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Figure 1: Representation of a 3D model as a document and the subsequent model reconstruction.

ABSTRACT
A common representation of a three dimensional object is a multi-
view collection of two dimensional images showing the object
from multiple angles. This technique is often used with document
repositories such as collections of engineering drawings and gov-
ernmental repositories of design patents and 3D trademarks. It is
rare for the original physical artifact to be available. When the
original physical artifact is modeled as a set of images, the resulting
multi-view collection of images may be indexed and retrieved us-
ing traditional image retrieval techniques. Consequently, massive
repositories of multi-view collections exist. While these reposito-
ries are in use and easy to construct, the conversion of a physical
object into multi-view images results in a degraded representation
of both the original three dimensional artifact and the resulting
document repository. We propose an alternative approach where
the archived multi-view representation of the physical artifact is
used to reconstruct the 3D model, and the reconstructed model is
used for retrieval against a database of 3D models. We demonstrate
that document retrieval using the reconstructed 3D model achieves
higher accuracy than document retrieval using a document image
against a collection of degraded multi-view images. The Princeton
Shape Benchmark 3D model database and the ShapeNet Core 3D
model database are used as ground truth for the 3D image collection.
Traditional indexing and retrieval is simulated using the multi-view
images generated from the 3D models. A more accurate 3D model
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search is then considered using a reconstruction of the original 3D
models from the multi-view archive, and this model is searched
against the 3D model database.
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1 INTRODUCTION
Document repositories that rely on physically reproducible copies
of documents, such as paper and pdf representations, make conces-
sions when attempting to describe physical objects. These object
descriptions are comprised of multiple representative images drawn
to show the likeness of the object from different viewpoints.

Rather than rely on traditional multi-view document represen-
tations of the original object, we reconstruct the object as a 3D
model using only the multiple viewpoint images in the original
document collection. The resulting reconstructed model provides
a new representation of the object that is closer to the original
model. Consequently, it is possible to more accurately search the
document repository using reconstructed model than it is to search
the individual images in the document repository directly.

https://doi.org/10.1145/1122445.1122456
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This approach may be applied to many governmental databases
of 3D objects which describe Patents, Industrial Designs, and Trade-
marks as a set of images. These documents contain a textual de-
scription of the object and a set of representative images of the
object. The United States Patent and Trademark Office (USPTO)
issues design patents in this format. For a design patent "[t]he draw-
ings or photographs should contain a sufficient number of views
to completely disclose the appearance of the claimed design, i.e.,
front, rear, right and left sides, top and bottom." [18]

The method proscribed by the USPTO for searching for design
patent documents[17] is to identify the proper classification for the
invention and then manually review all of the documents assigned
to that classification. This method is both time consuming and
prone to error since documents may not be assigned to the most
obvious classification.

Standard image feature techniques, such as Scale Invariant Fea-
ture Transformation (SIFT), transform an image into a list of impor-
tant features. While these image features capture some details of
the model from different vantage points, the image representations
contain only information within the silhouette of the image. Any
surface variation cues, such as contours or shape information, are
represented by line patterns, shading, and hatching marks. The
placement of these indicators is in some sense arbitrary and may
vary in pattern and spacing. The model may have artistic shading
and patterns applied to the model surface. No differentiation is
made between details that are visual elements of the model and
surface variation cues.

Additionally, the collection of images fails to represent how these
images interrelate. This is evident in SIFT’s inability to generalize
the rotation of an object within an image beyond 20 degrees[15].
Given that most objects are represented as a set of six images, this
limits SIFT’s ability to recognize details that cross the transition
from one silhouette to the next. Details such as surface contours are
lost in the transition from one silhouette to another. No information
is available in the image sets to relate features or contours across
the image silhouette’s boundaries.

The external boundary of the silhouette presented in the docu-
ment representation provides a definitive boundary between the
area contained within the model and the area outside of the model.
None of the visual ambiguity of surface details are present since
the silhouette provides a binary model/not model distinction. By
reconstructing the object from a multi-view collection of the exter-
nal boundary of the image silhouettes, surface details and contours
may be generated that provide enough detail for 3D model retrieval
and reconstruction of a 3D model database. These 3D methods of
comparison provide a better assessment of similarity than image
retrieval methods applied directly to the multi-view images.

We validate the following hypotheses:
H1: The reconstructedmodel is sufficiently similar to the original

model to allow retrieval.
H2: The retrieval of the reconstructed 3D models provides a

more accurate search than standard image based retrieval methods.
By validating these hypotheses, we demonstrate at least an initial

step towards improving the current design patent search approach
and a better utilization of existing document repositories.

2 RELATEDWORK
Our effort involves the reconstruction of 3D models from images.
We also involve 3D retrieval techniques applied to reconstructed
models to existing multi-view image retrieval techniques. The fol-
lowing papers are representative work in these areas.

2.1 Reconstruction of 3D from images
A separate body of work focused on reconstruction of 3D mod-
els from images. These methods seek a 3D reconstruction of an
object through a combination of geometric matching and seman-
tic/functional analysis of each view[1]. This is typically taken from
vertex and face reconstruction derived from multiple engineering
drawings. Similar approaches [8, 23] look to combine features from
the image with extruded volumes estimated from the drawings.
These methods use hidden lines and face reconstruction techniques
to facilitate final construction of the objects.

Idesawa [10] uses the outer profiles of isometric drawing objects
to extrude the parts before further refining the object. These views
are then intersected to produce a final volume. This paper is fo-
cused primarily on generating polyhedra where the CAD drawings
contain no additional surface detail.

Tanaka [25] attempts to produce 3D reconstructions from 2D
assembly drawings, rather than renderings of the model from dif-
ferent images. Silhouettes are used to make the wireframe models
of the 3D assemblies. All 2D vertices and edges that can exist as
silhouettes are drawn in the 2D drawings and are used to create
simple shapes that may be combined to create the final object. The
method requires assembly drawings in which both individual parts
and part sizes are annotated to disambiguate the final 3D design.

Cao [6] presents a method of transforming an isometric view of a
planar object into a 3D object by inferring hidden topological struc-
tures. Each hidden face is assumed to correspond to a visible face
and creates objects with symmetry. Multiple possible hidden struc-
tures for a shape are explored, and the shape with the minimum
standard deviation of all angles is considered to be the best candi-
date for a 3D construction. While reconstruction may be achieved
form a single drawing, the method does not apply to figures where
the hidden faces and visible faces do no share symmetry.

2.2 2d retrieval and patent CBIR systems
Representing a physical object as a collection of images was an ac-
ceptable format when the total number of documents was relatively
small and could be reviewed by manual inspection. As the number
of documents increases the ability to manually retrieve relevant
documents becomes more difficult. Automated methods attempt to
search these documents[5] by first isolating the representative im-
ages in the documents and then applying image retrieval techniques
to create a set of searchable features for each document. These fea-
tures are constructed using standard techniques (such as SIFT[15],
SURF[4], and Fourier Transform[12]). Given this technology, re-
trieval of physical objects is reduced to image retrieval provided
the images adhere to the same standards. It is not possible to search
across collections where the image submission requirements differ
since consistent feature vectors are not possible.

Zeng [27] provides a synthesis design patent image retrieval
method based on shape and color features. These moment invariant
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features are indexed and query images are retrieved from the col-
lection. The collection is a set of color images taken from fixed view
under constant lighting conditions and does not address rotation
or view invariant features when comparing design similarity.

While noting "design patent verification based on manual com-
parison is too labor-intensive, time-consuming and subjective"
Zhu [29] uses Block-wise Dense SIFT (Block-DSIFT), Pyramid His-
tograms of Orientation Gradients (PHOG), and GIST as image fea-
tures. Features are extracted from the representative design images
and clustered using K-Means and finally combined into an aggre-
gate feature for retrieval. The paper requires all designs images to
be taken from a consistent view and does not address scaling or
rotation invariant features.

Lee [12] searches 3D trademarks comprising a collection of im-
ages. Discrete Fourier transform (DFT) is used create the image
feature for retrieval. The paper addresses rotation of the images
by creating an additional set of rotated database images for each
original image resulting in a much larger database.

A trademark content based image retrieval systemwas announced
by the World Intellectual Property Organization[16] to provide im-
age searching for over 4 million images within the database. The
site allows retrieval to be filtered based on the shape, color, and
texture of a sample image provided by the user. No details are given
about the underlying algorithm.

An interesting variation on the standard image retrieval tech-
niques is Su’s use of 3D models to generate a multi-view image
collection [24]. This work takes a 3D model and uses twelve gener-
ated multi-view images as input to a CNN to create a feature vector
for the 3D model. In effect, the feature vector used for retrieval is a
combination of multiple image feature vectors. If the database and
query images are not constructed from a consistent set of views
this method may not be applied.

2.3 3D model retrieval
Knopp [11] describes the extension of SURF to be used in the context
of 3D shapes. The 3D model is voxelized and the 3D SURF descrip-
tors are generated therefrom. The 3D SURF descriptors may used
as features for retrieval or combined in an aggregate feature vector.
This method is similar to the use of Fast Point Feature Histograms
described in this paper.

Li [14] and Bai[3] propose 3D shape retrieval methods that de-
construct a model into a set of multi-view images to be fed to a
CNN to create a feature vector. These method deconstruct the 3D
model into a set of depth images which are then used to generate
the feature vector. These methods require the original model in
order to generate the depth imagesand do not apply to existing
image document repositories.

Furuya[9] deals directly with 3D models by sampling a set of
Rotation Normalized Grids (RNG) features which are then fed into
a CNN for refinement and final classification.

Wang[26] uses the Princeton Shape Benchmark data set and
free form sketches collected from the Mechanical Turk. A Siamese
CNN is fed both the sketch and a model from either a matching or
different classification. The resulting CNN takes a sketch as input
and generates a feature vector which is used to match the sketch
to 3D models from the collection.

With the exception of Knopp, the above methods use CNNs to
take in images or models and generate a final feature vector. Since
this paper focuses on both the conversion of 2D images into 3D
models as well as searching of 3D models, our focus was to validate
retrieval using the reconstructed models. The choice to use direct
feature generation over neural network feature generation was
made to established a baseline for 2D and 3D retrieval methods
from document repositories. Once this baseline is established, future
optimization using neural networks is expected to provide stronger
support for the methods described in this paper.

3 DATA SETS
3.1 Princeton Shape Benchmark
The Princeton Shape Benchmark[22] provides a repository of 3D
models and software tools for evaluating shape-based retrieval and
analysis algorithms. The Benchmark contains a database of 1,814
3D polygonal models collected from the Internet. The database
is divided into a training set of 907 models and a testing set of
907 models. The data set divides the models according to several
categorization schemes. The most specific categorization has 53
categories while the broad categorization has 7 high level categories.
There is an additional coarse classification which provides a binary
split betweenmanmade and natural objects. The data set is available
at http://shape.cs.princeton.edu/benchmark/.

3.2 ShapeNet Core
ShapeNet Core[7] is a large-scale data set of 3D shapes collected by
researchers at Princeton University, Stanford University, and the
Toyota Technological Institute at Chicago (TTIC). There are around
51,300 unique 3D models organized using the WordNet Hierarchy.
The data set has 35,765 training models, 5,519 validation models,
and 10,266 testing models. ShapeNet Core covers 55 synset common
object categories (e.g., airplanes) and 205 refined sub-synset subcat-
egories (e.g., fighter jet). The full title of the sub-synset category
n03335030 is identified using the WordNet hierarchy giving the
title "Fighter, fighter aircraft, attack aircraft" This data set was used
to benchmark 3D tasks such as 3D model segmentation, 3D shape
retrieval, and 3D model reconstruction from single images. The
data set is available at https://shapenet.cs.stanford.edu/shrec16/.

4 EXPERIMENTAL METHODS
An issue in analyzing 3D model retrieval using reconstructed im-
ages is identifying a ground truth from which to base the retrieval
analysis. Many image retrieval databases exist but lack the corre-
sponding 3D models. To resolve this, we use a 3D model database
and synthetically create the multi-view images therefrom. This
provides the ground truth for the models and an original model
against which to compare the reconstructed model.

The Princeton Shape Benchmark and ShapeNet Core bench-
marks are used to provide the base models for reconstruction. To
simulate a 2D document repository and compare retrieval accuracy
of the image based retrieval against the 3D model based retrieval,
the data sets are first degraded into multi-view sets of images. These
images are used in the image based retrieval analysis. The images
are then used to reconstruct the 3D models for comparison against
the actual models in the database.
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4.1 Converting ground truth to 6-View
The multi-view set of images is constructed from data sets by first
scaling the ground truth 3D models to one unit length along the
principle axis, then centering the object within a one unit cube.
This provides a uniform scaling for objects that may have been
created at different scales and sizes. Since the scaling is only with
respect to the principle axis there is no distortion of the resulting
model. Virtual cameras are placed in a position to view each face of
the unit cube, and images are generated from each camera creating
a 6-view representation of the model.

The images generated from the ground truth 3D model provide
a set of image data that closely represent the document format used
in government repositories. The categorization and meta-data from
the original 3D model is applied to each of these generated images
to create the final annotated 6-view image data set.

4.2 6-View as the basis for image retrieval
Given a set of multi-view images, such as those of the Stanford
University Bunny in Figure 2, the first step in retrieval is to construct
a feature vector representation of each image. This serves as a
primary point of analysis when comparing the similarity of multiple
images. SIFT is a common tool to accomplish this goal.

SIFT is an algorithm to create Scale Invariant Feature Transfor-
mations that identifies key points in an image using corners and
color gradients. A 16x16 region around the key point is divided
into 4x4 subregions, and an orientation histogram is created. The
collection of orientation histograms from the subregions is the basis
for the 128 bin feature vector for that SIFT key point. An average
of 1,300 SIFT features are generated per model. Because retrieval
focuses on matching full images and not locating one image within
another image, there is no need to restrict feature matching to only
the features with a valid projection from one image to another. The
full set of features for each image may be considered.

The first step is to construct a codebook[19] of SIFT features. Us-
ing the training split for the data set, the SIFT features are grouped
into k different clusters using the standard k-means algorithm. Each
cluster represents a grouping of similar SIFT features, and the clus-
ter center is an entry into the codebook. All of the members of a
cluster are more similar to each other than they are to SIFT features
in other clusters.

Once the k clusters are established, the SIFT features for each
individual image are categorized by cluster c and assigned to the
codebook. Each feature fp is assigned to the cluster whose center
ci is the minimum Euclidean distance to the SIFT feature fp .

ci =
{
fp :



fp −mi


2 ≤



fp −mj


2 ∀j, 1 ≤ j ≤ k

}
,

The count of features fp assigned to the various cluster centers
ci may be viewed as a histogram of k bins containing the distri-
bution of the SIFT features fp over the cluster. Since each image
may have a different numbers of features, the cluster histogram is
normalized such that the sum of the count of all histogram bins is
equal to one. The normalized cluster histogram may now be used as
a feature vector to describe each image. Similar images have similar
normalized features clusters. Dissimilar images have different SIFT
features and thus different normalized cluster distributions. For the
six images generated for a given model the six cluster histograms

are combined before normalization resulting in a single feature
vector for the model encompassing all six images. All comparisons
against other models use the combined cluster histograms.

To retrieve models from the data set, cosine similarity is used to
compare the query model’s feature vector to the feature vectors of
the models in the data set. Models are ranked from smallest cosine
distance to largest cosine distance.

4.3 3-View model reconstruction
The method used to reconstruct the 3D models from the 3-view
images is the intersection of the silhouettes of three orthogonal
faces taken from the multi-view image set. By using the silhouettes,
the generated model will not exceed the visual hull boundary of the
original object. While there are issues with occlusions and some
fine details, the resulting model is sufficient to form a basis for
3D model searching. By using silhouettes for reconstruction, the
top/bottom silhouettes are mirror images, as are the front/back
and left/right images. Only three orthogonal views are required to
reconstruct the model. These three images form the primary faces
of the image set and are necessary to reconstruct the model.

The selected primary face silhouettes are linearly extruded into
3D surfaces representing themodel as seen from each of the primary
faces. Each of these surfaces represents the possible 3D object as
seen from this orientation. When the three extruded objects are
intersected, a new volume is created that represents the 3D object
as visual hull or maximum possible outline of the actual shape.

Visual Hull = Viewfront ∩ Viewleft ∩ Viewtop

The resulting reconstructed model is the maximum volume that
contains the original model. As shown in Figure 3 (d) the resulting
model recreates the contours and interrelations of the primary
faces as an approximation of the original shape. Figure 4 shows the
deconstruction of a model dinosaur (a) into the 3-views of side (b),
front (c), and top (d) views. The 3-view image used to construct the
2D SIFT feature vectors is shown in green and the silhouette used
to reconstruct the model is shown in gray. The final reconstructed
model (e) is shown in gray.

4.4 Reconstructed model to point cloud
The 3D models provided in both data sets are described as col-
lections of planar polygons, typically triangles. Each polygon or
triangle is a list of vertices in counter-clockwise order that defines
the polygon’s outward pointing surface normal. The face of the
polygon with the outward facing surface normal is considered the
face located on the outside of the surface. When multiple polygons
share vertices, this collection of polygons is considered a surface.

It can be difficult to interpret 3D polygon meshes that do not
strictly follow this guideline. It is common to define polygons with-
out considering the clockwise/counter-clockwise ordering of the
vertices. The result is a surface where the normals of adjacent
connected polygons have normals pointing in different directions.
Additionally, it is not required that models be composed of a single
surface or that adjacent polygons be defined as a single surface.
Since both data sets are collections of models taken from the In-
ternet, there is no strong requirement that the models are single
surfaces or that the surface normals of the polygons are defined
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(a) 6-view document representation of Stanford Bunny.
(b) SIFT key points (in red) identified in the
front view of Stanford Bunny

Figure 2: Retrieval based on the document representation images of the Stanford Bunny. The SIFT key points are
generated for the document representation images and collected as a visual bag-of-words.

(a) Silhouette of the
side of a shoe (b) Extruded silhouette

(c) Intersection of
three extruded silhou-
ettes (d) Reconstructed shoe

Figure 3: Reconstruction of a shoe by extruding and
intersecting silhouettes.

in a uniform manner. This adds complexity to the processing of
models in mesh format.

Converting the mesh representation of a model into point cloud
representation resolves these issues. Point clouds are typically gen-
erated using devices such as 3D scanners and LIDAR imaging to
create a set of 3D points that represent the visible surface of the
object. Rather than representing the model as arbitrarily sized poly-
gons, point clouds describe the model as a set of 3D points arranged
across the surface of the model. While these points do not create a
complete surface representation of the model, they overcome the
discussed difficulties of mesh models.

Using uniform mesh sampling, it is possible to convert a mesh
to a point cloud. The polygons of the mesh model are sampled, and

three dimensional points are created on the surface of the polygons.
The resulting point cloud has three dimensional points distributed
in a pattern that corresponds to the mesh surface. Figure 5 shows
a guitar in the original polygon mesh format and as a uniformly
sampled point cloud.

To create the features used to describe the models, a method
called Fast Point Feature Histograms[20] was chosen. Similar to
SIFT, features of the region surrounding a query point are gathered
and represented as a rotationally invariant descriptor. Points near
the query point are identified, and the difference in orientation
are treated as point features. A histogram of these features for
the k-nearest neighbors is collected and serve as the final feature
histogram. Approximately 2800 features are generated per model.

It is important to generate features that will be helpful in model
identification. Since many shapes would have multiple points with
repeated features, such as all of the points on a plane, it is important
to limit the features generated for a model to those that are globally
distinct and locally non-repetitive. In Intrinsic Shape Signatures[28],
points are chosen based on variance in their eigenvectors to allow
for the most variance along the principle components. This identi-
fies the most distinct key points and allows features to be generated
for only the most descriptive points. This experiment uses the max-
imum number of key points generated by the ISS algorithm.

Once the features for the point cloud are identified, a codebook of
FPFH features based on the ISS key points is generated and grouped
into k different clusters using the k-means algorithm. FPFH fea-
tures for each model are categorized by cluster c and assigned to
the codebook. The count of features fp assigned to the various
cluster centers ci creates a histogram of k bins containing the dis-
tribution of the FPFH features fp over the cluster. The histogram is
normalized and represents the feature vector for the 3D model.

5 EVALUATION
5.1 Timing
Given the above stages outlined for both SIFT and the reconstruc-
tion of the original models, Table 1 shows the per model timings
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(a) Ground truth model (b) Side View
(c) Front
View (d) Top View (e) Reconstructed Model

Figure 4: Transformation of ground truth model to reconstructed model using 3-view silhouettes. The green views
are images used to construct the SIFT feature vector and the gray views are used to reconstruct the 3D model.

(a) Polygon mesh (b) Point cloud

Figure 5: A polygon mesh uniformly resampled as a
point cloud. With respect to the mesh, the gray surfaces
have normals facing outward and black surfaces have

normals facing inward.

for each task (in seconds). The processes were run on an 8-core
Intel i7 with 64GB ram. The processes did not leverage the graphics
card. The generation time includes all transformations from origi-
nal model, the creation of the SIFT and FPFH features, the average
time per model for the k-means clustering of the features, and the
construction of the image and model feature vectors. Additionally,
the time taken to compare two models is considered. Based on the
Princeton Shape Benchmark methodology, the comparison time is
the comparison of the query feature vector with the target feature
vectors. The comparison time does not include the time required to
construct the query feature vector from the query model.

SIFT Reconstruction
Create 6-view 0.2055 0.2055
Create SIFT 0.4615

Image feature vector 0.0474
Reconstruct Model 0.0260
Create point cloud 0.0461

Create FPFH 1.7679
Model feature vector 3.3675
Generation Time 0.6679 5.4130

Comparison Time: 0.0040 0.0038

Table 1: Timing for the conversion of ground truth
models to SIFT and FPFH feature vectors (in seconds)

per model for each step of the process.

5.2 Similarity of the reconstructed models
The method used for comparing the error between two models is
based on the observation that two identical models S and S ′ will
have corresponding points in each model. If the two models are
overlaid, the distance from a point in p ∈ S to the closest point
p′ ∈ S ′ would be zero. If S ′ were perturbed by altering the position
of p′, the euclidean distance between p and p′ would increase.
Therefore the minimum distance between a point p ∈ S and a
model S ′ would be the minimum distance from p to all points
p′ ∈ S ′ where

d(p, S ′) =minp′∈S ′ ∥p − p′∥

Since models S and S ′ may not contain the same number of points,
the error in distance from S to S’ is not symmetrical to the error in
distance between S’ and S. The total error between models S and
S ′ is root mean sum of squared distances from all points in S to the
model S ′ and from all points in S ′ to the model S:

RMSSD(S,S ′) =

√∑
p∈S d(p, S ′)2 +

∑
p′∈S ′ d(p′, S)2

|S | + |S ′ |

The RMSSD between two models provides an error metric where
small errors represent models with similar shapes and structures
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and large errors for models with very different shapes and struc-
tures. Since the RMSSD relies on a) the minimum distance between
a point and amodel and b) both the distance fromp ∈ S to S ′ and the
distance from p′ ∈ S ′ to S , it provides a symmetrical distance mea-
sure [2] where RMSSD(or iдinal,r econstructed) = RMSSD(S ′,S ).

For eachmodel, the original model S was compared against the re-
constructed model S ′ using RMSSD(S ∈Original,S ′∈Reconstructed), and
the average over all original/reconstructed pairs was taken. The
RMSSD between the original model and the reconstructed model
(Table 3) shows an average error of 0.0369 for the Princeton Shape
benchmark and 0.0340 for ShapeNet Core.

5.3 Comparison of models within same
classifications

Both the Princeton Shape Benchmark and the ShapeNet Core data
sets contain a coarse and a fine level of classification. The most
narrow classification covers a specific grouping such as "winged
vehicle" in the Princeton Shape Benchmark and "Fighter Jet" within
the ShapeNet Core. These models, placed within the same classifi-
cation, are the most similar models within the data sets. The broad
classification provides an umbrella under which several narrow clas-
sifications may be collected. The Princeton Shape Benchmark uses
"Vehicle" to describe the collection of narrow classifications such
as "Winged Vehicles", "Sea Vessels", and "Car". The ShapeNet Core
data set uses "Airplanes" to describe a collection of classifications
such as "Biplane", "Fighter Jet", "Sea Plane", and "Transport Plane". It
should be noted broad ShapeNet Core classification contains 55 cat-
egories and the Princeton Shape Benchmark narrow classification
contains 53 categories. The broad classification of the Princeton
Shape Benchmark is overly broad and is nearly indistinguishable
from the full data set.

These numbers provide strong evidence that the reconstructed
models are strongly similar to the original models when comparing
the average RMSSDs of models within the same class. These classi-
fications group models that should, in theory, be similar and show
lower RMSSD when compared to each other than when compared
to models in the broader classifications. This hierarchy provides
three different levels of granularity with which we can compare
the RMSSDs of the models (Table 2).

When all models are compared against each other the similar-
ity is minimal. The average RMSSD for the data set includes the
averages of each model against each other model in the data set
without regard for classification. The average RMSSD across all
models provides an upper bound to the similarity of the models.
It should be noted that the standard deviations are closer to 20%
greater in the reconstructed models when compared to the standard
deviation of the original models. This confirms the reconstructed
model has a slightly more general shape than the original model.

By showing the RMSSDs of the reconstructed models track the
RMSSDs of the original models for each level of classification, we
have established a strong correlation between the original model
structure and the reconstructed model structure. In addition to
showing strong support for RMSSD as a valid measure of model
similarity, this data also details the strong similarity between the
original model and the reconstructed model. This suggests that

any method of retrieval that provides strong results on the original
models will also provide strong results on the reconstructed models.

First, the RMSSD of the original and the reconstructed model
pairs is 64% lower than the RMSSD within both the narrowly clas-
sified original models and the narrowly classified reconstructed
models. Comparing the RMSSD of reconstructed model pairs shown
in Table 3 and the RMSSD of the narrow classifications in Table
2 strengthens previous observations about the similarity of the
original model to the reconstructed model. If the reconstructed
model pairs have an RMSSD greater than the RMSSD of the narrow
classification, the reconstruction would alter shape and structure of
the original model beyond that of models deemed most similar. If
the reconstructed model pairs have an RMSSD on the order of the
RMSSD of the narrow classification, then the reconstruction would
create a model that was indistinguishable from the other models
within the class. If this were not the case, the difference between
the RMSSDs of the narrowly classified original models and the
narrowly classified reconstructed models would be much greater.
The data shows an even stronger relationship than this. Since the
reconstructed model pairs have an RMSSD that is 64% smaller than
the RMSSD of the narrow classifications, the reconstructed models
are much more similar to the original model than the original model
is to the rest of the model’s class. Additionally, the reconstructed
model is twice as distinct from the narrowly classified models as
the narrowly classified models are from the data set in general.

5.4 Model retrieval
The feature vector for the document representation / SIFT features
and the reconstructed model / FPFH features are defined as a code
book constructed using k-means. For this evaluation code books
are constructed where the number of clusters is defined by k =
[32, 64, 128, 256, 512, 1024]. Both sets of feature vectors are created
over all k cluster sizes for each reconstructed model. For each of
these sets of features,the cosine distance between all of the feature
vectors is calculated and the resulting comparisons are ranked from
closest (most similar) to furthest (least similar).

The resulting mean average precision across both data sets is
shown in Table 4. Retrieval using the reconstructed models consis-
tently performs stronger than retrieval using the document repre-
sentation. For the Princeton Shape Benchmark, FPFH (k = 128) has
the top MAP of 0.1967 and SIFT (k = 64) has the top MAP of 0.1725.
For ShapeNet Core, FPFH (k = 32) has the top MAP of 0.3008 and
SIFT (k = 32) has the top MAP of 0.2570. For both data sets, the
reconstructed model retrieval provides more accurate results than
retrieval using the document representation.

5.5 Evaluation of Princeton Shape Benchmark
models

The following evaluations are provided in the Princeton Shape
Benchmark paper[22] for comparison of model shape descriptors:

• Nearest neighbor: the percentage of the closest matches
that belong to the same class as the query. This statistic pro-
vides an indication of how well a nearest neighbor classifier
would perform.

• First-tier and Second-tier: the percentage of models in the
query’s class that appear within the top K matches, where
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Data Set Model Type Narrow Class Broad Class All Models
RMSSD std dev RMSSD std dev RMSSD std dev

Princeton original 0.0859 0.0776 0.1194 0.1335 0.1311 0.1216
Shape Benchmark reconstructed 0.0945 0.09815 0.1328 0.1540 0.1418 0.1394
ShapeNet Core original 0.0875 0.0497 0.0892 0.0495 0.1249 0.0876
(testing set) reconstructed 0.0939 0.0602 0.0974 0.0618 0.1337 0.1179

Table 2: Root Mean Squared Sum of Distances comparison of models within their own class and with models from
the entire data set. Smaller numbers show a higher model similarity.

RMSSD std dev
Princeton Shape Benchmark 0.0369 0.0349

ShapeNet Core 0.0340 0.0300

Table 3: Root Mean Sum of Squared Distances Error in
reconstruction of models from ground truth.

K depends on the size of the query’s class. Specifically, for
a class with |C| members, K = |C | − 1 for the first tier, and
K = 2 ∗ (|C | − 1) for the second tier.

• E-Measure: a composite measure of precision and recall that
considers only the first 32 retrieved models for every query
and calculates the precision and recall over those results.

• DiscountedCumulativeGain (DCG): a statistic that weights
correct results near the front of the list more than correct
results later in the list under the assumption that a user is
less likely to consider elements near the end of the list.

• Normalized (DCGa ): This provides a normalized DCG by
comparing the DCG of model a to the average DCG (Aver-
ageDCG) for the models compared in the paper, scaling the
DCG values to a percentagewith relation to the average. Posi-
tive/negative normalized DCG scores represent above/below
average performance, and higher numbers are better

NormalizedDCGa =
DCGa

AveraдeDCG − 1

Within the statistics provided for the Princeton Shape bench-
mark evaluation (Table 5), the reconstructed models with FPFH
(k = 128), provided the strongest results across most measurements
and performed better than the strongest document representation
with SIFT (k = 64) and SIFT (k = 128) both providing the highest
measurements. The measurements across these representations
confirms the results provided in Table 4, showing an advantage to
the use of the reconstructed models over the document representa-
tion. It should be noted that the highest DCG for the data set was
seen with FPFH (k = 32) and SIFT (k = 32).

When compared to the more specialized feature representations
outlined in this paper, the direct SIFT and FPFH feature repre-
sentations still outranked one third of the original methods. The
generation time and the comparison time for both the model re-
construction and document representation were greater than the
methods presented in the Princeton Shape benchmark paper. Opti-
mization for these factors was not a consideration in this paper.

5.6 Evaluation of ShapeNet Core models
Of themodels used for shape retrieval of 3Dmodels in the SHREC’17
Track[21], 7 were based on deep learning and neural networks while
only a single model was based on feature vector matching[13].
Participants were asked to return a ranked list of retrieved models
for each query model in a given set, where the target models to be
retrieved included the query model itself.

The results for the ShapeNet Core evaluations are provided as a
query model followed by an ordered list of matching models with
a relevance score, in order from closest match to furthest match.
For the evaluations listed in the SHREC’17[21] benchmark, the top
1000 matches were considered. In this paper, only the original data
set is considered and the perturbed data set is unused.

The following is a list of the criteria used to evaluate the partici-
pants in this track:

• Precision: The number of true positives divided by the true
positives plus the true negatives.

• Recall: the number of true positives divided by the true
positives plus the false negatives.

• F-score: Precision times recall over by precision plus recall.
• Mean Average Precision (mAP): Mean average precision,
average of the precision@k for all results from 1 to N.

• NormalizedDiscountedCumulativeGain (NDCG): The
NDCG metric uses a graded relevance: 3 for perfect category
and subcategory match, 2 for category and subcategory both
being same as the category, 1 for correct category and a
sibling subcategory, and 0 for no match. This is an attempt
at capturing graded relevance between 3D models.

• Micro and Macro Averaged: Micro-averaged scores are
treated equally across categories and macro-averaged scores
give an unweighted average over the entire data set.

The ShapeNet Core evaluation (Table 6) shows the reconstructed
models with FPFH (k = 32) provides the strongest results across
most measurements and performs better than the strongest doc-
ument representation with SIFT (k = 32) and SIFT (k = 64) both
providing the highest measurements. This evaluation also confirms
the results provided in Table 4, showing an advantage to the use of
the reconstructed models over the document representation.

The methods detailed in this paper focus on the use of neural net-
works to directly classify the original model set. While the methods
of the ShapeNet Core paper showed a much greater precision and
recall than the methods detailed in this paper, the goal of this paper
was to compare methods relating to the document representation of
3D models and reconstruction of models from this representation.
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Mean Average Precision
Feature Type k = 32 k = 64 k = 128 k = 256 k = 512 k = 1024

Princeton Document Representation / SIFT 0.1704 0.1725 0.1665 0.1510 0.1394 0.1277
Shape Benchmark Reconstructed Model / FPFH 0.1838 0.1772 0.1967 0.1489 0.1503 0.1501
ShapeNet Core Document Representation / SIFT 0.2570 0.2544 0.2385 0.2268 0.2057 0.2119

Reconstructed Model / FPFH 0.3008 0.2865 0.3001 0.2565 0.2535 0.2454
Table 4: Mean Average Precision of model retrieval using SIFT and FPFH features over both data sets. The features

are clustered using a visual bag-of-words code book with cluster sizes of k = [32, 64, 128, 256, 512, 1024]. The bold
MAP scores show the optimal cluster size for each feature and within each data set.

Timing Discrimination
Shape

Descriptor
Storage

Size (bytes)
Generate
Time (s)

Compare
Time (s)

Nearest
Neighbor

First
Tier

Second
Tier E-Measure DCG Normalized

DCGa
SIFT-32 32 0.67 0.003561 32.9% 30.7% 26.7% 13.8% 50.3% -4.7%
SIFT-64 64 0.67 0.004026 34.5% 30.1% 26.4% 12.8% 49.5% -4.8%
SIFT-128 128 0.67 0.003932 33.0% 30.7% 27.0% 12.7% 49.4% -4.8%
SIFT-256 256 0.67 0.004757 30.8% 29.6% 25.2% 11.7% 48.6% -4.9%
SIFT-512 512 0.67 0.003832 26.6% 24.8% 21.3 % 8.8% 46.4% -14.1%
SIFT-1024 1024 0.67 0.003852 27.1% 27.4% 23.6% 10.6% 47.7% -10.2%
FPFH-32 32 5.41 0.004705 34.5% 32.2% 28.3% 14.2% 51.7% -4.6%
FPFH-64 64 5.41 0.003129 35.2% 31.7% 28.1% 13.0% 50.9% -4.7%
FPFH-128 128 5.41 0.003818 36.8% 33.0% 28.7% 14.1% 51.2% -4.6%
FPFH-256 256 5.41 0.003735 30.0% 27.1% 23.7% 8.7% 46.1 % -14.1%
FPFH-512 512 5.41 0.003729 34.3% 29.4% 24.9% 10.4% 47.9% -9.6%
FPFH-1024 1024 5.41 0.003751 29.7% 26.1% 22.0% 9.7% 46.6% -14.0%

LFD 4,700 3.25 0.001300 65.7% 38.0% 48.7% 28.0% 64.3% 21.3%
REXT 17,416 2.22 0.000229 60.2% 32.7% 43.2% 25.4% 60.1% 13.3%
SHD 2,184 1.69 0.000027 55.6% 30.9% 41.1% 24.1% 58.4% 10.2%
GEDT 32,776 1.69 0.000450 60.3% 31.3% 40.7% 23.7% 58.4% 10.1%
EXT 552 1.17 0.000008 54.9% 28.6% 37.9% 21.9% 56.2% 6.0%

SECSHEL 32,776 1.38 0.000451 54.6% 26.7% 35.0% 20.9% 54.5% 2.8%
VOXEL 32,776 1.34 0.000450 54.0% 26.7% 35.3% 20.7% 54.3% 2.4%
SECTORS 552 0.90 0.000014 50.4% 24.9% 33.4% 19.8% 52.9% -0.3%
CEGI 2,056 0.37 0.000027 42.0% 21.1% 28.7% 17.0% 47.9% -9.6%
EGI 1,032 0.41 0.000014 37.7% 19.7% 27.7% 16.5% 47.2% -10.9%
D2 136 1.12 0.000002 31.1% 15.8% 23.5% 13.9% 43.4% -18.2%

SHELLS 136 0.66 0.000002 22.7% 11.1% 17.3% 10.2% 38.6% -27.3%
Table 5: Comparisons of the document representation / SIFT features, the reconstructed models / FPFH features,
and the features presented in the original Princeton Shape Benchmark paper[22]. For consistency and simplicity

of comparison, the abbreviations used in the original paper are maintained here.

6 CONCLUSIONS
The reconstruction of 3D models from a document representation
allows for the recreation and close approximation of the original 3D
model. The reconstructed model is sufficiently similar to original
model to allow for retrieval using point cloud features such as FPFH.

While the document representation lends itself naturally to es-
tablished 2D retrieval methodologies such as SIFT features, retrieval
of the reconstructed 3D models provides stronger results. The re-
construction of the original 3D models not only provides a means
for improved document retrieval but also provides an intermediate
representation by which documents may be compared to other

repositories in different formats. The reconstructed document may
serve as a bridge between 2D and 3D repositories.

REFERENCES
[1] Christian Ah-Soon and Karl Tombre. 1995. A step towards reconstruction of 3-D

CAD models from engineering drawings. In Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on, Vol. 1. IEEE, 331–334.

[2] Nicolas Aspert, Diego Santa-Cruz, and Touradj Ebrahimi. 2002. Mesh: Measur-
ing errors between surfaces using the hausdorff distance. In Proceedings. IEEE
International Conference on Multimedia and Expo, Vol. 1. IEEE, 705–708.

[3] Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and Longin Jan Latecki.
2016. Gift: A real-time and scalable 3d shape search engine. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 5023–5032.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust
features. In European conference on computer vision. Springer, 404–417.



DocEng ’19, September 23-26, 2019, Berlin, Germany Flagg and Frieder

micro macro
Method P@N R@N F1@N mAP NDCG@N P@N R@N F1@N mAP NDCG@N
SIFT32 0.132 0.221 0.150 0.071 0.204 0.038 0.221 0.052 0.058 0.154
SIFT-64 0.132 0.231 0.151 0.072 0.205 0.040 0.260 0.055 0.062 0.158
SIFT-128 0.118 0.203 0.134 0.057 0.185 0.035 0.221 0.048 0.056 0.151
SIFT-256 0.118 0.200 0.134 0.053 0.178 0.034 0.201 0.047 0.050 0.142
SIFT-512 0.107 0.180 0.122 0.042 0.161 0.031 0.187 0.043 0.046 0.136
SIFT-1024 0.111 0.187 0.126 0.046 0.168 0.032 0.195 0.043 0.045 0.132
FPFH-32 0.146 0.236 0.162 0.087 0.245 0.037 0.242 0.052 0.071 0.174
FPFH-64 0.115 0.204 0.130 0.067 0.206 0.034 0.246 0.049 0.070 0.170
FPFH-128 0.138 0.215 0.153 0.081 0.232 0.035 0.199 0.047 0.064 0.164
FPFH-256 0.107 0.174 0.120 0.051 0.178 0.029 0.181 0.039 0.052 0.146
FPFH-512 0.109 0.191 0.124 0.059 0.188 0.032 0.204 0.044 0.058 0.154
FPFH-1024 0.117 0.199 0.132 0.058 0.190 0.033 0.218 0.046 0.056 0.151
Kanezaki 0.810 0.801 0.798 0.772 0.865 0.602 0.639 0.590 0.583 0.656
Zhou 0.786 0.773 0.767 0.722 0.827 0.592 0.654 0.581 0.575 0.657

Tatsuma 0.765 0.803 0.772 0.749 0.828 0.518 0.601 0.519 0.496 0.559
Furuya 0.818 0.689 0.712 0.663 0.762 0.618 0.533 0.505 0.477 0.563
Thermos 0.743 0.677 0.692 0.622 0.732 0.523 0.494 0.484 0.418 0.502
Deng 0.418 0.717 0.479 0.540 0.654 0.122 0.667 0.166 0.339 0.404
Li 0.535 0.256 0.282 0.199 0.330 0.219 0.409 0.197 0.255 0.377
Mk 0.793 0.211 0.253 0.192 0.277 0.598 0.283 0.258 0.232 0.337

SHREC16-Su 0.770 0.770 0.764 0.735 0.815 0.571 0.625 0.575 0.566 0.640
SHREC16-Bai 0.706 0.695 0.689 0.640 0.765 0.444 0.531 0.454 0.447 0.548

Table 6: Evaluation of the document representation / SIFT features, the reconstructed model / FPFH features, and
the features evaluated in the original ShapeNet Core[7] paper. For consistency and simplicity of comparison, the

abbreviations used in the original paper are maintained here.

[5] Naeem Bhatti and Allan Hanbury. 2013. Image search in patents: a review.
International journal on document analysis and recognition 16, 4 (2013), 309–329.

[6] Liangliang Cao, Jianzhuang Liu, and Xiaoou Tang. 2005. 3D object reconstruction
from a single 2D line drawing without hidden lines. In Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Conference on, Vol. 1. IEEE, 272–277.

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D
Model Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford Uni-
versity — Princeton University — Toyota Technological Institute at Chicago.
https://shapenet.cs.stanford.edu/shrec17/.

[8] Adem Çıçek and Mahmut Gülesın. 2004. Reconstruction of 3D models from 2D
orthographic views using solid extrusion and revolution. Journal of materials
processing technology 152, 3 (2004), 291–298.

[9] Takahiko Furuya and Ryutarou Ohbuchi. 2016. Deep Aggregation of Local 3D
Geometric Features for 3D Model Retrieval.. In BMVC. 121–1.

[10] Masanori Idesawa. 1973. A system to generate a solid figure from three view.
Bulletin of JSME 16, 92 (1973), 216–225.

[11] Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte, and Luc Van Gool. 2010.
Hough transform and 3D SURF for robust three dimensional classification. In
European Conference on Computer Vision. Springer, 589–602.

[12] Chu-Hui Lee and Liang-Hsiu Lai. 2017. Retrieval of 3D Trademark Based on
Discrete Fourier Transform. In International Conference on Mobile and Wireless
Technology. Springer, 620–627.

[13] Bo Li and Henry Johan. 2013. 3D model retrieval using hybrid features and class
information. Multimedia tools and applications 62, 3 (2013), 821–846.

[14] H Li, T Zhao, N Li, Q Cai, and J Du. 2017. Feature matching of multi-view 3d
models based on hash binary encoding. Neural Network World 27, 1 (2017), 95.

[15] David G Lowe. 1999. Object recognition from local scale-invariant features. In
iccv. Ieee, 1150.

[16] World Intellectual Property Office. 2014. WIPO Launches Unique Image-
Based Search for Trademarks, Other Brand Information. https://www.wipo.
int/pressroom/en/articles/2014/article_0007.html. Media Center, May 2014.

[17] United States Patent and Trademark Office. 2017. https://www.uspto.gov/sites/
default/files/documents/7%20Step%20US%20Patent%20Search%20Strategy%
20Guide%20%282016%29%20Long%20Version.pdf. June 29th, 2017.

[18] United States Patent and Trademark Office. 2019. Design Patent Appli-
cation Guide. https://www.uspto.gov/patents-getting-started/patent-basics/
types-patent-applications/design-patent-application-guide. February 3rd, 2019.

[19] Guoping Qiu. 2002. Indexing chromatic and achromatic patterns for content-
based colour image retrieval. Pattern Recognition 35, 8 (2002), 1675–1686.

[20] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast point feature
histograms (FPFH) for 3D registration. In 2009 IEEE International Conference on
Robotics and Automation. IEEE, 3212–3217.

[21] Manolis Savva, Fisher Yu, Hao Su, Asako Kanezaki, Takahiko Furuya, Ryutarou
Ohbuchi, Zhichao Zhou, Rui Yu, Song Bai, Xiang Bai, et al. 2017. Large-scale
3D shape retrieval from ShapeNet Core55: SHREC’17 track. In Proceedings of the
Workshop on 3D Object Retrieval. Eurographics Association, 39–50.

[22] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. 2004. The
princeton shape benchmark. In Shape modeling applications, 2004. Proceedings.
IEEE, 167–178.

[23] Simon SP Shum, WS Lau, Matthew Ming-Fai Yuen, and Kai-Ming Yu. 2001. Solid
reconstruction from orthographic views using 2-stage extrusion. Computer-Aided
Design 33, 1 (2001), 91–102.

[24] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015.
Multi-view convolutional neural networks for 3d shape recognition. In Proceed-
ings of the IEEE international conference on computer vision. 945–953.

[25] Masaji Tanaka, Laurence Anthony, Toshiaki Kaneeda, and Junji Hirooka. 2004. A
single solution method for converting 2D assembly drawings to 3D part drawings.
Computer-Aided Design 36, 8 (2004), 723–734.

[26] Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3d shape retrieval using con-
volutional neural networks. In Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference on. IEEE, 1875–1883.

[27] Zhiyuan Zeng and Wenli Yang. 2012. Design Patent Image Retrieval Based on
Shape and Color Features. JSW 7, 6 (2012), 1179–1186.

[28] Yu Zhong. 2009. Intrinsic shape signatures: A shape descriptor for 3d object recog-
nition. In 2009 IEEE 12th International Conference on Computer Vision Workshops,
ICCV Workshops. IEEE, 689–696.

[29] Lei Zhu, Hai Jin, Ran Zheng, Qin Zhang, Xia Xie, andMingrui Guo. 2011. Content-
based design patent image retrieval using structured features and multiple feature
fusion. In Image and Graphics (ICIG), 2011 Sixth International Conference on. IEEE,
969–974.

https://shapenet.cs.stanford.edu/shrec17/
https://www.wipo.int/pressroom/en/articles/2014/article_0007.html
https://www.wipo.int/pressroom/en/articles/2014/article_0007.html
https://www.uspto.gov/sites/default/files/documents/7%20Step%20US%20Patent%20Search%20Strategy%20Guide%20%282016%29%20Long%20Version.pdf
https://www.uspto.gov/sites/default/files/documents/7%20Step%20US%20Patent%20Search%20Strategy%20Guide%20%282016%29%20Long%20Version.pdf
https://www.uspto.gov/sites/default/files/documents/7%20Step%20US%20Patent%20Search%20Strategy%20Guide%20%282016%29%20Long%20Version.pdf
https://www.uspto.gov/patents-getting-started/patent-basics/types-patent-applications/design-patent-application-guide
https://www.uspto.gov/patents-getting-started/patent-basics/types-patent-applications/design-patent-application-guide

	Abstract
	1 Introduction
	2 Related work
	2.1 Reconstruction of 3D from images
	2.2 2d retrieval and patent CBIR systems
	2.3 3D model retrieval

	3 data sets
	3.1 Princeton Shape Benchmark
	3.2 ShapeNet Core

	4 Experimental Methods
	4.1 Converting ground truth to 6-View
	4.2 6-View as the basis for image retrieval
	4.3 3-View model reconstruction
	4.4 Reconstructed model to point cloud

	5 Evaluation
	5.1 Timing
	5.2 Similarity of the reconstructed models
	5.3 Comparison of models within same classifications
	5.4 Model retrieval
	5.5 Evaluation of Princeton Shape Benchmark models
	5.6 Evaluation of ShapeNet Core models

	6 Conclusions
	References

