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Problem Statement 

• Given training data of the form: 
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• X: the space of input features/attributes 

• Y: the space of output values (target variable) 

• A pair                is called a training example (the 

superscript ―(i)‖ is just the instance number in the 

training set).  

 • We want to learn a function h : X → Y that is a 

“good” predictor for the corresponding value of y. 
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Notations 
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•      training examples. 

•     features. 

•       example.  

•      coefficient. 
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Almost always, m >> n (number of examples) 

(equations) is significantly larger than the 

number of unknown coefficients). Hence, we 

are looking for approximate solutions.  



Applications 

• Document Classification 
• e.g., spam filtering 

 

•  Speech and Face Recognition 
 

• Loan Approval 
 

• Medical Diagnosis 
 

And many many more… 
 



Supervised Learning 

Training Set 

Learning 

Algorithm 

h new X 
(testing data) 

predicted y 

Training Set Training Set 
•If the target variable (Y) 

is continuous, the 

learning problem is a 

regression problem.  

 

•If the target is discrete 

(we will focus on binary 

targets), it is a 

classification problem. 



Linear Regression by Example 

•  Our training data contain 2 features and a 

continuous target variable. We would like to predict 

the prices of other houses as a function of the size 

of their living areas and number of bedrooms. 

Living area (sq. feet) #bedrooms Price (1000$s) 

2104 3 400 

1600 3 330 

2400 3 369 

… … … 

We are looking for a linear function of the form: 

22110)( xxxh  

Example from: http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf 
 

http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf


Linear Regression 

•      are the parameters (also called weights or 
coefficients ) we would like to learn. Once we 
learn the parameters, we can plug in a new 
“living area in sq. feet” and “#bedrooms”, and         
 would predict the price of the house. 

22110)( xxxh  
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Best Regression Fit 

y = 1.6635x + 101.77 

R² = 0.8807 
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Which line fits the data better? 

• With one input feature and one target variable, the  

   interpretation is fitting a line to the data. 

Difference between 

predicted and observed 



Finding Good Parameters 

• Need to define a cost/loss function: 
 

• 1) 
 

• Problem: plus/minus – a bad line can end up as the 
perfect fitting. 

 
• 2) 

 
• Problem:  Not very common since it’s not convenient 

mathematically (out of the scope of this class). See the 
Wikipedia article for the details. 
http://en.wikipedia.org/wiki/Least_absolute_deviations   
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http://en.wikipedia.org/wiki/Least_absolute_deviations


Least Squares 

• A very common cost function: 
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• This is the least square cost function. 

•                          is the error rate the learning 

algorithm makes based on the correct values of y 

in the training data. We want to minimize the 

cost function – i.e., finding the weights that 

would minimize it (also called finding the best fit). 
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Batch Gradient Descent 

•The gradient descent algorithm starts with some 

initial θ, and repeatedly performs an update. 

 

 

 
 

)(: 


 J
d

d

j
jj 

•     is the learning rate (how much we progress in every step) 

• The algorithm repeatedly takes a step in the direction of steepest   

  decrease of J. 

For one training example we get: 
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Done for every jth coefficient 



Batch Gradient Descent 

•Finally we get: 

 Repeat until convergence:{ 

 

 

 } 

 
•This is repeated for every j (every feature). m is the 

number of instances in the training set.  
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For a single update, we iterate over the entire training data! 



BGD Example 

i-th 

Row 
Error 

Alpha=1 

1-m 1  (guess) 1  (guess) 1  (guess) 

1 0 (40-24)*20  (40-24)*3  16 

2 0 (33-20)*16  (33-20)*3 13 

1-m 1 1+1*(40-24)*20 +1*(33-

20)*16 = 1 + 320 + 208 = 

529 

1+1*(40-24)*3 + 

1*(33-20)*3 = 88 

Living Area (x1) #bedrooms (x2) Price(1000$s) (y) 

20 3 40 

16 3 33 

21 885291)( xxXh 

21 111)( xxXh 

0 21



BGD Example 

i-th 

Ro

w 

Error 

Alpha=0.001 

1-m 1  (guess) 1  (guess) 1  (guess) 

1 0 (40-24)*20  (40-24)*3  16 

2 0 (33-20)*16  (33-20)*3 13 

1-m 

 
1 1+0.001*(40-24)*20 + 

0.001*(33-20)*16 = 1 + 

0.32 + 0.208 = 1.528 

1+0.001*(40-24)*3 + 

0.001*(33 -20)*3 = 

0.048+0.039 = 1.087 

Living Area (x1) #bedrooms (x2) Price(1000$s) (y) 

20 3 40 

16 3 33 

21 087.1528.11)( xxXh 

0 21



BGD Example 

Living Area (x1) #bedrooms (x2) Price(1000$s) (y) 

20 3 40 

16 3 33 

18 3 36 New   

223181)( Xh

76.313087.118528.11)( Xh

Guess 

72.34304.1187.11)( Xh

8.353043.11876.11)( Xh

Iteration # 

0 1 1 1 

1 1 1.528 1.087 

2 1 1.70639.. 1.04014.. 

3 1 1.76666.. 1.04362.. 

4 1 1.78702.. 

 

1.04483.. 

 

1 1 2

17.363044.11878.11)( Xh



Stochastic Gradient Descent 

•The previous algorithm is called batch gradient descent 

since it looks at every example in the entire training set on 

every step. 

 
•Alternatively, stochastic gradient descent iterates over the 

training set, and for each example it updates the 

parameters according to that specific example only. (often 

much faster – good for very large datasets) 
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Loop{ 

   for i=1 to m, { 

 

   } 

} Removed!  
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Global Minimum 

• In the ideal case, the GD algorithm stops in a 

  global minimum. However, this is not always the 

  case – it depends on the function and initial guess. 

http://www.graphpad.com/curvefit/2549a220.gif 

• Practical solution: start with 

many different guesses and 

choose the one the produces 

the minimum (you should 

expect the global minimum to 

be produced by many guesses).  



Alternatives to Least Squares 

• Least squares can be sensitive to outliers, 

especially in noisy data. A common alternative is 

the Locally Weighted Least Squares: 

• Fitting is done “online”.  

• Slower than the “offline” ordinary LS.  
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Locally Weighted Least Squares 

• With the ordinary LS, we build one general model 

for the data. After finding        , we do not need the 

training data anymore.  

• With LWLS, we build a new model for each new 

input we want to predict a y value to. The idea is to 

work on local parts.  
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Logistic Regression 

• In LR we predict the likelihood that Y is equal to 

1 given certain values of X (which also gives us 

the probability that Y is equal to 0).  
Age Gender Height Play 

Basketball? 

22 M 1.85m Yes 

24 M 1.92m Yes 

60 F 1.66m No 

… … … … 

19 M 1.80 ? 



Logistic Regression 
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In classification problems we replace the linear 

regression with logistic regression to achieve a 

better learning algorithm. We only change the form 

of the function h as follows: 

The Logistic 

Function 

To find the best fit, we can use the same SGD algorithm we used 

for linear regression. The only difference is that the function h is 

different now – outputs a number between 0 and 1.  



Logistic Regression Function 

Taken from http://faculty.chass.ncsu.edu/garson/PA765/logistic.htm 

http://faculty.chass.ncsu.edu/garson/PA765/logistic.htm


Maximum Likelihood Estimation 
• MLE is a common method for estimating model 

parameters. In our case, MLE is used to find the 

coefficients that make the observed data as 

probable as possible. 

• Our hypothesis function h has a different meaning 

now: we are trying to estimate the probability that Y is 

equal to 1 given X. 
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• For convenience, we write the above two as follows: (this is identical) 



Maximum Likelihood Estimation 
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• Next, for convenience, we maximize the logarithm of 

the likelihood instead of the likelihood itself (we get 

rid of the product and have summation instead). We 

can do so because the logarithm function is 

monotonically increasing and we do not care about 

the value itself, just the parameters that maximize 

the whole thing.  

assuming iid 

Likelihood of the data 



Maximum Likelihood Estimation 

• We again use the Gradient Descent algorithm, but since we 

want to maximize the function instead of minimizing it, we 

have the following: (gradient ascent) 
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want to maximize (not the 

same function as before).  
+ instead of - 

• Although we started with a different model, we end up with 

the same learning algorithm as before (but h now is 

different): 
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Mahout LR Implementation 

TrainLogistic has a main function that can be run 

to do a logistic regression 

org.apache.mahout.classifier.sgd.TrainLogistic  

  --input in.csv --output out 

  --passes <input passes> --rate <learning rate> 

  --features <number of target feature>  

  --target <target variable> 

  --categories <number target categories possible> 

  --predictors <predictor variables> 

  --types <predictor types (numeric, word, or text)> 



Mahout LR Example 

• TrainLogistic performs passes passes on the 

input csv and outputs the results to output 

• Input data must be transformed to a csv and 

represented as numeric or text attributes 

• Tennis data with target class of whether to play 
Outlook Temperature Humidity Windy Play

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

Outlook Temperature Humidity Windy Play

0 2 1 0 0

0 2 1 1 0

1 2 1 0 1

2 1 1 0 1

2 0 0 0 1

2 0 0 1 0

1 0 0 1 1

0 1 1 0 0

0 0 0 0 1

2 1 0 0 1

0 1 0 1 1

1 1 1 1 1

1 2 0 0 1

2 1 1 1 0



Mahout LR Example 

• Run a LR on tennis data 

• Two categories: play and don’t play 

• Other attributes are the predictors 

org.apache.mahout.classifier.sgd.TrainLogistic  

  --input tennis.csv --output out 

  --passes 100 --rate 50 

  --features 4  

  --categories 2 

  --predictors outlook temperature humidity windy 

  --types numeric  

  --target play 

 



Mahout LR Example – 
Output 

• Mahout produces a model file and text output 

• The model contains similar information and a copy of 

TrainLogistic’s runtime parameters in the JSON format 

4 // number of features  

play ~ 2.510*Intercept Term + -0.601*outlook + -0.627*temperature 

+ -0.601*humidity + -0.601*windy 

      Intercept Term 2.50953 

            humidity -0.60090 

             outlook -0.60090 

         temperature -0.62739 

               windy -0.60090 

   -0.627386850     2.509528194     0.000000000    -0.600897574  



Mahout LR Example – 
Classification 



Mahout LR Code 
 public double classifyScalar(Vector instance) { 

    if (numCategories() != 2) { 

      throw new IllegalArgumentException("Can only call       

                               classifyScalar with two categories"); 

    } 

 

    // apply pending regularization to whichever coefficients matter 

    regularize(instance); 

 

    // result is a vector with one element so just use dot product 

    double r = Math.exp(beta.getRow(0).dot(instance)); 

    return r / (1 + r); 

  } 



Naïve Bayesian Classifier 

Classifier based on Bayes Theorem.  

Combines the impact/probability of each feature on the 

class label. 

Naïve: assumes the independence between the features. 

Shape and color of a fruit determining the fruit  

Education and salary determining the life style 

(independence??)  



Given a hypothesis, calculating the probability of 

correctness of that hypothesis. 

Hypothesis:     x1  , x2   is a Peach. 

Calculate the probability that x1  , x2   is a Peach. 

 P(H: x1  , x2   is a Peach) 

 P(H: x1  , x2   is an Apricot) 

      ……… 

1. Calculate each of these probabilities. 

2. Choose the highest probability. 

Naïve Bayesian Classifier 



Bayes Theorem 

P(H|X)  Posterior Probability of hypothesis H 

X :  x1  , x2 , …, xn  

Shows the confidence/probability that suppose X, then the 
hypothesis is true. 

x1  : shape = round, x2 : color = orange  

H: x1  , x2   is a Peach. 

 

P(H)  Prior Probability of hypothesis H 

Probability that regardless of data the hypothesis is true. 

Regardless of color and shape, it is a Peach. 



Bayes Theorem 

P(X|H)  Posterior Probability of X conditioned on 

hypothesis H 

Given H is true (X is a Peach), calculate probability that X is 

round and orange. 

 

P(X)  Prior Probability of X 

Probability that sample is round and orange. 



Bayes Theorem 
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Prior Probability of X 
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 Hypothesis H is the class Ci. 

 P (X) can be ignored as it is constant for all classes. 

 Assuming the independence assumption, P(X|Ci) is: 

 


n

k iki CxPCXP
1

|)|(
 Thus: 

Naïve Bayesian Classifier 

 P(Ci) is the ratio of total samples in class Ci to all samples. 



 

 

 For Categorical attribute: 

P(xk|Ci)  is the frequency of samples having value xk 

in class Ci. 

 

 For Continuous (numeric) attribute: 

P(xk|Ci) is calculated via a Gaussian density function. 

Naïve Bayesian Classifier 



 

 

 Having pre-calculated all P(xk |Ci), to classify an 

unknown sample X: 

» Step 1: For all classes calculate P(Ci |X).   

» Step 2: Assign sample X to the class with the 

highest P(Ci |X).  

 

 

 

Naïve Bayesian Classifier 



Play-tennis example: estimating P(xi|C) 
(Example from: Tom Mitchell ―Machine Learning‖) 

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

outlook 

P(sunny|p) = 2/9 P(sunny|n) = 3/5 

P(overcast|p) = 4/9 P(overcast|n) = 0 

P(rain|p) = 3/9 P(rain|n) = 2/5 

temperature 

P(hot|p) = 2/9 P(hot|n) = 2/5 

P(mild|p) = 4/9 P(mild|n) = 2/5 

P(cool|p) = 3/9 P(cool|n) = 1/5 

humidity 

P(high|p) = 3/9 P(high|n) = 4/5 

P(normal|p) = 6/9 P(normal|n) = 1/5 

windy 

P(true|p) = 3/9 P(true|n) = 3/5 

P(false|p) = 6/9 P(false|n) = 2/5 

P(p) = 9/14 

P(n) = 5/14 



An incoming sample: X = <sunny, cool, high, true> 
 

P(play|X) = P(X|p) · P(p) =  
P(p) · P(sunny|p) · P(cool|p) · P(high|p) · P(true|p)=  

    9/14 · 2/9 · 3/9 · 3/9 · 3/9 = .0053 
 

P(Don‘t play |X) = (X|n) · P(n) =  
P(p) · P(sunny|n) · P(cool|n) · P(high|n) · P(true|n)= 

    5/14 · 3/5 · 1/5 · 4/5 · 3/5 = .0206 
 

Class n (don’t play) has higer probability than class p 
(play) for sample X.  

 

Play-tennis example: estimating P(Ci|X) 
(Example from: Tom Mitchell ―Machine Learning‖) 



 

 

 Mahout provides a parallel Naïve Bayes 

implementation using Hadoop 

 Not a general purpose implementation 

 Intended for classifying text 

 classifier.bayes.TrainClassifier & TestClassifier 

 

 

 

 

 

Naïve Bayes - Mahout 



 

 

 Documents are classified into categories 

 Terms and their number of occurrences in the 

document are considered features 

 The category of the document is the class label 

 

 

 

 

 

Naïve Bayes –  
Text Classification 



 

 

Naïve Bayes –  
Text Classification 



  

Naïve Bayes –  
Text Classification 



 

 

 Twenty newsgroups data set contains postings from 

twenty USENET newsgroups 

 Problem: predict which newsgroup a post belongs to 

based on the post‘s text 

 Class label: the newsgroup each post is from 

 

 org.apache.mahout.classifier.bayes.TrainClassifier 

 --input 20news --output model 

 org.apache.mahout.classifier.bayes.TestClassifier 

 --model model --testDir 20news 

 

 

Naïve Bayes –  
Mahout Example 



 

 

Naïve Bayes –  
Mahout Example 

Summary 

------------------------------------------------------- 

Correctly Classified Instances          :      18369   97.5621% 

Incorrectly Classified Instances        :        459    2.4379% 

Total Classified Instances              :      18828 

 

======================================================= 

Confusion Matrix 

------------------------------------------------------- 

a    b    c    d    e    f    g    h    i    j    k    l    m    n    o    p    q    r    s    t    <--Classified as 

994  0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0     |  994   a     = rec.motorcycles 

0    976  0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    2    1     |  980   b     = comp.windows.x 

7    0    929  1    0    0    0    0    0    0    0    0    1    0    2    0    0    0    0    0     |  940   c     = talk.politics.mideast 

0    0    0    905  0    0    1    0    0    0    0    0    0    0    0    0    3    0    1    0     |  910   d     = talk.politics.guns 

4    1    4    27   388  1    0    1    0    5    1    1    2   2 149  7    2    33   0    0     |  628   e     = talk.religion.misc 

3    0    0    0    0    985  0    1    0    0    0    0    0    1    0    0    0    0    0    0     |  990   f     = rec.autos 

0    0    0    0    0    0    993  1    0    0    0    0    0    0    0    0    0    0    0    0     |  994   g     = rec.sport.baseball 

0    0    0    0    0    0    1    998  0    0    0    0    0    0    0    0    0    0    0    0     |  999   h     = rec.sport.hockey 

0    0    0    0    0    0    0    0    956  0    2    0    0    0    0    0    0    0    2    1     |  961   i     = comp.sys.mac.hardware 

0    0    0    0    0    0    0    0    0    981  0    0    5    0    0    1    0    0    0    0     |  987   j     = sci.space 

0    0    0    0    0    0    0    0    0    0    978  0    1    0    0    0    0    0    2    1     |  982   k     = comp.sys.ibm.pc.hardware 

1    0    3    36   0    1    2    1    0    5    0   697  4    0    3    3    19   0    0   0     |  775   l     = talk.politics.misc 

0    2    0    0    0    0    0    0    0    0    2    0    966  0    0    0    0    0    2    1     |  973   m     = comp.graphics 

… 

TestClassifier output 



Classification with  

Decision Tree Induction 

This algorithm makes Classification Decision for a test 
sample with the help of tree like structure (Similar to 
Binary Tree OR k-ary tree) 

Nodes in the tree are attribute names of the given data 

Branches in the tree are attribute values  

Leaf nodes are the class labels 

 

Supervised Algorithm (Needs Dataset for creating a tree) 

 

Greedy Algorithm (favourite attributes first) 



Building Decision Tree 

Two step method 

Tree Construction  

1. Pick an attribute for division of given data 

2. Divide the given data into sets on the basis of 
this attribute 

3. For every set created above - repeat 1 and 2 
until you find leaf nodes in all the branches of 
the tree - Terminate 

Tree Pruning (Optimization) 

Identify and remove branches in the Decision Tree 
that are not useful for classification 

Pre-Pruning 
Post Pruning   



Assumptions and Notes for  

Basic Algorithm 

Attributes are categorical  

if continuous-valued, they are discretized in advanced  

Examples are partitioned recursively based on selected 

attributes 

Test attributes are selected on the basis of a heuristic or 

statistical measure (e.g., information gain) 

At start, all the training examples are at the root 



Algorithm at work….  

(Tree Construction - Step 1 & 2) 

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Given data 

Three Data Sets formed after  

division at root node on the 

basis of “age” attribute 



Algorithm in action…. 

Data 

Set1 Set2 



Final Decision Tree     

age? 

overcast 

Credit rating? 

no yes fair excellent 

<=30 >40 

no no yes yes 

31..40 

Student? Yes 

On the basis of tree constructed in the 

manner described, classify a test sample  

(age, student, creditrating, 

buys_computer) 

(<=30, yes, excellent, ?) 

-Will this student buy computer? 



Tree Construction  

(Termination Conditions) 

 

All samples for a given node belong to the same class 

There are no remaining attributes for further partitioning 
– majority voting is employed for classifying the leaf 

There are no samples left 



Attribute Selection Advancements 

We want to find the most ―useful‖ attribute in 

classifying a sample. Two measures of 

usefulness: 

Information Gain 

Attributes are assumed to be categorical 

Gini Index (IBM IntelligentMiner) 

Attributes are assumed to be contineous 

Assume there exist several possible split values for each 

attribute 

 



How to calculate  

Information ―Gain‖ 

In a given Dataset, assume there are two classes, P  and 

N (yes and no from example) 

Let the set of examples S contain p elements of class P  and n 

elements of class N 

The amount of information, needed to decide if an arbitrary 

example in S belongs to P  or N is defined as 

np
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np
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np
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p
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Entropy 

Entropy measures the impurity of a set of samples. 

It is lowest, if there is at most one class present, and it 

is highest, if the proportions of all present classes are 

equal. That is, 

If all examples are positive or all negative, entropy is low 

(zero).  

If half are positive and half are negative, entropy is high (1.0) 

 



Information Gain in  

Decision Tree Induction 

Assume that using attribute A a set S will be partitioned into 
sets {S1, S2 , …, Sv}   

If Si contains pi examples of P and ni examples of N, the entropy, or 
the expected information needed to classify objects in all subtrees Si 
is 

 

 

The encoding information that would be gained by branching 
on A.  This is the expected reduction in entropy if we go 
with A. 
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Play-tennis example:  

which attribute do we take first 
Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

Humidity = high [3+,4-] E=0.985 

Humidity=normal [6+,1-] E = .592 
Gain(S, Humidity) = .940 – 7/14(.985) – (7/14).592 = .151 

 

Windy = false [6+,2-], E = .811 
Windy = true [3+,3-], E = 1.0 

 
Gain (S, Windy) = .940 – (8/14)(.811 – (6/14)(1.0) = .048 

 

Humidity split into two classes , one with a great split of 
6+ and 1-. The other was not so great of 3+,3- 

Wind split into two classes, one with an Ok split of 6+2- 
And the other was terrible of 3+,3- (max entropy of 1.0).  

 

So Humidity is the best attribute between these two.  
 

Gain(S,outlook) = .246 
Gain(S,humidity) = .151 

Gain(S,wind) = .048 

Gain(S,Temperature) = .029 

I (Humidity[9+,5-]) = .940  



Gini Index (IBM IntelligentMiner 

If a data set T contains examples from n classes, gini index, gini(T) is defined as 

 

 

     where pj is the relative frequency of class j in T. 

If a data set T is split into two subsets T1 and T2 with sizes N1 and N2 respectively, 

the gini index of the split data contains examples from n classes, the gini index 

gini(T) is defined as 

 

 

 

The attribute provides the smallest ginisplit(T) is chosen to split the node (need to 

enumerate all possible splitting points for each attribute). 
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Extracting Classification Rules 

Represent the knowledge in the form of IF-THEN rules 

One rule is created for each path from the root to a leaf 

Each attribute-value pair along a path forms a conjunction 

The leaf node holds the class prediction 

Rules are easier for humans to understand 

 

Example 

IF age = ―<=30‖ AND student = ―no‖   THEN buys_computer = ―no‖ 

IF age = ―<=30‖ AND student = ―yes‖  THEN buys_computer = ―yes‖ 

IF age = ―31…40‖    THEN buys_computer = ―yes‖ 

IF age = ―>40‖   AND credit_rating = ―excellent‖   THEN buys_computer = ―yes‖ 

IF age = ―<=30‖ AND credit_rating = ―fair‖  THEN buys_computer = ―no‖ 



Overfitting 

Generated Decision Tree is said to overfit the training data if, 

It results in poor accuracy to classify test samples 

It has too many branches, that reflect anomalies due to noise or 
outliers 

Two approaches to avoid overfitting –  

Tree Pre-Pruning – Halt tree construction early – that is, do not split a 
node if the goodness measure falls below a threshold 

It is difficult to choose appropriate threshold 

Tree Post-Pruning - Remove branches from a ―fully grown‖ tree—get 
a sequence of progressively pruned trees 

Use a set of data different from the training data to decide which is 
the ―best pruned tree‖ 



Classifier Accuracy Estimation 

Why estimate a classifier accuracy? 

Comparing classifiers for the given dataset (Different classifiers will 
favor different domain of datasets) 

One needs to estimate how good the prediction will be.  

Methods of estimating accuracy 

Holdout – randomly partition the given data into two independent sets 
and use one for training (typically 2/3rd)  and the other for testing 
(1/3rd) 

k-fold cross-validation – randomly partition the given data into ‗k‘ 
mutually exclusive subsets (folds). Training and testing is performed 
k times. 



Accuracy Improvement 

Methods 

Bagging (Bootstrap aggregation) – Number of trees are 

constructed on subsets of given data and majority voting is 

taken from these trees to classify a test sample. 

Boosting – attaching weights (importance) to the training 

samples and optimizing the weights during training and further 

using these weights to classify the test sample. Advantage – 

avoids outliers 



Further Reading 
1. Robust Regression - alternatives to Least Squares.  

• Robust regression and outlier detection, By Peter J. Rousseeuw and Annick M. 
Leroy. Book. 1987. 

• http://en.wikipedia.org/wiki/Robust_regression#Least_squares_alternatives 
 
2. Excellent source for everything we covered and more: 

• http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf 
• Also includes the statistical justification for least squares (LS has the same 

meaning as MLE under a few assumptions about the distribution). 
 

3. Vowpal Wabbit (Fast Online Learning) 
• http://hunch.net/~vw/ 

 
4. Stochastic Gradient Descent Examples 

• http://leon.bottou.org/projects/sgd 
 

5. CS229 Lecture Notes 
• http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf 

http://en.wikipedia.org/wiki/Robust_regression
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://hunch.net/~vw/
http://leon.bottou.org/projects/sgd
http://leon.bottou.org/projects/sgd
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
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