O(n log n).

IV. ALGORITHM CORRECTNESS

This Section is devoted to study the correctness of Algorithm 1.
Given two points s and t, let bs;t be the smallest radius r such that
points s and t are connected inside the region D(S; r). Let D(si1 ; r),
D(si2 ; r), � � � , D(sik ; r) be the sequence of disks centered at sensor
nodes travelled by a path connecting s and t. Then, obviously, the
following path starting from s, then using the path si1si2 � � � sik , and
finally ending at t has the same optimum best-coverage-distance (i.e.,
the radius r) as any optimum best-coverage-path. This implies the fol-
lowing lemma.

Lemma 1: There is an optimum best-coverage-path that uses only
the following edges: the edges of the unit disk graph UDG(S), the
edges by connecting s to every sensor node, and the edges by connect-
ing t to every sensor node.

We show that it is sufficient to consider only the edges sus and utt,
where us and ut are the closest sensor nodes to s and t, respectively.
Notice that Meguerdichian, et al. [1] had already applied this approach.
We just give a formal proof here.

Lemma 2: There is an optimum best-coverage-path connecting s to
its closest sensor node us and t to its closest sensor node ut.

Proof: Consider an optimum path that does not connect s to its
closest sensor node us. Assume that s is connected to a node v. We
concentrate on the edge sv. We construct an alternative subpath con-
necting s and v using the edge sus. Without loss of generality, let
u0 = us, u1, u2, � � � , um�1, um = v be the vertices correspond-
ing to the sequence of Voronoi regions traversed by walking from s
to v along the segment sv. See Figure 2. If a Voronoi edge or a
Voronoi vertex happens to lie on the segment uv, then choose the
Voronoi region lying above sv. Assume that line sv is the x-axis.
The sequence of vertices ui, 0 � i � m, defines a path from us
to v. In general, we refer to the path constructed this way between
some nodes us and v as the direct DT path from us to v, denoted by
DT (us; v), which is also used by [8]. Then we show that the path,
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Fig. 2. Left: Connect the starting point s to its closest sensor node us . Right: Proof of of
the correctness of this connection.

denoted by DT (s; v), consisting of edge sus and the direct DT path
DT (us; v) from us to v is not worse than the edge sv in terms the
coverage-distance. Figure 2 illustrates the proof that follows. Let
xi denote the point on the x-axis that also lies on the boundary be-
tween the Voronoi regions Vor(ui) and Vor (ui+1 ) for i = 0, 1, � � � ,
m � 1. The definition of the Voronoi diagram immediately gives that
the circle centered at xi passing through the vertices ui and ui+1 con-
tains no points of S in its interior. We denote such circle as Ci, i.e.,
Ci = disk(xi ; kxiuik). For each point xi on the subpath �(s; v),
its coverage-distance is exactly kxiuik. Consequently, the coverage-
distance of the edge sv is at least (by considering only the point s and
all points xi, 0 � i < m) max(ksu0k;max0�i<m(kxiuik)): No-
tice that the coverage-distance of any edge uiui+1, 0 � i < m, is
at most 1

2
kuiui+1k; the coverage distance of the edge su0 is exactly

ksu0k. Consequently, the coverage-distance of the subpath DT (s; v)
is at most max(ksu0k;max0�i<m( 1

2
kuiui+1k)): The definition of the

Voronoi region immediately implies that kxiuik � 1
2
kuiui+1k. Con-

sequently, the coverage-distance of the subpath DT (s; v) is at most as
large as the coverage-distance of the edge sv. Substituting the subpath
�(s; v) by the subpath DT (s; v) gives an optimum best-coverage-path
that connects s to its closest sensor node us = u0.

For simplicity, from now on, we will not consider the starting point
s and the ending point t. Instead, we must only determine the best-
coverage-path connecting a pair of sensor nodes. As shown by Lemma
1, the search can be confined to the paths in the unit disk graph
UDG(S). However, the unit disk graph UDG(S) may have too many
edges, which in the worst case could be as large as O(n2). We then
show that the search space of the best covering problem can be further
confined to the Delaunay triangulation Del(S ) of the set S of sensors.
Notice that the algorithm given in [1] uses this approach without the
justification of its correctness. We prove this by the following lemma.



Lemma 3: There is an optimum best-coverage-path that uses only
the edges of the Delaunay triangulation Del(S ).

Proof: Consider any optimum best-coverage-path connecting two
sensor nodes. We show that there is another optimum best-coverage-
path such that every edge uv in the path is a Delaunay edge. Remember
that an edge uv is a Delaunay edge if and only if the Voronoi regions
Vor(u) and Vor(v) share some common Voronoi edge. Consider any
edge uv of an optimum best-coverage-path. We show that the direct
DT path DT (u; v) has a coverage-distance at most of that of uv. The
proof is similar to the proof of Lemma 2. Without loss of generality, let
b0 = u, b1, b2, � � � , bm�1, bm = v be the vertices corresponding to the
sequence of Voronoi regions traversed by walking from u to v along the
segment uv. See Figure 3. Let xi denote the point on the x-axis that
also lies on the boundary between the Voronoi regions Vor (bi�1 ) and
Vor(bi) for i = 1, 2, � � � , m. Then kxibik � 1

2
kbibi+1k. Con-
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Fig. 3. There is an optimum best-path using only edges of Delaunay triangulation.

sequently, the coverage-distance of the subpath DT (u; v), which is
at most max1�i�m 1

2
kbi�1bik, is at most as large as the coverage-

distance of the edge uv, which is at least max1�i�m kxibik. Notice
that every edge bi�1bi of the direct DT path DT (u; v) is a Delaunay
edge because the Voronoi regions Vor (ui) and Vor(ui+1 ) are adja-
cent. Thus, the lemma follows.

We can confine our search space to a much smaller graph GG(S ),
which can be constructed in a distributed manner efficiently.

Lemma 4: There is an optimum best-coverage-path that uses only
the edges of the Gabriel graph GG(S).

Proof: The following Figure 4 illustrates the proof that follows.
Similar to the proof of Lemma 3, we know that there is an optimum

pu v

w

u vp

Fig. 4. Left: There is an optimum best-coverage-path from Gabriel graph. Right: There is
an optimum best-coverage-path from relative neighborhood graph.

best-coverage-path connecting any two sensor nodes such that every
edge uv of the path only intersects the Voronoi edge shared by Vor(u)
and Vor(v). Let p be the midpoint of the segment uv. Then the circle
centered at p with radius 1

2
kuvk is empty. It implies that the edge uv

is an Gabriel edge. The lemma then follows.

Actually we can further confine our search space based on the fol-
lowing lemma.

Lemma 5: There is an optimum best-coverage-path that uses only
the edges of the relative neighborhood graph RNG(S).

Proof: Figure 4 illustrates the proof that follows. Consider an
optimum best-coverage-path using edges of the Gabriel graph GG(S).
Consider any edge uv of this path. Assume that the lune(u; v) con-
tains a sensor w from S in the interior. Then node w can not be inside
the circle disk(u; v) because uv is a Gabriel edge. Thus, the coverage-
distance of the midpoint p of edge uv is exactly 1

2
kuvk. Notice that the

coverage-distance of edge uw is at most1 1
2
kuwk, and the coverage-

distance of edge wv is at most 1
2
kwvk. Thus, the coverage-distance of

the subpath uwv is at most max(1
2
kuwk; 1

2
kwvk) � 1

2
kuvk. Conse-

quently, substituting the edge uv by the subpath uwv will not increase
the coverage-distance of the optimum best-coverage-path. It then fol-
lows that there is an optimum best-coverage-path such that it only uses
the edges of the relative neighborhood graph RNG(S).

Notice that, originally, we thought that the following simpler proof2

is sufficient to confine the search space to the relative neighborhood
graph RNG(S ). For every edge uv of an optimum best-coverage-
path, if there is a sensor w inside the lune lune(u; v), we can substi-
tute edge uv by the subpath uwv because of max(1

2
kuwk; 1

2
kwvk) �

1
2
kuvk. However, this claim is erroneous because the coverage-

distance of edge uv could be much smaller than 1
2
kuvk. Thus,

max( 1
2
kuwk; 1

2
kwvk) � 1

2
kuvk is not sufficient to show that substi-

tuting the edge uv by the subpath uwv will not increase the coverage-
distance of the optimum best-coverage-path.

Since there is no sensor node inside the disk using a Gabriel edge
uv as diameter, the coverage-distance of the Gabriel edge uv is exactly
1
2
kuvk, which is achieved at the midpoint of the edge uv. For an edge

uv of the relative neighborhood graph, same reasoning holds.

V. CONCLUSION

In this paper, we discussed efficient algorithms to find a path with
maximum observability under a general assumption of the sensing
model. We proved that it is the same as the best coverage problem,
which can be solved by an efficient distributed algorithm using the rel-
ative neighborhood graph. In addition, we considered some extensions
of the best coverage problem: to find a path with the best-coverage-
distance while the total energy consumed by this path is minimized
among all optimum best-coverage-paths; to find a path with the best-
coverage-distance with the total length of edges of this path is no more
than 2:5 times the shortest best-coverage-path. We gave efficient dis-
tributed algorithms for both extended problems. We also justified the
correctness of the algorithm proposed by Meguerdichian, et al. [1]
using the Delaunay triangulation to solve the best coverage problem.
Moreover, we showed that the search space of the best coverage prob-
lem can be confined to the relative neighborhood graph, which can be
constructed locally. We leave it as an open problem to find a path with
the maximum all-sensor observability.
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