
4/23/2013

1

CHAPTER 8:
USING OBJECTS

Introduction to Computer Science Using Ruby

(c) 2012 Ophir Frieder et al

Ruby: Philosophy & Implementation

� Ruby is the latest in the family of Object Oriented

Programming Languages

� As such, its designer studied the problems and

promises of past languages

� Ruby is an extreme implementation of such a

language, containing large complexity on one hand

and the ability to ignore any such complexity on the

other hand

(c) 2012 Ophir Frieder et al

Ruby: Philosophy & Implementation

Eliminate ANY unnecessary statements,

declarations and complexity

Startup has to be very simple

Complexity increase has to be unlimited

Development is supported by interactive

capability

Portability is assured via an interpretive

implementation

(c) 2012 Ophir Frieder et al

Classes

� Programs can be millions of lines of

code

� Eventually, they become very difficult to

debug and maintain

� Classes are created to organize

programs and data based on

functionality

(c) 2012 Ophir Frieder et al

4/23/2013

2

Objects

� Classes define the characteristics and behaviors of

objects belonging to them

� Classes provide an abstraction of possible objects

� Objects are the instantiation of classes

� They have a name and possess all the properties of the

class

� Example: Simple variables and their methods

(c) 2012 Ophir Frieder et al

Classes & Objects

� Classes are designed to separate key activities in a

program

� Objects instantiated from classes provide the

implementation of the program

� Activities are isolated

� Communicate information without knowing how it is

produced

� Classes enable programs to be compartmentalized

� Programmers can work at the same time on different

classes without running into each other
(c) 2012 Ophir Frieder et al

Methods

� Classes have their own private chunks of

data and actions

� Actions that an object instantiated from a

class may perform are referred to as

Methods that belong to that Class

(c) 2012 Ophir Frieder et al

Built-in Classes & their Objects

� Everything in Ruby is an Object, even a simple

variable

� As such, it has to be instantiated from a Class

� In Ruby, instantiation is many times done

automatically, using “hidden” Class definitions
� This is one of the ways to eliminate declarations and

various auxiliary and obscure statements

(c) 2012 Ophir Frieder et al

4/23/2013

3

Built-in Classes

� A Class defines the

characteristics and

behaviors of an object

� Contains the variables

and the code

necessary to implement

the operations

(Methods) of the object

� Examples of Built-in

Classes:

� Array

� Fixnum

� Float

� String

(c) 2012 Ophir Frieder et al

Built-in Objects – Classes

� There are many more classes than these

� It is not required that you know HOW

they do what they do, but it is required

that you know WHAT they do, how to

find them, and how to deploy them

(c) 2012 Ophir Frieder et al

Built-in Classes & their Objects

� In Ruby, instantiation can be done

automatically using “hidden” Class definitions,

or can be done explicitly, using the proper

method

� This is an automatic creation of an Object (in this

case: arr)

� No class name is used � Class is hidden � no

method

Example: # Automatic creation – no Class name....

arr = [1,2,3,”Wow”]

(c) 2012 Ophir Frieder et al

Built-in Classes & their Objects

� In Ruby, instantiation is done automatically
many times, using “hidden” Class definitions, or
can be done explicitly.

� This is an explicit creation of an Object
� In this case arr: instantiating it from the class Array
using the built-in method “new”

Example: # instantiate an object from the class Array

arr = Array.new

(c) 2012 Ophir Frieder et al

4/23/2013

4

Built-in Classes & their Methods

� You can understand Class functionality

by looking at the Ruby API, or

Application Program(ming) Interface

� API allows the use of built-in functionality

(that is, the built-in classes and their

methods) without knowing the specifics of

the implementation

(c) 2012 Ophir Frieder et al

Figure 8.1: String API Documentation

� The next slides show the API

documentation for the String class

� It is taken straight out of the book –

which is taken straight from the Ruby

public information (with proper

attribution)

(c) 2012 Ophir Frieder et al

Figure 8.1: String API Documentation

http://ruby-doc.org/core-1.9.3/String.html

Built-in Methods

� The length method descriptor is “str.length =>

integer”

�Means that the method will return an integer

irb(main):001:0> "hello".length => 5

(c) 2012 Ophir Frieder et al

4/23/2013

5

Built-in Methods

� Not all methods are this simple:

(c) 2012 Ophir Frieder et al

Parameter Passing

� Parameters are data supplied to a method (or to a

Class – see later)

� See the API for the description of the built-in

methods that require parameter(s) (variable(s) in

parenthesis

� Methods with parameters send the value of the

variable to the implementing code

(c) 2012 Ophir Frieder et al

Example 8.1: Parameter Passing

� Look at the made up multiplier method:

1 x = 3

2 y = x.multiplier(4)

3 puts "The number is: " + y.to_s

� It multiplies the value of the parameter by x

� Output: The number is 12.

(c) 2012 Ophir Frieder et al

Parameter Passing

� The method works like a black box

� The program inside is not known and

doesn’t matter

�Only the function, thus the output, is

important

Figure 8.4: Black Box for Multiplier Method

(c) 2012 Ophir Frieder et al

4/23/2013

6

Example 8.2: Parameter Passing

� Example of Split (an actual Ruby built-in method):

� This method splits strings into array elements based on

the parameter passed

1 my_string = "Good;day;sir!"
2 arr = my_string.split(";")
3 puts arr
4
5 # The following array is created:
6 # arr[0]: "Good"
7 # arr[1]: "day"
8 # arr[2]: "sir!”

(c) 2012 Ophir Frieder et al

Example 8.3: Split Example #2

� Change the parameter to “a”:

1 my_string = "Good;day;sir!"
2 arr = my_string.split("a")
3 puts arr
4
5 # The following array is created:
6 # arr[0]: "Good;d"
7 # arr[1]: "y;sir!” Output:

Good;d

y;sir!

(c) 2012 Ophir Frieder et al

Example 8.4: Split Example #3

� A parameter not found in the string will result in an

array containing a string that isn’t split

1 my_string = "Good;day;sir!"
2 arr = my_string.split("z")
3 puts arr
4
5 # The following array is created:
6 # arr[0]: "Good;day;sir!”

Output:

Good;day;sir!
(c) 2012 Ophir Frieder et al

Summary

� Classes define the characteristics and behaviors of

objects belonging to the class

� Objects are instantiations of a class: they have a

name and possess all the properties of the class,

namely the variables and the methods

� The application user interface, or API, is an

interface used to communicate with some underlying

functionality

� Parameter passing is used to transfer information

to an object

(c) 2012 Ophir Frieder et al

