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Distributed Naïve Bayes 

• Mahout provides a distributed implementation of a Naïve 
Bayes text classifier using MapReduce and Hadoop 
 

• Preprocessing and classification steps 
 

• Multiple MapReduce passes are made preprocessing to 
obtain counts of  

Number occurences for each term 
Number occurrences for each class 

 
• After preprocessing classifying a single instance is fast and 

need not be distributed 
 

• Mahout performs distributed mass-evaluation in the 
classification step 
 

• Each mapper performs a classification 
 

 

• Step 1: Use Map-Reduce to obtain basic counts 
• Number of distinct terms 
• Number of documents that contain a term for a given class 
• Weight of occurrences of a term in a given class 

 
<put in math here> 
 

• Number of occurrences of a document in a class 
• Frequency of a term across the collection 

 
• Step 2: Now compute weight (tf * idf) for each term 

 
• Step 3: 

 
 



Distributed Naïve Bayes – 
Preprocessing Step 1 

• Hadoop reads the entire data set into <class, document> 
pairs, where  
• document is a list of words in the document being read 
• Class is the class label or category of document. With the 

newsgroup example, this would be the newsgroup the 
document was posted in. 
 

 



Distributed Naïve Bayes – 
Preprocessing Step 1 

The newsgroup posting data set is read into <class, document> 
pairs, where class is the newsgroup document was posted in 

 
<misc.forsale, from rupin.dang@dartmouth.edu rupin dang subject nikon 
fm2 lens forsale nikon fm-2n 50 mm nikkor accessories sale.i bought 
camera hong kong two years ago everything has been looked after very 
well i'm now selling some more gear finance my next big film project 
asking 350 package bargains> 

 
<rec.autos, from bw662@cleveland.freenet.edu bill cray subject re 
thinking about buying intrepid good bad idea i bought intrepid about two 
months ago am very happy lots room inside even smaller engine has 
enough power me only problem i found small selection dealer lots hot 
sellers around here> 
 

… 



Distributed Naïve Bayes – 
Preprocessing Step 1 

• The mapper outputs tuples of the following types 
 
• WEIGHT: a normalized term frequency (term count) with a 

<class, term> key 
 
• DF: the value 1 with a <class, term> key 

• Later we calculate each term’s DF by summing these 
 

• FEATURE_COUNT: the value 1 with a <term> key 
 
• FEATURE_TF: a term key with the term’s TF as the value 

 
• LABEL_COUNT: the value 1 with a <class> key 

 



Distributed Naïve Bayes – 
Preprocessing Step 1 

The mapper receives the document as input and outputs tuples 
of five different types. Each 2-tuple’s key is itself a 2- or 3-tuple. 
 
<<WEIGHT, class, term>, tfterm> 
<<WEIGHT, misc.forsale, bargains>, tfbargains> 
<<WEIGHT, rec.autos, intrepid>, tf intrepid> 
… 
<<DF, class, term>, 1> 
<<DF, misc.forsale, bargains>, 1> 
<<DF, rec.autos, intrepid>, 1> 
… 



Distributed Naïve Bayes – 
Preprocessing Step 1 

The mapper receives the document as input and outputs tuples 
of five different types. Each 2-tuple’s key is itself a 2- or 3-tuple. 
 
<<FEATURE_COUNT, term>, 1> 
<<FEATURE_COUNT, bargains>, 1> 
<<FEATURE_COUNT, intrepid>, 1> 
… 
<<FEATURE_TF, term>, term count> 
<<FEATURE_TF, bargains, 1> 
<<FEATURE_TF, intrepid, 1> 
… 
<<LABEL_COUNT, class>, 1> 
<<LABEL_COUNT, misc.forsale>, 1> 
<<LABEL_COUNT, rec.autos>, 1> 
… 



Distributed Naïve Bayes – 
Preprocessing Step 1 

• The step 1 reducer sums the values for each unique key and 
returns the input key and summation as its key-value pair 

 
• Each key is a tuple consisting of a static object indicating 

the tuple’s type and the actual keys 
 

• FEATURE_TF tuples are summed to calculate the term count 
of each term and written to disk  
 

• LABEL_COUNT tuples are summed to calculate the total 
number of instances for each class and written to disk 
 

• The remaining tuples are summed and passed on to step 2 
 



Distributed Naïve Bayes – 
Preprocessing Step 1 

The step 1 reducer sums the values for each unique key and 
returns the input key and summation as its key-value pair 
<<WEIGHT, misc.forsale, bargains>, tf1 + tf2 + … + tfn> 
<<WEIGHT, rec.autos, intrepid>, tf1 + tf2 + … + tfn> 
… 
 
<<DF, misc.forsale, bargains>, 1 + 1 + … + 1> 
… 
 
<<FEATURE_COUNT, intrepid>, 1 + 1> 
… 
 
<<FEATURE_TF, bargains>, term count> 
… 
 
<<LABEL_COUNT, misc.forsale>, 1 + 1 + … + 1> 
<<LABEL_COUNT, rec.autos>, 1 + 1 + … + 1> 



Distributed Naïve Bayes – 
Preprocessing Step 2 (compute IDF) 

• The next mapper receives tuples from the previous step 
 

• WEIGHT tuples are passed on unchanged 
 

• DF tuples are changed to type WEIGHT and their values 
changed to IDFs 
 

• Now there are two WEIGHT tuples for each unique keys 
 

• FEATURE_COUNT tuples are all returned as a string 
 
 

 
 



Distributed Naïve Bayes – 
Preprocessing Step 2 

The next mapper receives WEIGHT, DF, and FEATURE_COUNT 
tuples from the previous step. WEIGHT tuples are unchanged. 
 

<<WEIGHT, misc.forsale, bargains>, tfbargains> 
<<WEIGHT, rec.autos, intrepid>, tfintrepid> 
… 
 

DF tuples are changed to the WEIGHT type and their value is 
changed to the idf of their term, calculated using our results. 
<<WEIGHT, misc.forsale, bargains>, idfbargains> 
… 
 

FEATURE_COUNT tuples lose their class and change type. 
<VOCAB_COUNT, 1> 
… 
 

 
 



Distributed Naïve Bayes – 
Preprocessing Step 2 

• The reducer receives these tuples and processes them 
further 
 
• The total number of FEATURE_COUNT tuples is summed, 

representing the total number of terms in the data set 
 

• WEIGHT tuples’ TF and IDF components are multiplied to 
calculate and return the key’s TF-IDF 

 
• This works because there is one WEIGHT TF tuple 

and one WEIGHT IDF tuple for each key 
 

• This happened in the map step when the DF tuple 
was changed to a WEIGHT tuple 

 
 
 

 
 



Distributed Naïve Bayes – 
Preprocessing Step 2 

The reducer receives VOCAB_COUNT and WEIGHT tuples. 
 
It sums VOCAB_COUNT tuples and stores the result as the 
number of features in the data set 
Features = <VOCAB_COUNT, 1 + 1 + … + 1 + 1> 

 
Each term’s two weight tuples are multiplied to calculate TF-IDF 
<<WEIGHT, misc.forsale, bargains>, tfbargains> 
<<WEIGHT, misc.forsale, bargains>, idfbargains> 
 
 
 
 
<<WEIGHT, misc.forsale, bargains>, tfbargains * idfbargains> 
… 
 

 
 

 
 



Distributed Naïve Bayes – 
Preprocessing Step 3 

• The value of the one FEATURE_COUNT tuple is written to 
disk as the total number of features (terms) 
 

• The WEIGHT tuples containing TF-IDFs are also stored 
 

• Mapper 3 receives WEIGHT tuples from the previous step 
• For each input tuple it outputs three new types of tuples 

with <class, term> keys and TF-IDF values 
• featureSum tuple with a <term> key and TF-IDF value 
• labelSum tuple with a <class> key and TF-IDF value 
• totalSum tuple with no key (other than the tuple’s totalSum 

type) and TF-IDF value 
 

• The reducer sums each of these fields and writes each key-
sum pair to disk  

 
 

 
 



Distributed Naïve Bayes – 
Preprocessing Step 3 

Mapper 3 receives WEIGHT tuples from the previous step and 
outputs three new types of tuple 
<<featureSum, term>, TF-IDFterm> 
<<featureSum, intrepid>, TF-IDFintrepid> 
<<featureSum, bargains>, TF-IDFbargains> 
… 
<<labelSum, class>, TF-IDFterm 

<<labelSum, rec.auto, TF-IDFintrepid > 
<<labelSum, misc.forsale, TF-IDFbargains > 
… 
<totalSum, TF-IDFterm>  
<totalSum, TF-IDFintrepid> 
<totalSum, TF-IDFbargains> 
… 

The final reducer simply sums the values for each unique key 
and stores the final values. 

 



Distributed Naïve Bayes – 
Performance 

• Run distributed Naïve Bayes on Hadoop against the 25mb 
20-newsgroups data set 

• Break each term into 3-grams (increases workload) 
• Compare with Hadoop clusters of various sizes running on 

identical hardware 
 

 
 
 

1 node 4 nodes 

Time 794 seconds 396 seconds 


