
4/23/2013

1

CHAPTER 6:
ARRAYS

Introduction to Computer Science Using Ruby

(c) 2012 Ophir Frieder et al

Arrays

� A data structure is any organized means of storage

� An array is a simple data structure, belonging to

(instantiated from) the Array Class

Figure 6.1: An ordered list of variables

(c) 2012 Ophir Frieder et al

One Dimensional Arrays

� Arrays are like rows of

numbered

compartments

� Arrays start counting

their elements at the

index zero

� The nth element can be

found at index n – 1

� An array is one-

dimensional when it

has only one index or

dimension

� To access an element

in an array, use:

array_name[index]

(c) 2012 Ophir Frieder et al

One Dimensional Arrays

� To create a new array,

use:
array_name = Array.new

� A simpler way to

automatically create

(instantiate) and

initialize the same

array (Example 6.2):

Example 6.1:
1 arr = Array.new
2 arr[0] = 73
3 arr[1] = 98
4 arr[2] = 86
5 arr[3] = 61
6 arr[4] = 96

1 arr = [73, 98, 86, 61, 96]

(c) 2012 Ophir Frieder et al

4/23/2013

2

One Dimensional Arrays

� To use the array, access

array_name[index] as if it was a

variable of the data type expected

(Example 6.3)

1 arr = [5,6]
2 arr[0] = arr[0] + 10
3 puts arr[0]

(c) 2012 Ophir Frieder et al

One Dimensional Arrays

� Arrays cluster multiple data items under one name

� Key advantage of using arrays: when they are used

in conjunction with loops

� Can use a variable for the index instead of literal

numbers

� You can change the index in every loop iteration and

traverse through every element in the array

(c) 2012 Ophir Frieder et al

One Dimensional Arrays

� To know when to stop traversing, get the number of
elements in an array using: arr.size

� New programmers often make errors dealing with

the bounds of an array

� Basic rules for array bounds:

� The first element in an array is at index 0

� arr.size is not the highest indexed element

� The last element in an array is at arr.size – 1

(c) 2012 Ophir Frieder et al

One Dimensional Arrays

� To traverse an array

using a while loop:

� Initialize the index to 0

� Increment it for every

loop iteration

� The condition is index
< arr.size

Example 6.4:
1 arr = [73, 98, 86, 61, 96]

2 index = 0

3 while (index < arr.size)

4 puts arr[index]

5 index = index + 1

6 end

(c) 2012 Ophir Frieder et al

4/23/2013

3

One Dimensional Arrays

� Running the code gives the following

output:

73

98

86

61
� That same array can be output with the
code: puts arr

(c) 2012 Ophir Frieder et al

Example: Find the Max of an Array of

Positive Numbers (Example 6.5)

1 # Initialize array and loop values

2 arr = [73, 98, 86, 61, 96]

3 index = 0

4 max = 0

5

6 # Loop over each element in arr

7 while (index < arr.size)

8 if (arr[index] > max)

9 # Update max

10 max = arr[index]

11 end

12 index = index + 1

13 end

14

15 # Output calculated max

16 puts "Max ==> " + max.to_s
(c) 2012 Ophir Frieder et al

Summary

� An array is a data structure that stores

multiple variables, belonging to the

class Array

� Data stored in an array are accessed

using numbers as an index starting at

zero

(c) 2012 Ophir Frieder et al

Strings

� Strings are data structures that can be viewed as

one dimensional arrays of character, BUT they are

NOT arrays

� The most used string in programming books is

“Hello World”

� It does not belong to the Class Array, but to the Class

String

(c) 2012 Ophir Frieder et al

4/23/2013

4

Strings

� Strings, however, look like arrays, so it is natural to

have for them access mechanisms and methods

similar to arrays

my_arr = Array.new my_str = String.new

my_arr = [1,2,3,5,8] my_str = “Hello World”

my_arr.size #5 my_str.size #11
my_arr.size #3 my_str[2] # “l”
my_arr[2..3] # [3,5] my_str[2..3] # “ll”

my_arr[2,3] # [3,5,8] my_str[2,3] # “llo”
my_arr[2..4] # [3,5,8] my_str[8..9] # “rl”
my_arr[2,4] # [3,5,8] my_str[8,9] # “rld”

(c) 2012 Ophir Frieder et al

Strings

� Strings, being elements (or objects) of

the Class String, also have defined

operations

“Hello” + “ ” + “World”

produces

“Hello World”

(c) 2012 Ophir Frieder et al

Strings and Arrays

� Arrays, being objects of the Class

Array, also have defined operations,

such as +, with a meaning similar to

String

[1,2,3] + [3,5]

produces

[1,2,3,3,5]

(c) 2012 Ophir Frieder et al

Strings and Arrays

� Arrays, being objects of the Class

Array, also have defined operations,

such as - , which is a bit unusual

[1,2,3] - [3,5]

produces

[1,2]

[3,5] – [1,2,3]

produces

[5]
(c) 2012 Ophir Frieder et al

4/23/2013

5

Strings and Arrays

� What is the meaning of – for strings?

“ I am not” – “I am”

Should it be “ not”

????????

NO!!!!!!!

The operation (method) -

Is NOT defined for the Class

String

(c) 2012 Ophir Frieder et al

Strings and Arrays

Note also the following

3 * [1,2] is an error

[1,2] * 3 is [1,2,1,2,1,2]

3 * “ab “ is an error

“ab “ * 3 is “ab ab ab “

(c) 2012 Ophir Frieder et al

Multi-Dimensional Arrays

� Arrays that have more than one dimension are

called multidimensional arrays

� Ruby basically recognizes only one dimensional

arrays, but it is very flexible

� For Ruby, you must put an array inside an array

� A common type is the two-dimensional array,

which is used to represent matrices and coordinate

systems

(c) 2012 Ophir Frieder et al

Multi-Dimensional Arrays

� Consider the following set of grades:

Geraldo 73, 98, 86,61, 96

Brittany 60, 90, 96, 92, 77

Michael 44, 50, 99, 65, 19

(c) 2012 Ophir Frieder et al

4/23/2013

6

Multi-Dimensional Arrays

�To represent the following data, use

an array of arrays:

arr = [[73,98,86,61,96], # arr[0]

[60,90,96,92,77], # arr[1]

[44,50,99,65,100]] # arr[2]

(c) 2012 Ophir Frieder et al

Multi-Dimensional Arrays

� To access an individual score, use:
array[row][column]

� To find Brittany’s score for her third exam, type:

puts “Brittany’s Third Exam: ” +
arr[1][2].to_s
(Note the use of “ ” to allow the ’s)

� The output should be: Brittany ’s Third Exam: 96

� Traversing a multidimensional array requires a

nested loop for every additional dimension
(c) 2012 Ophir Frieder et al

Example 6.6: Outputting Multidimensional Arrays

1 # Initialize array and loop values

2 arr = [[73, 98, 86, 61, 96],

3 [60, 90, 96, 92, 77],

4 [44, 50, 99, 65, 100]]

5 row = 0

6 column = 0

7

8 # Loop over each row

9 while (row < arr.size)

10 puts "Row: " + row.to_s

11 # Loop over each column

12 while (column < arr[row].size)

13 # Print the item at position row x column

14 puts arr[row][column]

15 column = column + 1

16 end

17 # Reset column, advance row

18 column = 0

19 row = row + 1

20 end

You can also output

everything using one line:
puts arr

The only problem is that

output will have no

formatting

(c) 2012 Ophir Frieder et al

Example 6.7: Modified Find the Max

1 # initialize the array and index/score variables

2 arr = [[73, 98, 86, 61, 96],

3 [60, 90, 96, 92, 77],

4 [44, 50, 99, 65, 10]]

5

6 row = 0

7 column = 0

8 maxscore = 0

9 maxrow = 0

10

11 # for each row

12 while (row < arr.size)

13 # for each column

14 while (column < arr[row].size)

15 # update score variables

16 if (arr[row][column] > maxscore)

17 maxrow = row

18 maxscore = arr[row][column]

19 end

20 # increment column

(c) 2012 Ophir Frieder et al

4/23/2013

7

Example 6.7 Cont’d

21 column = column + 1

22 end

23 # reset column, increment row

24 column = 0

25 row = row + 1

26 end

27

28 # output name and high score information

29 if maxrow == 0

30 puts "Geraldo has the highest score."

31 elsif maxrow == 1

32 puts "Brittany has the highest score."

33 elsif maxrow == 2

34 puts "Michael has the highest score."

35 else

36 puts "Something didn't work correctly."

37 end

38 puts "The high score was: " + maxscore.to_s

(c) 2012 Ophir Frieder et al

Michael has the highest score.

The high score was: 99.

Output:

(c) 2012 Ophir Frieder et al

Heterogeneous Arrays

� All our examples used homogeneous

arrays

� In such arrays, all elements belong to

the same class

� Ruby allows an arbitrary mixing of

elements, creating arbitrary

dimensioned heterogeneous arrays

(c) 2012 Ophir Frieder et al

Multi-Dimensional Arrays

arr = Array.new

arr[0] = “ Hi y’all”

arr[1] = 3.14159265

arr[2] = 17

arr[3] = [1,2,3]

arr is [“ Hi y’all” , 3.14159265 , 17, [1,2,3]]

(c) 2012 Ophir Frieder et al

4/23/2013

8

Summary

� Arrays are structures that use a table format to

store variables

� Data stored in an array are accessed using numbers

as an index starting at zero

� An array can have an infinite number of

dimensions and can contain heterogeneous data

� Hashes are like arrays, but can use any variable as

a key

(c) 2012 Ophir Frieder et al

