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Distributed Recommenders 

• Distributed Approaches are needed when: 
• Dataset does not fit into memory 
• Need for processing exceeds what can be provided with a 

sequential algorithm 
• Traditionally distributed data mining algorithms were very time 

consuming to implement 
• Map-Reduce framework can reduce complexity 
• Mahout uses the Hadoop Map-Reduce framework 

• Slope-one (already implemented in Mahout) 
• Distributed Nearest Neighbor 

• User-Based 
• Item-Based 

 



Overview of Hadoop 

• Hadoop is an Apache project comprised of a distributed 
filesystem (HDFS) and a MapReduce [1] engine 

• Hadoop enables applications to more easily distribute large 
computations across a cluster of Hadoop nodes 

• HDFS breaks files into chunks, which are stored across nodes.  
This is needed since a typical data file used on a Hadoop 
cluster is larger than a single disk on the cluster.  

• Generally multiple copies of each chunk are kept across 
different nodes for redundancy and efficiency 

• A job tracker executes MapReduce jobs against data stored in 
HDFS 



MapReduce 

• MapReduce is a software framework for distributing 
computations across a cluster of computers 

• Mappers and reducers are processes on the node that 
perform map and reduce steps, respectively 

• Both steps take a key-value pair as input 
• Map: (K1, V1)  list(K2, V2) 
• Reduce: (K2, list(V2))  list (K3, V3) 

 



MapReduce 

• Map step 
o A key and value are given to the mapper 
o The mapper performs an operation on its input and returns 

a key and value in a different domain 
• The mappers' output is then sorted and the keys combined, so 

that each key is unique and paired with a list of the values 
output for that key 

• Reduce step 
o A key and list of values are given to the reducer 
o The reducer transforms its input into a key and final value 

 



MapReduce 

• Map and reduce tasks consist of multiple steps 
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Components 

• Hadoop is comprised of several processes 
o Job Tracker 
o Task Tracker(s)  
o Name Node, Secondary Name Node  
o Data Node(s) 

• The Job and Task Trackers handle MapReduce jobs 
• The Name Nodes and Data Nodes provide the HDFS file 

system used by MapReduce jobs 



Components 

• The Name Node keeps track of file locations in the cluster 
• The Job Tracker accepts MapReduce jobs and gives map and 

reduce tasks to nodes running a Tack Tracker 
• Keeping multiple copies of files in the cluster allows the Job 

Tracker to better schedule tasks on nodes already containing 
the data needed for their map and reduce tasks 

• Hadoop can be made aware of node location, so that tasks 
can be run on nodes close to the data required by the task  



HDFS  

• Example HDFS request on a 3 DataNode cluster 
• DistributedFileSystem receives block locations from the 

NameNode, which are read from DataNodes by InputStream 
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MapReduce Example 

• Given temperature readings from multiple weather stations 
over a 100 year period, with one file per station per year. 

• Problem:  Find the highest temperature for each year across 
all stations. 

• This problem can be run on a cluster with map reduce.  
• Two steps: 

• Map:  Read a record and output the year and the 
temperature 

• Shuffle and Sort (done for you by the Map Reduce 
framework) puts all year information together 

• Reduce:  Read all temperatures for a year and output the 
highest 



MapReduce Example 

• Mappers take data file line numbers paired with the 
corresponding lines 

• Each mapper will parse the lines it receives and return a date-
temperature pair indicating the temperature encountered 

• Mapper algorithm 
• Read input lines 
• Find and store the year and temperature 
• Output a year-temperature pair 

 
• Input: xxxxxxxxxxMM/DD/YYYYxxxxxxxxxxxTTTT 

 
• Output: YYYY TTTT 
 

 



MapReduce Example 

• The Hadoop Job Tracker will collect the output of the various 
mappers, combining common keys and forming a list from 
their values 

• This allows each reducer to work on all entries for a key 
• Input: 

1900  28.3 
1900  29.1 
1901  29 
1901  29.4 

 
• Output: 

1900  28.3, 29.1 
1901  29, 29.4 

 



MapReduce Example 

• Reducers receive year-temperature list pairs as input 
• Each reducer computes the highest temperature in its input 

list paired with its year.  Different reduces can work on 
different years at the same time. 

• Reducer Algorithm 
• Read input temperature list 
• Find maximum temperature in the list 
• Return year-maximum temperature pair 

• Each reducer finds the highest temperature for a given year 
• The maximum number of reducers is limited by the number of 

years 
• Input: 

1900  28.3, 29.1 
• Output: 

1900  29.1 



Map Example 

  private static final int MISSING = 9999; // temp to indicate no value 

   

  public void map(LongWritable key, Text value, 

      OutputCollector<Text, IntWritable> output, Reporter reporter) 

      throws IOException { 

     

    String line = value.toString(); 

    String year = line.substring(15, 19); // format-specific offsets 

    int airTemperature; 

    airTemperature = Integer.parseInt(line.substring(87, 92)); 

    if (airTemperature != MISSING) { 

      output.collect(new Text(year), new IntWritable(airTemperature)); 

    } 

  } 

 



Reduce Example 

  public void reduce(Text key, Iterator<IntWritable> values, 

      OutputCollector<Text, IntWritable> output, Reporter reporter) 

      throws IOException { 

     

    int maxValue = Integer.MIN_VALUE; 

    while (values.hasNext()) { 

      maxValue = Math.max(maxValue, values.next().get()); 

    } 

    output.collect(key, new IntWritable(maxValue)); 

  } 



Mahout MapReduce –  
Slope One 

• Mahout provides a parallelized implementation of Slope One’s 
preprocessing step using Hadoop and MapReduce 

• This requires two separate MapReduce jobs 
• Transform preferences into item-item pair differences 
• Transform lists of differences into average differences 

 
 

Slope One Preprocessing Algorithm 
for every item i 
    for every other item j 
        for every user u expressing a preference for both i and j 
            add the difference in u’s preference for i and j to an average 

 



Mahout MapReduce –  
Slope One Distributed Algorithm 

Sequential Slope One Preprocessing Algorithm 
Step 1: Compute all preferences for a user 
 
 Read the input file, lets call it File A of the form: 
 [user, item, preference] 
 with n entries. Build a map of user  items for each user. 
  
Step 2: For each user, compute the difference for each item pair and store the difference 
associated with each pair.  
 
 Compile lists of the form:  <item1, item2>   (d1, d2, ….dj) where j is the number of 
 times item1 has been obtained with item2.  
 
Step 3: For each item pair compute its average difference from its difference list 
 
Step 4: Output the results into a final result file: D <item1, item2, avg diff> 



Mahout MapReduce –  
Slope One Distributed Algorithm 

Distributed Slope One Preprocessing Algorithm 
Step 1: Compute all preferences for a user 
 
 Read a portion of the input file, lets call it File A of the form: 
 [user, item, preference] 
 with n entries. Send n/p entries to each processor and build a map of user  items 
 for each user. 
 
 Merge all p lists of user  items into a single File B of the form: 
 user  ( (item1, pref1), (item2, pref2), … (itemk, prefk) ) 
 
Step 2: Read File B in parallel and each processor now computes File C which is of the 
form:  <item1, item2>   (d1, d2, ….dj) where j is the number of times item1 has been 
obtained with item2.  
 
Step 3: Read File C in parallel and make each processor compute the average 
difference for (c/p) item pairs, where c is the total number of item pairs. 
 
Step 4: Merge the results into a final result file: D <item1, item2, avg diff> 



Slope One Performance 

• Step 1: Compute all preferences for a user 
• With N users and I items, this will take 

      
 

• Distributed over p processors this is 

       

 

• In the worst case every user has every item 
•  Step 2: Find pairs for all N users 

•
             

 

•

                                         
 

• We do this for each user, so it will take 
       

 

• With p processors this takes 

         

 

• Sequentially we can compute running averages online 
•  Step 3: Combine pairs and compute averages (distributed only) 

• This is the same as step 2, because we use every pair 

•

     

 or, when distributed,  

         

 

 
 

 



Mahout MapReduce –  
Slope One 

• The map and reduce steps can be distributed across multiple 
mappers and reducers 

• Each box represents a separate process, each of which can 
be running on the same or separate Hadoop nodes 
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Mahout MapReduce –  
Slope One 

• Mappers read lines from the input data file and return    
userID-(itemID,preferenceValue) pairs 

• This output is collected by Hadoop, sorted by user id, and the 
values of common keys combined 
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Mahout MapReduce –  
Slope One 

• Reducers are passed a userID and the user’s items and 
preferences from the mapper 

• The reducers find the difference between each pair of userID’s 
items and return a (itemA,itemB)-difference pair for each 
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Mahout MapReduce –  
Slope One 

• A new MapReduce job is run on the reducers’ output 
• An identity mapper is used, skipping the map step 
• This output is collected and sorted, so that each (itemA,itemB) 

pair is associated with a list of differences between the items 
• Reducers take this as input and return                

(itemA,itemB)-averageDifference pairs  
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Slope One Performance 

• Step 1: Compute all preferences for a user 
• With N users and I items, this will take 

      
 

• Distributed over p processors this is 

       

 

• In the worst case every user has every item 
•  Step 2: Find pairs for all N users 

•
             

 

•

                                         
 

• We do this for each user, so it will take 
       

 

• With p processors this takes 

         

 

• Sequentially we can compute running averages online 
•  Step 3: Combine pairs and compute averages (distributed only) 

• This is the same as step 2, because we use every pair 

•

     

 or, when distributed,  
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• Hadoop can be downloaded as Hadoop Common from its 
website http://hadoop.apache.org 

• Hadoop v0.21 is the preferred version 
• Extract hadoop-0.21.0.tar.gz after downloading 
• The resulting hadoop-0.21.0 directory is your Hadoop 

installation and will be referred to as HADOOP_INSTALL by 
the Hadoop documentation 

• Install the Java 6 JDK if needed and note its installation 
directory for use configuring Hadoop 
• Something like C:\jdk1.6_02 on Windows 
• /usr/lib/jvm/java-6-sun on Ubuntu Linux 

 

Configuring Hadoop 

http://hadoop.apache.org/


Configuring Hadoop 

• Some files in HADOOP_INSTALL/conf need to be edited to 
configure Hadoop to run as a single-node cluster 

• In conf/hadoop-env.sh, JAVA_HOME should be set to the 
JDK’s installation directory 

• Two variables need to be set to specify a hostname:port for 
the name node and job tracker  
• With a single node hostname can be localhost 
• conf/mapred-site.xml’s mapreduce.jobtracker.address 

should be set to host:9002 
• conf/core-site.xml’s fs.default.name is hostname:9001 
• For example:  
  <property> 
 <name>fs.default.name</name> 
 <value>hdfs://localhost:9001</value> 
  </property> 

 



Configuring Hadoop – 
Passwordless SSH 

• Hadoop uses SSH to start Hadoop components on various 
nodes in the cluster 

• We only have one node, but the startup scripts will still SSH to 
localhost in order to run component startup commands  

• OpenSSH‘s sshd needs to be installed 
• If using Cygwin, make sure the openssh packages are 

installed and run ssh-host-config 
• If using Ubuntu Linux, install openssh-server 

• Now run ssh-keygen to generate a public and private key for 
use with SSH’s public key authentication 

• When prompted use a blank passphrase 
• Now you should be able to SSH to your local machine with no 

password using the command: ssh localhost 
 



Starting Hadoop 

• After Hadoop is configured, it can be started by running 
bin/start-all.sh from the HADOOP_INSTALL directory 

• It can be stopped with bin/stop-all.sh 
• A HADOOP_INSTALL/logs directory will be created 

• Try looking at the .log files inside if something goes wrong 
• Try writing a file to HDFS as /test 

• bin/hadoop dfs –put <filename> /test 
• You should be able to view it in HDFS along with other files 

already created by Hadoop 
• bin/hadoop dfs –ls / 

• You can also copy it from HDFS to the local filesystem 
• bin/hadoop dfs –get /test test-file-from-HDFS 

 


