
Distributed Recommenders

Fall 2010

Distributed Recommenders

• Distributed Approaches are needed when:
• Dataset does not fit into memory
• Need for processing exceeds what can be provided with a

sequential algorithm
• Traditionally distributed data mining algorithms were very time

consuming to implement
• Map-Reduce framework can reduce complexity
• Mahout uses the Hadoop Map-Reduce framework

• Slope-one (already implemented in Mahout)
• Distributed Nearest Neighbor

• User-Based
• Item-Based

Overview of Hadoop

• Hadoop is an Apache project comprised of a distributed
filesystem (HDFS) and a MapReduce [1] engine

• Hadoop enables applications to more easily distribute large
computations across a cluster of Hadoop nodes

• HDFS breaks files into chunks, which are stored across nodes.
This is needed since a typical data file used on a Hadoop
cluster is larger than a single disk on the cluster.

• Generally multiple copies of each chunk are kept across
different nodes for redundancy and efficiency

• A job tracker executes MapReduce jobs against data stored in
HDFS

MapReduce

• MapReduce is a software framework for distributing
computations across a cluster of computers

• Mappers and reducers are processes on the node that
perform map and reduce steps, respectively

• Both steps take a key-value pair as input
• Map: (K1, V1) list(K2, V2)
• Reduce: (K2, list(V2)) list (K3, V3)

MapReduce

• Map step
o A key and value are given to the mapper
o The mapper performs an operation on its input and returns

a key and value in a different domain
• The mappers' output is then sorted and the keys combined, so

that each key is unique and paired with a list of the values
output for that key

• Reduce step
o A key and list of values are given to the reducer
o The reducer transforms its input into a key and final value

MapReduce

• Map and reduce tasks consist of multiple steps

input

split

map

buffer

sort
merge

on disk

map task reduce task

merge

merge

merge

reduce

output

output from

other maps

Components

• Hadoop is comprised of several processes
o Job Tracker
o Task Tracker(s)
o Name Node, Secondary Name Node
o Data Node(s)

• The Job and Task Trackers handle MapReduce jobs
• The Name Nodes and Data Nodes provide the HDFS file

system used by MapReduce jobs

Components

• The Name Node keeps track of file locations in the cluster
• The Job Tracker accepts MapReduce jobs and gives map and

reduce tasks to nodes running a Tack Tracker
• Keeping multiple copies of files in the cluster allows the Job

Tracker to better schedule tasks on nodes already containing
the data needed for their map and reduce tasks

• Hadoop can be made aware of node location, so that tasks
can be run on nodes close to the data required by the task

HDFS

• Example HDFS request on a 3 DataNode cluster
• DistributedFileSystem receives block locations from the

NameNode, which are read from DataNodes by InputStream

HDFS

Client
Distributed

FileSystem

FSData

InputStream

open

Java Class

NameNode
get block locations

DataNode

DataNode

DataNode

MapReduce Example

• Given temperature readings from multiple weather stations
over a 100 year period, with one file per station per year.

• Problem: Find the highest temperature for each year across
all stations.

• This problem can be run on a cluster with map reduce.
• Two steps:

• Map: Read a record and output the year and the
temperature

• Shuffle and Sort (done for you by the Map Reduce
framework) puts all year information together

• Reduce: Read all temperatures for a year and output the
highest

MapReduce Example

• Mappers take data file line numbers paired with the
corresponding lines

• Each mapper will parse the lines it receives and return a date-
temperature pair indicating the temperature encountered

• Mapper algorithm
• Read input lines
• Find and store the year and temperature
• Output a year-temperature pair

• Input: xxxxxxxxxxMM/DD/YYYYxxxxxxxxxxxTTTT

• Output: YYYY TTTT

MapReduce Example

• The Hadoop Job Tracker will collect the output of the various
mappers, combining common keys and forming a list from
their values

• This allows each reducer to work on all entries for a key
• Input:

1900 28.3
1900 29.1
1901 29
1901 29.4

• Output:

1900 28.3, 29.1
1901 29, 29.4

MapReduce Example

• Reducers receive year-temperature list pairs as input
• Each reducer computes the highest temperature in its input

list paired with its year. Different reduces can work on
different years at the same time.

• Reducer Algorithm
• Read input temperature list
• Find maximum temperature in the list
• Return year-maximum temperature pair

• Each reducer finds the highest temperature for a given year
• The maximum number of reducers is limited by the number of

years
• Input:

1900 28.3, 29.1
• Output:

1900 29.1

Map Example

 private static final int MISSING = 9999; // temp to indicate no value

 public void map(LongWritable key, Text value,

 OutputCollector<Text, IntWritable> output, Reporter reporter)

 throws IOException {

 String line = value.toString();

 String year = line.substring(15, 19); // format-specific offsets

 int airTemperature;

 airTemperature = Integer.parseInt(line.substring(87, 92));

 if (airTemperature != MISSING) {

 output.collect(new Text(year), new IntWritable(airTemperature));

 }

 }

Reduce Example

 public void reduce(Text key, Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output, Reporter reporter)

 throws IOException {

 int maxValue = Integer.MIN_VALUE;

 while (values.hasNext()) {

 maxValue = Math.max(maxValue, values.next().get());

 }

 output.collect(key, new IntWritable(maxValue));

 }

Mahout MapReduce –
Slope One

• Mahout provides a parallelized implementation of Slope One’s
preprocessing step using Hadoop and MapReduce

• This requires two separate MapReduce jobs
• Transform preferences into item-item pair differences
• Transform lists of differences into average differences

Slope One Preprocessing Algorithm
for every item i
 for every other item j
 for every user u expressing a preference for both i and j
 add the difference in u’s preference for i and j to an average

Mahout MapReduce –
Slope One Distributed Algorithm

Sequential Slope One Preprocessing Algorithm
Step 1: Compute all preferences for a user

 Read the input file, lets call it File A of the form:
 [user, item, preference]
 with n entries. Build a map of user items for each user.

Step 2: For each user, compute the difference for each item pair and store the difference
associated with each pair.

 Compile lists of the form: <item1, item2> (d1, d2, ….dj) where j is the number of
 times item1 has been obtained with item2.

Step 3: For each item pair compute its average difference from its difference list

Step 4: Output the results into a final result file: D <item1, item2, avg diff>

Mahout MapReduce –
Slope One Distributed Algorithm

Distributed Slope One Preprocessing Algorithm
Step 1: Compute all preferences for a user

 Read a portion of the input file, lets call it File A of the form:
 [user, item, preference]
 with n entries. Send n/p entries to each processor and build a map of user items
 for each user.

 Merge all p lists of user items into a single File B of the form:
 user ((item1, pref1), (item2, pref2), … (itemk, prefk))

Step 2: Read File B in parallel and each processor now computes File C which is of the
form: <item1, item2> (d1, d2, ….dj) where j is the number of times item1 has been
obtained with item2.

Step 3: Read File C in parallel and make each processor compute the average
difference for (c/p) item pairs, where c is the total number of item pairs.

Step 4: Merge the results into a final result file: D <item1, item2, avg diff>

Slope One Performance

• Step 1: Compute all preferences for a user
• With N users and I items, this will take

• Distributed over p processors this is

• In the worst case every user has every item
• Step 2: Find pairs for all N users

•

•

• We do this for each user, so it will take

• With p processors this takes

• Sequentially we can compute running averages online
• Step 3: Combine pairs and compute averages (distributed only)

• This is the same as step 2, because we use every pair

•

 or, when distributed,

Mahout MapReduce –
Slope One

• The map and reduce steps can be distributed across multiple
mappers and reducers

• Each box represents a separate process, each of which can
be running on the same or separate Hadoop nodes

 Data File

101, A, 4

101, B, 3

102, A, 2

102, B, 4

Mappers
 Sort &

Combine
101

101

102

102

101

101

102

102

101

102

Reducers
(A,B)

(A,B)

 Sort &

Combine

(A,B) Reducers

(A,B)

output

Mahout MapReduce –
Slope One

• Mappers read lines from the input data file and return
userID-(itemID,preferenceValue) pairs

• This output is collected by Hadoop, sorted by user id, and the
values of common keys combined

Data File

//user,item,pref

101, A, 4

101, B, 3

102, A, 2

102, B, 4

Key

(id)

Value

(item,

pref)

101 (A,4)

101 (B,3)

102 (A,2)

102 (B,4)

Mapper Output

Key (id) Value

(list of

item,

pref)

101 (A,4),

(B,3)

102 (A,2),

(B,4)

Hadoop Output

Mahout MapReduce –
Slope One

• Reducers are passed a userID and the user’s items and
preferences from the mapper

• The reducers find the difference between each pair of userID’s
items and return a (itemA,itemB)-difference pair for each

Key (id) Value

(item,

pref)

101 (A,4),

(B,3)

102 (A,2),

(B,4)

Reducer Input

Key

(itemA,

itemB)

Value

(difference)

(A,B) 4-3= 1

(A,B) 2-4= -2

Reducer Output

Mahout MapReduce –
Slope One

• A new MapReduce job is run on the reducers’ output
• An identity mapper is used, skipping the map step
• This output is collected and sorted, so that each (itemA,itemB)

pair is associated with a list of differences between the items
• Reducers take this as input and return

(itemA,itemB)-averageDifference pairs

Key

(itemA,

itemB)

Value

(list of

differences)

(A,B) 1, -2

Reducer Input

Key

(itemA,

itemB)

Value

(average

difference)

(A,B)

Reducer Output

Slope One Performance

• Step 1: Compute all preferences for a user
• With N users and I items, this will take

• Distributed over p processors this is

• In the worst case every user has every item
• Step 2: Find pairs for all N users

•

•

• We do this for each user, so it will take

• With p processors this takes

• Sequentially we can compute running averages online
• Step 3: Combine pairs and compute averages (distributed only)

• This is the same as step 2, because we use every pair

•

 or, when distributed,

References

[1] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings Sixth Symposium on Operating
System Design and Implementation (OSDI’04), 2004.

• Hadoop can be downloaded as Hadoop Common from its
website http://hadoop.apache.org

• Hadoop v0.21 is the preferred version
• Extract hadoop-0.21.0.tar.gz after downloading
• The resulting hadoop-0.21.0 directory is your Hadoop

installation and will be referred to as HADOOP_INSTALL by
the Hadoop documentation

• Install the Java 6 JDK if needed and note its installation
directory for use configuring Hadoop
• Something like C:\jdk1.6_02 on Windows
• /usr/lib/jvm/java-6-sun on Ubuntu Linux

Configuring Hadoop

http://hadoop.apache.org/

Configuring Hadoop

• Some files in HADOOP_INSTALL/conf need to be edited to
configure Hadoop to run as a single-node cluster

• In conf/hadoop-env.sh, JAVA_HOME should be set to the
JDK’s installation directory

• Two variables need to be set to specify a hostname:port for
the name node and job tracker
• With a single node hostname can be localhost
• conf/mapred-site.xml’s mapreduce.jobtracker.address

should be set to host:9002
• conf/core-site.xml’s fs.default.name is hostname:9001
• For example:
 <property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9001</value>
 </property>

Configuring Hadoop –
Passwordless SSH

• Hadoop uses SSH to start Hadoop components on various
nodes in the cluster

• We only have one node, but the startup scripts will still SSH to
localhost in order to run component startup commands

• OpenSSH‘s sshd needs to be installed
• If using Cygwin, make sure the openssh packages are

installed and run ssh-host-config
• If using Ubuntu Linux, install openssh-server

• Now run ssh-keygen to generate a public and private key for
use with SSH’s public key authentication

• When prompted use a blank passphrase
• Now you should be able to SSH to your local machine with no

password using the command: ssh localhost

Starting Hadoop

• After Hadoop is configured, it can be started by running
bin/start-all.sh from the HADOOP_INSTALL directory

• It can be stopped with bin/stop-all.sh
• A HADOOP_INSTALL/logs directory will be created

• Try looking at the .log files inside if something goes wrong
• Try writing a file to HDFS as /test

• bin/hadoop dfs –put <filename> /test
• You should be able to view it in HDFS along with other files

already created by Hadoop
• bin/hadoop dfs –ls /

• You can also copy it from HDFS to the local filesystem
• bin/hadoop dfs –get /test test-file-from-HDFS

