
Supervised Learning:
Regression & Classifiers

Fall 2010

Problem Statement

• Given training data of the form:

)},)...(,{(mmii yxyx

• X: the space of input features/attributes

• Y: the space of output values (target variable)

• A pair is called a training example (the

superscript ―(i)‖ is just the instance number in the

training set).

 • We want to learn a function h : X → Y that is a

“good” predictor for the corresponding value of y.

),(ii yx

Notations

},,...,,{(

...

)},,...,,{(

21

111
2

1
1

mm
n

mm

n

yxxx

yxxx

• training examples.

• features.

• example.

• coefficient.

m
n
thi
thj

Almost always, m >> n (number of examples)

(equations) is significantly larger than the

number of unknown coefficients). Hence, we

are looking for approximate solutions.

Applications

• Document Classification
• e.g., spam filtering

• Speech and Face Recognition

• Loan Approval

• Medical Diagnosis

And many many more…

Supervised Learning

Training Set

Learning

Algorithm

h new X
(testing data)

predicted y

Training Set Training Set
•If the target variable (Y)

is continuous, the

learning problem is a

regression problem.

•If the target is discrete

(we will focus on binary

targets), it is a

classification problem.

Linear Regression by Example

• Our training data contain 2 features and a

continuous target variable. We would like to predict

the prices of other houses as a function of the size

of their living areas and number of bedrooms.

Living area (sq. feet) #bedrooms Price (1000$s)

2104 3 400

1600 3 330

2400 3 369

… … …

We are looking for a linear function of the form:

22110)(xxxh

Example from: http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf

http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf

Linear Regression

• are the parameters (also called weights or
coefficients) we would like to learn. Once we
learn the parameters, we can plug in a new
“living area in sq. feet” and “#bedrooms”, and
 would predict the price of the house.

22110)(xxxh

si '

)(xh

Best Regression Fit

y = 1.6635x + 101.77

R² = 0.8807

0

200

400

600

800

1000

1200

0 100 200 300 400 500

P
r
ic

e

Living Area

House Prices (1000$s)

Price (1000$s) Linear (Price (1000$s))

0

200

400

600

800

1000

1200

0 100 200 300 400 500

P
r
ic

e

Living Area

House Prices (1000$s)

Price (1000$s) Linear (Price (1000$s))

Which line fits the data better?

• With one input feature and one target variable, the

 interpretation is fitting a line to the data.

Difference between

predicted and observed

Finding Good Parameters

• Need to define a cost/loss function:

• 1)

• Problem: plus/minus – a bad line can end up as the
perfect fitting.

• 2)

• Problem: Not very common since it’s not convenient

mathematically (out of the scope of this class). See the
Wikipedia article for the details.
http://en.wikipedia.org/wiki/Least_absolute_deviations

m

i

ii yxhJ
1

))(()(

m

i

ii yxhJ
1

|))((|)(Least Absolute Errors

http://en.wikipedia.org/wiki/Least_absolute_deviations

Least Squares

• A very common cost function:

m

i

ii yxhJ
1

2))((
2

1
)(

• This is the least square cost function.

• is the error rate the learning

algorithm makes based on the correct values of y

in the training data. We want to minimize the

cost function – i.e., finding the weights that

would minimize it (also called finding the best fit).

))((ii yxh

Batch Gradient Descent

•The gradient descent algorithm starts with some

initial θ, and repeatedly performs an update.

)(:

 J
d

d

j
jj

• is the learning rate (how much we progress in every step)

• The algorithm repeatedly takes a step in the direction of steepest

 decrease of J.

For one training example we get:

))(())((
2

1
2)(yxh

d

d
yxhJ

d

d

jj

jxyxh))(()())((
0

yx
d

d
yxh

n

i ii
j

Done for every jth coefficient

Batch Gradient Descent

•Finally we get:

 Repeat until convergence:{

 }

•This is repeated for every j (every feature). m is the

number of instances in the training set.

m

i

i
j

ii
jj xxhy

1

))((

For a single update, we iterate over the entire training data!

BGD Example

i-th

Row
Error

Alpha=1

1-m 1 (guess) 1 (guess) 1 (guess)

1 0 (40-24)*20 (40-24)*3 16

2 0 (33-20)*16 (33-20)*3 13

1-m 1 1+1*(40-24)*20 +1*(33-

20)*16 = 1 + 320 + 208 =

529

1+1*(40-24)*3 +

1*(33-20)*3 = 88

Living Area (x1) #bedrooms (x2) Price(1000$s) (y)

20 3 40

16 3 33

21 885291)(xxXh

21 111)(xxXh

0 21

BGD Example

i-th

Ro

w

Error

Alpha=0.001

1-m 1 (guess) 1 (guess) 1 (guess)

1 0 (40-24)*20 (40-24)*3 16

2 0 (33-20)*16 (33-20)*3 13

1-m

1 1+0.001*(40-24)*20 +

0.001*(33-20)*16 = 1 +

0.32 + 0.208 = 1.528

1+0.001*(40-24)*3 +

0.001*(33 -20)*3 =

0.048+0.039 = 1.087

Living Area (x1) #bedrooms (x2) Price(1000$s) (y)

20 3 40

16 3 33

21 087.1528.11)(xxXh

0 21

BGD Example

Living Area (x1) #bedrooms (x2) Price(1000$s) (y)

20 3 40

16 3 33

18 3 36 New

223181)(Xh

76.313087.118528.11)(Xh

Guess

72.34304.1187.11)(Xh

8.353043.11876.11)(Xh

Iteration #

0 1 1 1

1 1 1.528 1.087

2 1 1.70639.. 1.04014..

3 1 1.76666.. 1.04362..

4 1 1.78702..

1.04483..

1 1 2

17.363044.11878.11)(Xh

Stochastic Gradient Descent

•The previous algorithm is called batch gradient descent

since it looks at every example in the entire training set on

every step.

•Alternatively, stochastic gradient descent iterates over the

training set, and for each example it updates the

parameters according to that specific example only. (often

much faster – good for very large datasets)

i
j

ii
jj xxhy))((

Loop{

 for i=1 to m, {

 }

} Removed!

m

i 1

Global Minimum

• In the ideal case, the GD algorithm stops in a

 global minimum. However, this is not always the

 case – it depends on the function and initial guess.

http://www.graphpad.com/curvefit/2549a220.gif

• Practical solution: start with

many different guesses and

choose the one the produces

the minimum (you should

expect the global minimum to

be produced by many guesses).

Alternatives to Least Squares

• Least squares can be sensitive to outliers,

especially in noisy data. A common alternative is

the Locally Weighted Least Squares:

• Fitting is done “online”.

• Slower than the “offline” ordinary LS.

)())((
2

1
)(

1

2 xwyxhJ im

i

ii

:)(xwi
We would like to choose this error function to be

larger when is close to . xix

Locally Weighted Least Squares

• With the ordinary LS, we build one general model

for the data. After finding , we do not need the

training data anymore.

• With LWLS, we build a new model for each new

input we want to predict a y value to. The idea is to

work on local parts.

)
2

)(
exp()2

2

2

xxi

Defines how we choose neighbors. For example:

)(xh

:)(xwi

1||

1
)1

 ixx
if and are close: W 1

if and are far apart: W 0

ix x
ix x

Controls the # of neighbors

Logistic Regression

• In LR we predict the likelihood that Y is equal to

1 given certain values of X (which also gives us

the probability that Y is equal to 0).
Age Gender Height Play

Basketball?

22 M 1.85m Yes

24 M 1.92m Yes

60 F 1.66m No

… … … …

19 M 1.80 ?

Logistic Regression

xT

e
xh

1

1
)(

n

j jj
T xx

10

In classification problems we replace the linear

regression with logistic regression to achieve a

better learning algorithm. We only change the form

of the function h as follows:

The Logistic

Function

To find the best fit, we can use the same SGD algorithm we used

for linear regression. The only difference is that the function h is

different now – outputs a number between 0 and 1.

Logistic Regression Function

Taken from http://faculty.chass.ncsu.edu/garson/PA765/logistic.htm

http://faculty.chass.ncsu.edu/garson/PA765/logistic.htm

Maximum Likelihood Estimation
• MLE is a common method for estimating model

parameters. In our case, MLE is used to find the

coefficients that make the observed data as

probable as possible.

• Our hypothesis function h has a different meaning

now: we are trying to estimate the probability that Y is

equal to 1 given X.

)();|1(xhXyP

)(1);|0(xhXyP

yy xhxhXyP 1))(1()();|(
• For convenience, we write the above two as follows: (this is identical)

Maximum Likelihood Estimation

i

ii xyPXYPL);|();|()(

i

i

yiiyi xhxh 1))(1()(

• Next, for convenience, we maximize the logarithm of

the likelihood instead of the likelihood itself (we get

rid of the product and have summation instead). We

can do so because the logarithm function is

monotonically increasing and we do not care about

the value itself, just the parameters that maximize

the whole thing.

assuming iid

Likelihood of the data

Maximum Likelihood Estimation

• We again use the Gradient Descent algorithm, but since we

want to maximize the function instead of minimizing it, we

have the following: (gradient ascent)

)(:

 l
d

d

j
jj The log likelihood that we

want to maximize (not the

same function as before).
+ instead of -

• Although we started with a different model, we end up with

the same learning algorithm as before (but h now is

different):

i
j

ii
jj xxhy))((The same SGD!

Mahout LR Implementation

TrainLogistic has a main function that can be run

to do a logistic regression

org.apache.mahout.classifier.sgd.TrainLogistic

 --input in.csv --output out

 --passes <input passes> --rate <learning rate>

 --features <number of target feature>

 --target <target variable>

 --categories <number target categories possible>

 --predictors <predictor variables>

 --types <predictor types (numeric, word, or text)>

Mahout LR Example

• TrainLogistic performs passes passes on the

input csv and outputs the results to output

• Input data must be transformed to a csv and

represented as numeric or text attributes

• Tennis data with target class of whether to play
Outlook Temperature Humidity Windy Play

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

Outlook Temperature Humidity Windy Play

0 2 1 0 0

0 2 1 1 0

1 2 1 0 1

2 1 1 0 1

2 0 0 0 1

2 0 0 1 0

1 0 0 1 1

0 1 1 0 0

0 0 0 0 1

2 1 0 0 1

0 1 0 1 1

1 1 1 1 1

1 2 0 0 1

2 1 1 1 0

Mahout LR Example

• Run a LR on tennis data

• Two categories: play and don’t play

• Other attributes are the predictors

org.apache.mahout.classifier.sgd.TrainLogistic

 --input tennis.csv --output out

 --passes 100 --rate 50

 --features 4

 --categories 2

 --predictors outlook temperature humidity windy

 --types numeric

 --target play

Mahout LR Example –
Output

• Mahout produces a model file and text output

• The model contains similar information and a copy of

TrainLogistic’s runtime parameters in the JSON format

4 // number of features

play ~ 2.510*Intercept Term + -0.601*outlook + -0.627*temperature

+ -0.601*humidity + -0.601*windy

 Intercept Term 2.50953

 humidity -0.60090

 outlook -0.60090

 temperature -0.62739

 windy -0.60090

 -0.627386850 2.509528194 0.000000000 -0.600897574

Mahout LR Example –
Classification

Mahout LR Code
 public double classifyScalar(Vector instance) {

 if (numCategories() != 2) {

 throw new IllegalArgumentException("Can only call

 classifyScalar with two categories");

 }

 // apply pending regularization to whichever coefficients matter

 regularize(instance);

 // result is a vector with one element so just use dot product

 double r = Math.exp(beta.getRow(0).dot(instance));

 return r / (1 + r);

 }

Naïve Bayesian Classifier

Classifier based on Bayes Theorem.

Combines the impact/probability of each feature on the

class label.

Naïve: assumes the independence between the features.

Shape and color of a fruit determining the fruit

Education and salary determining the life style

(independence??)

Given a hypothesis, calculating the probability of

correctness of that hypothesis.

Hypothesis: x1 , x2 is a Peach.

Calculate the probability that x1 , x2 is a Peach.

 P(H: x1 , x2 is a Peach)

 P(H: x1 , x2 is an Apricot)

 ………

1. Calculate each of these probabilities.

2. Choose the highest probability.

Naïve Bayesian Classifier

Bayes Theorem

P(H|X) Posterior Probability of hypothesis H

X : x1 , x2 , …, xn

Shows the confidence/probability that suppose X, then the
hypothesis is true.

x1 : shape = round, x2 : color = orange

H: x1 , x2 is a Peach.

P(H) Prior Probability of hypothesis H

Probability that regardless of data the hypothesis is true.

Regardless of color and shape, it is a Peach.

Bayes Theorem

P(X|H) Posterior Probability of X conditioned on

hypothesis H

Given H is true (X is a Peach), calculate probability that X is

round and orange.

P(X) Prior Probability of X

Probability that sample is round and orange.

Bayes Theorem

 XP

HPHXP
XHP

|
)|(

Posterior

Probability of class Ci

Posterior

Probability of X Prior Probability of class Ci

Prior Probability of X

 ik

n

k
ii CxPCPXCP |)|(

1

 Hypothesis H is the class Ci.

 P (X) can be ignored as it is constant for all classes.

 Assuming the independence assumption, P(X|Ci) is:

n

k iki CxPCXP
1

|)|(
 Thus:

Naïve Bayesian Classifier

 P(Ci) is the ratio of total samples in class Ci to all samples.

 For Categorical attribute:

P(xk|Ci) is the frequency of samples having value xk

in class Ci.

 For Continuous (numeric) attribute:

P(xk|Ci) is calculated via a Gaussian density function.

Naïve Bayesian Classifier

 Having pre-calculated all P(xk |Ci), to classify an

unknown sample X:

» Step 1: For all classes calculate P(Ci |X).

» Step 2: Assign sample X to the class with the

highest P(Ci |X).

Naïve Bayesian Classifier

Play-tennis example: estimating P(xi|C)
(Example from: Tom Mitchell ―Machine Learning‖)

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

outlook

P(sunny|p) = 2/9 P(sunny|n) = 3/5

P(overcast|p) = 4/9 P(overcast|n) = 0

P(rain|p) = 3/9 P(rain|n) = 2/5

temperature

P(hot|p) = 2/9 P(hot|n) = 2/5

P(mild|p) = 4/9 P(mild|n) = 2/5

P(cool|p) = 3/9 P(cool|n) = 1/5

humidity

P(high|p) = 3/9 P(high|n) = 4/5

P(normal|p) = 6/9 P(normal|n) = 1/5

windy

P(true|p) = 3/9 P(true|n) = 3/5

P(false|p) = 6/9 P(false|n) = 2/5

P(p) = 9/14

P(n) = 5/14

An incoming sample: X = <sunny, cool, high, true>

P(play|X) = P(X|p) · P(p) =
P(p) · P(sunny|p) · P(cool|p) · P(high|p) · P(true|p)=

 9/14 · 2/9 · 3/9 · 3/9 · 3/9 = .0053

P(Don‘t play |X) = (X|n) · P(n) =
P(p) · P(sunny|n) · P(cool|n) · P(high|n) · P(true|n)=

 5/14 · 3/5 · 1/5 · 4/5 · 3/5 = .0206

Class n (don’t play) has higer probability than class p
(play) for sample X.

Play-tennis example: estimating P(Ci|X)
(Example from: Tom Mitchell ―Machine Learning‖)

 Mahout provides a parallel Naïve Bayes

implementation using Hadoop

 Not a general purpose implementation

 Intended for classifying text

 classifier.bayes.TrainClassifier & TestClassifier

Naïve Bayes - Mahout

 Documents are classified into categories

 Terms and their number of occurrences in the

document are considered features

 The category of the document is the class label

Naïve Bayes –
Text Classification

Naïve Bayes –
Text Classification

Naïve Bayes –
Text Classification

 Twenty newsgroups data set contains postings from

twenty USENET newsgroups

 Problem: predict which newsgroup a post belongs to

based on the post‘s text

 Class label: the newsgroup each post is from

 org.apache.mahout.classifier.bayes.TrainClassifier

 --input 20news --output model

 org.apache.mahout.classifier.bayes.TestClassifier

 --model model --testDir 20news

Naïve Bayes –
Mahout Example

Naïve Bayes –
Mahout Example

Summary

Correctly Classified Instances : 18369 97.5621%

Incorrectly Classified Instances : 459 2.4379%

Total Classified Instances : 18828

===

Confusion Matrix

a b c d e f g h i j k l m n o p q r s t <--Classified as

994 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 994 a = rec.motorcycles

0 976 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 | 980 b = comp.windows.x

7 0 929 1 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 | 940 c = talk.politics.mideast

0 0 0 905 0 0 1 0 0 0 0 0 0 0 0 0 3 0 1 0 | 910 d = talk.politics.guns

4 1 4 27 388 1 0 1 0 5 1 1 2 2 149 7 2 33 0 0 | 628 e = talk.religion.misc

3 0 0 0 0 985 0 1 0 0 0 0 0 1 0 0 0 0 0 0 | 990 f = rec.autos

0 0 0 0 0 0 993 1 0 0 0 0 0 0 0 0 0 0 0 0 | 994 g = rec.sport.baseball

0 0 0 0 0 0 1 998 0 0 0 0 0 0 0 0 0 0 0 0 | 999 h = rec.sport.hockey

0 0 0 0 0 0 0 0 956 0 2 0 0 0 0 0 0 0 2 1 | 961 i = comp.sys.mac.hardware

0 0 0 0 0 0 0 0 0 981 0 0 5 0 0 1 0 0 0 0 | 987 j = sci.space

0 0 0 0 0 0 0 0 0 0 978 0 1 0 0 0 0 0 2 1 | 982 k = comp.sys.ibm.pc.hardware

1 0 3 36 0 1 2 1 0 5 0 697 4 0 3 3 19 0 0 0 | 775 l = talk.politics.misc

0 2 0 0 0 0 0 0 0 0 2 0 966 0 0 0 0 0 2 1 | 973 m = comp.graphics

…

TestClassifier output

Classification with

Decision Tree Induction

This algorithm makes Classification Decision for a test
sample with the help of tree like structure (Similar to
Binary Tree OR k-ary tree)

Nodes in the tree are attribute names of the given data

Branches in the tree are attribute values

Leaf nodes are the class labels

Supervised Algorithm (Needs Dataset for creating a tree)

Greedy Algorithm (favourite attributes first)

Building Decision Tree

Two step method

Tree Construction

1. Pick an attribute for division of given data

2. Divide the given data into sets on the basis of
this attribute

3. For every set created above - repeat 1 and 2
until you find leaf nodes in all the branches of
the tree - Terminate

Tree Pruning (Optimization)

Identify and remove branches in the Decision Tree
that are not useful for classification

Pre-Pruning
Post Pruning

Assumptions and Notes for

Basic Algorithm

Attributes are categorical

if continuous-valued, they are discretized in advanced

Examples are partitioned recursively based on selected

attributes

Test attributes are selected on the basis of a heuristic or

statistical measure (e.g., information gain)

At start, all the training examples are at the root

Algorithm at work….

(Tree Construction - Step 1 & 2)

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Given data

Three Data Sets formed after

division at root node on the

basis of “age” attribute

Algorithm in action….

Data

Set1 Set2

Final Decision Tree

age?

overcast

Credit rating?

no yes fair excellent

<=30 >40

no no yes yes

31..40

Student? Yes

On the basis of tree constructed in the

manner described, classify a test sample

(age, student, creditrating,

buys_computer)

(<=30, yes, excellent, ?)

-Will this student buy computer?

Tree Construction

(Termination Conditions)

All samples for a given node belong to the same class

There are no remaining attributes for further partitioning
– majority voting is employed for classifying the leaf

There are no samples left

Attribute Selection Advancements

We want to find the most ―useful‖ attribute in

classifying a sample. Two measures of

usefulness:

Information Gain

Attributes are assumed to be categorical

Gini Index (IBM IntelligentMiner)

Attributes are assumed to be contineous

Assume there exist several possible split values for each

attribute

How to calculate

Information ―Gain‖

In a given Dataset, assume there are two classes, P and

N (yes and no from example)

Let the set of examples S contain p elements of class P and n

elements of class N

The amount of information, needed to decide if an arbitrary

example in S belongs to P or N is defined as

np

n

np

n

np

p

np

p
npI

 22 loglog),(

Entropy

Entropy measures the impurity of a set of samples.

It is lowest, if there is at most one class present, and it

is highest, if the proportions of all present classes are

equal. That is,

If all examples are positive or all negative, entropy is low

(zero).

If half are positive and half are negative, entropy is high (1.0)

Information Gain in

Decision Tree Induction

Assume that using attribute A a set S will be partitioned into
sets {S1, S2 , …, Sv}

If Si contains pi examples of P and ni examples of N, the entropy, or
the expected information needed to classify objects in all subtrees Si
is

The encoding information that would be gained by branching
on A. This is the expected reduction in entropy if we go
with A.

1
),()(

i
ii

ii npI
np

np
AE

)(),()(AEnpIAGain

Play-tennis example:

which attribute do we take first
Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

Humidity = high [3+,4-] E=0.985

Humidity=normal [6+,1-] E = .592
Gain(S, Humidity) = .940 – 7/14(.985) – (7/14).592 = .151

Windy = false [6+,2-], E = .811
Windy = true [3+,3-], E = 1.0

Gain (S, Windy) = .940 – (8/14)(.811 – (6/14)(1.0) = .048

Humidity split into two classes , one with a great split of
6+ and 1-. The other was not so great of 3+,3-

Wind split into two classes, one with an Ok split of 6+2-
And the other was terrible of 3+,3- (max entropy of 1.0).

So Humidity is the best attribute between these two.

Gain(S,outlook) = .246
Gain(S,humidity) = .151

Gain(S,wind) = .048

Gain(S,Temperature) = .029

I (Humidity[9+,5-]) = .940

Gini Index (IBM IntelligentMiner

If a data set T contains examples from n classes, gini index, gini(T) is defined as

 where pj is the relative frequency of class j in T.

If a data set T is split into two subsets T1 and T2 with sizes N1 and N2 respectively,

the gini index of the split data contains examples from n classes, the gini index

gini(T) is defined as

The attribute provides the smallest ginisplit(T) is chosen to split the node (need to

enumerate all possible splitting points for each attribute).

n

j
p jTgini

1

21)(

)()()(2
2

1
1 Tgini

N
N

Tgini
N
NTginisplit

Extracting Classification Rules

Represent the knowledge in the form of IF-THEN rules

One rule is created for each path from the root to a leaf

Each attribute-value pair along a path forms a conjunction

The leaf node holds the class prediction

Rules are easier for humans to understand

Example

IF age = ―<=30‖ AND student = ―no‖ THEN buys_computer = ―no‖

IF age = ―<=30‖ AND student = ―yes‖ THEN buys_computer = ―yes‖

IF age = ―31…40‖ THEN buys_computer = ―yes‖

IF age = ―>40‖ AND credit_rating = ―excellent‖ THEN buys_computer = ―yes‖

IF age = ―<=30‖ AND credit_rating = ―fair‖ THEN buys_computer = ―no‖

Overfitting

Generated Decision Tree is said to overfit the training data if,

It results in poor accuracy to classify test samples

It has too many branches, that reflect anomalies due to noise or
outliers

Two approaches to avoid overfitting –

Tree Pre-Pruning – Halt tree construction early – that is, do not split a
node if the goodness measure falls below a threshold

It is difficult to choose appropriate threshold

Tree Post-Pruning - Remove branches from a ―fully grown‖ tree—get
a sequence of progressively pruned trees

Use a set of data different from the training data to decide which is
the ―best pruned tree‖

Classifier Accuracy Estimation

Why estimate a classifier accuracy?

Comparing classifiers for the given dataset (Different classifiers will
favor different domain of datasets)

One needs to estimate how good the prediction will be.

Methods of estimating accuracy

Holdout – randomly partition the given data into two independent sets
and use one for training (typically 2/3rd) and the other for testing
(1/3rd)

k-fold cross-validation – randomly partition the given data into ‗k‘
mutually exclusive subsets (folds). Training and testing is performed
k times.

Accuracy Improvement

Methods

Bagging (Bootstrap aggregation) – Number of trees are

constructed on subsets of given data and majority voting is

taken from these trees to classify a test sample.

Boosting – attaching weights (importance) to the training

samples and optimizing the weights during training and further

using these weights to classify the test sample. Advantage –

avoids outliers

Further Reading
1. Robust Regression - alternatives to Least Squares.

• Robust regression and outlier detection, By Peter J. Rousseeuw and Annick M.
Leroy. Book. 1987.

• http://en.wikipedia.org/wiki/Robust_regression#Least_squares_alternatives

2. Excellent source for everything we covered and more:

• http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
• Also includes the statistical justification for least squares (LS has the same

meaning as MLE under a few assumptions about the distribution).

3. Vowpal Wabbit (Fast Online Learning)
• http://hunch.net/~vw/

4. Stochastic Gradient Descent Examples

• http://leon.bottou.org/projects/sgd

5. CS229 Lecture Notes
• http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf

http://en.wikipedia.org/wiki/Robust_regression
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://hunch.net/~vw/
http://leon.bottou.org/projects/sgd
http://leon.bottou.org/projects/sgd
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf
http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf

References

1. B. Carpenter: Lazy Sparse Stochastic Gradient Descent for

Regularized Multinomial Logistic Regression.
2. J. Langord, A. Smola, and M. Zinkevich: Slow Learners are

Fast.
3. K. Weinberger, A. Dasgupta, J. Langord, A. Smola, and J.

Attenberg: Feature Hashing for Large Scale Multitask
Learning. In Proceedings of the 26th International Conference
on Machine Learning, 2009.

4. J. Rennie, L. Shih, J. Teevan, and D. Karger: Tackling the
Poor Assumptions of Naive Bayes Text Classifiers. In
Proceedings of the Twentieth International Conference on
Machine Learning (ICML-2003), 2003.

