
2/7/2013

1

CHAPTER 5:
LOOP STRUCTURES

Introduction to Computer Science Using Ruby

(c) 2012 Ophir Frieder et al

While Loops

� A loop performs an iteration or
repetition

� A while loop is the simplest form of a
loop

� Occurs when a condition is true

(c) 2012 Ophir Frieder et al

While Loops

Figure 5.1:

1 while (condition)

2 # statement 1

3 # statement 2

4 # ...

5 # statement n

6 end

(c) 2012 Ophir Frieder et al

While Loops

� Control flow enters the
while loop at the
instruction: while
(condition)

� The condition is
evaluated
� Each of the statements

within the loop are
executed if the condition
is true

� Otherwise, the control
flow skips the loop

� The while (condition) is
reevaluated after the
control flow reaches the
end
� Control flow will repeat

the loop from the first to
the last statement if the
condition evaluates to
true

� This will continue until the
condition evaluates to
false

(c) 2012 Ophir Frieder et al

2/7/2013

2

Infinite Loops

� Every while loop must lead to the
condition eventually becoming false;
otherwise, there will an infinite loop

� An infinite loop is a loop that does not
terminate

� Small mistakes can cause infinite loops

(c) 2012 Ophir Frieder et al

Infinite Loops

Figure 5.6:
1 puts "Count up from 0

to ? ”
2 n = gets.to_i
3 i = 5
4 while (i > 0) #

always true
5 i = i + 2
6 # no provision to

change the condition
to false

7 end

� The program will not
terminate

� To terminate the
program, hold the
control key (CTRL)
and then press C
� This sequence means
cancel

(c) 2012 Ophir Frieder et al

Until Loops

� Until loops are the opposite of while loops

� The until loop executes until a condition is true

� In other words, until loops execute while a condition is
false

� Until loops execute similarly to while loops

� Until loop conditionals map to logical opposites of
while loop conditionals (Table 5.1)

Operator Opposite Operator

== !=

> <=

< >=

(c) 2012 Ophir Frieder et al

Until Loops

Figure 5.3

1 until (condition)

2 # statement 1

3 # statement 2

4 # ...

5 # statement n

6 end

(c) 2012 Ophir Frieder et al

2/7/2013

3

•While and until loops are interchangeable

•These two loops should be used based on clarity
• Use “until this is true” instead of “while this is not true” and vice versa

Based of Figures 5.1 and 5.3

(c) 2012 Ophir Frieder et al

For Loops and Nested Loops

� Execute the statement or
statements in the loop
once for each iteration
element

� Figure 5.4:

1 for num in 0. .5

2 puts num

3 end

� A loop inside a loop

� For loops are most
commonly used in
nested loops

For Loops Nested Loops

(c) 2012 Ophir Frieder et al

Figure 5.5: For Loops and Nested Loops

1 for i in 1. .3

2 puts "Outer loop: i = " + i.to_s

3 for k in 1. .4

4 puts "Inner loop: k = " + k.to_s

5 end # for k

6 end # for I

Note: Indentation and end labeling by comments
(For clarity and documentation only)

(c) 2012 Ophir Frieder et al

The first loop will initialize, then the second will follow

The second loop will finish before the first goes on to the
next iteration

Figure 5.5: For Loops and Nested Loops

(c) 2012 Ophir Frieder et al

2/7/2013

4

Example: Finding Prime Numbers

� A prime number can only be divided by
one and itself

� This program determines whether a
number is prime or not

� Only numbers less than half the given
value need to be checked

� This reduces the number of possible loop
iterations by half

(c) 2012 Ophir Frieder et al

Figure 5.7: Finding Prime Numbers

1 # Initialize our counter

2 i = 1

3

4 # i: [0, 100]

5 while (i <= 100)

6 # Initialize prime flag

7 prime_flag = true

8 j = 2

9 # Test divisibility of i from [0, i/2]

10 while (j <= i / 2)

11 # puts " i ==> " + i.to_s + " j ==> " + j.to_s

12 if (i % j == 0)

13 prime_flag = false

14 # break

15 end

16 j = j + 1

17 end (c) 2012 Ophir Frieder et al

Figure 5.7 Cont’d: Finding Prime Numbers

18 # We found a prime!

19 if prime_flag

20 puts "Prime ==> " + i.to_s

21 end

22 # Increment the counter

23 i += 1

24 end

(c) 2012 Ophir Frieder et al

1 # Initialize our counter
2 i = 1
3
4 # i: [0, 100]
5 while (i <= 100)
6 # Initialize prime flag
7 prime_flag = true
8 j = 2
9 # Test divisibility of i from [0, i/2]

10 while (j <= i / 2)
11 # puts " i ==> " + i.to_s + " j ==> " +

j.to_s
12 if (i % j == 0)
13 prime_flag = false
14 # break
15 end
16 j = j + 1
17 end

Starts the
outer loop for

searching

Uncomment for
debugging

(c) 2012 Ophir Frieder et al

2/7/2013

5

Example: Finding Prime Numbers

� Good debugging statements show the most
information with the least output statements

� Having many statements can make it harder to find
errors

� Sometimes, debugging statements are commented
out or disabled by Boolean conditions, but not
deleted

� Could be used later on for debugging or other code
might accidentally get deleted with it

(c) 2012 Ophir Frieder et al

1 # Initialize our counter
2 i = 1
3
4 # i: [0, 100]
5 while (i <= 100)
6 # Initialize prime flag
7 prime_flag = true
8 j = 2
9 # Test divisibility of i from [0, i/2]

10 while (j <= i / 2)
11 # puts " i ==> " + i.to_s + " j ==> " +

j.to_s
12 if (i % j == 0)
13 prime_flag = false
14 # break
15 end
16 j = j + 1
17 end

Tests to see
if j is a

factor of i

Flag is
switched to

signal that i is
not prime

Uncomment to
make the loop

terminate
immediately

The break command simply ends the loop
regardless of the condition tested.

It reduces the number of iterations performed
and stops the loop once i is determined not to
be prime.

Increments j
Ends the

inner loop

(c) 2012 Ophir Frieder et al

18 # We found a prime!
19 if prime_flag
20 puts "Prime ==> " + i.to_s
21 end
22 # Increment the counter
23 i += 1
24 end

Converts i to a
string and

outputs it when
its a prime

Shorthand
notation for

i = i + 1

(c) 2012 Ophir Frieder et al

Example: Finding Prime Numbers

� The syntax for the
shorthand notation can
be used with “+”, “-”,
“*”, or “/” operators

� Stores the result of the
operation in the
variable used

� Output for the program:
modified to check
numbers up to 25

Prime � 1
Prime � 2
Prime � 3
Prime � 5
Prime � 7
Prime � 11
Prime � 13
Prime � 17
Prime � 19
Prime � 23

(c) 2012 Ophir Frieder et al

2/7/2013

6

Summary

� Loop structures instruct the computer to
repeat a set of steps until a condition is
met

� While loops, until loops, and for loops
can be used to create a loop structure

� Nested loops are loops within loops

(c) 2012 Ophir Frieder et al

