
4/23/2013

1

CHAPTER 4:
CONDITIONAL STRUCTURES

Introduction to Computer Science Using Ruby

(c) 2012 Ophir Frieder et al

Flow of Execution

� Every algorithm has a
logic flow

� There is a start, steps that
happen in chronological
order, and an end

� There is a graphical way
to describe program flow

� Understanding control
flow is essential to
creating and testing an
implementation of an
algorithm

Figure 4.1:

This chart has a one directional

flow (each step is performed once

before the next), but some

algorithms can have multiple

possible execution flows(c) 2012 Ophir Frieder et al

• Conditional flow: a certain condition must be met to perform
the next step

• After doing the first step, follow the path that matches the given
condition, then the rest of the flow is one directional

Flow of Execution: Multiple Path Logic Flow (Figure 4.2)

Decision Step

(c) 2012 Ophir Frieder et al

Conditional Control

� A condition is an expression defined using
relational and Boolean operators

� A condition has a Boolean value, either True
or False

irb(main):001:0> 5 == 5

=> true

irb(main):002:0> 5 == 6

=> false

irb(main):003:0> 5 <= 5

=> true

irb(main):004:0> 5 != 5

=> false

(c) 2012 Ophir Frieder et al

4/23/2013

2

Relational Operators (Table 4.1)

Relational Operators Meaning

== Is equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than of equal to

(c) 2012 Ophir Frieder et al

Conditional Control

� The “!” operator is the negation of a condition or

Boolean value

� “!” can work on any true or false statement or conditional

� Usually referred to as “not”

� Boolean operators operate on Boolean values,

creating expressions that evaluate to True or False

� Operators include: and, or, not

� The results of the operators are described by truth

tables

(c) 2012 Ophir Frieder et al

Truth Tables for “and” and “or” (Table 4.2)

A B A and B A or B

A && B A || B

true true true true

true false false true

false true false true

false false false false

(c) 2012 Ophir Frieder et al

Example: Boolean Expressions

irb(main) :001:0> !false
=>true

irb(main) :002:0> !(true or false)
=> false

irb(main) :003:0> first = true
=> true

irb(main) :004:0> second = false
=> false

irb(main) :005:0> (first and second or
!(first and second)
=> true

(c) 2012 Ophir Frieder et al

4/23/2013

3

Conditional Flow: If Statements

� Ruby uses an if statement for basic conditional

control flow (Example 4.3)

1 if (condition)

2 # section 1

3 end

� Input value of 11 (Example 4.4):
1 # if a number is even, print out "Even"

2 puts "Enter a number ”
3 number = gets.to_i

4 if (number % 2 == 0) # evaluates to false

5 puts "Even ” # does not execute

6 end

Section 1 is executed when the condition

evaluates to true or is skipped when the

condition evaluates to false

(c) 2012 Ophir Frieder et al

Conditional Flow: If-Then-Else Statements

� Provides a second flow option

� If the original condition is not met, then

the second flow option is taken

(Example 4.5)

1 if (condition)

2 # section 1 executes if true

3 else

4 # section 2 executes if false

5 end

(c) 2012 Ophir Frieder et al

Example of Program that Determines Prices of

Movie Tickets (Example 4.6)

1 puts "Enter the customer's age: “

2 # Get an integer age value from the user
3 age = gets.to_i

4
5 # Determine the cost based on age

6 if (age < 12)
7 cost = 9

8 else
9 cost = 18

10 end
11

12 # Print out the final cost

13 puts "Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

If-Else Statement Logic Flow

� To test the program,

input one value for

each logic flow option

� Test the edge or

boundary conditions

(most errors occur here)

Figure 4.4(c) 2012 Ophir Frieder et al

4/23/2013

4

Movie Ticket Example: Input Value of 8

(Example 4.6)

1 puts "Enter the customer's age: "

2 # Get an integer age value from the user
3 age = gets.to_i

4
5 # Determine the cost based on age

6 if (age < 12) # evaluates to true
7 cost = 9 # so the If portion Executes

8 else
9 cost = 18 # This portion DOES NOT

10 end
11

12 # Print out the final cost

13 puts "Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

Movie Ticket Example: Input Value of 25

(Example 4.6)

1 puts "Enter the customer's age: "

2 # Get an integer age value from the user

3 age = gets.to_i

4

5 # Determine the cost based on age

6 if (age < 12)# Evaluates to false

7 cost = 9 # This DOES NOT execute

8 else

9 cost = 18 # Executes

10 end

11

12 # Print out the final cost

13 puts "Ticket cost: “ + cost.to_s

(c) 2012 Ophir Frieder et al

Movie Ticket Example: Input Value of 12

(Figure 4.9)

1 puts "Enter the customer's age: "

2 # Get an integer age value from the user

3 age = gets.to_i

4

5 # Determine the cost based on age

6 if (age < 12) # Evaluates to false

7 cost = 9

8 else

9 cost = 18 # Executes

10 end

11

12 # Print out the final cost

13 puts "Ticket cost: " + cost.to_s

The correct outcome should

be 9 because a child is

considered 12 or under, so

the program is incorrect. To

correct the error (“bug”), the

conditional test in the

program needs to be
“age <= 12 ”

(c) 2012 Ophir Frieder et al

Elsif Statements

� Conditional flow can have more than

two flow options

� There are various ways to implement a

multi-flow control

�One of them is using an elsif statement

(c) 2012 Ophir Frieder et al

4/23/2013

5

Only the first condition that evaluates to true gets

executed

Elsif Statement Logic Flow (Figure 4.5)

(c) 2012 Ophir Frieder et al

Program that Discounts Tickets
for Children & Senior Citizens (Example 4.9)

1 puts "Enter the customer's age: "

2 # Get an integer age value from the user
3 age = gets.to_i

4
5 # Determine the cost based on age

6 if (age <= 12)
7 cost = 9

8 elsif (age >= 65)
9 cost = 12

10 else
11 cost = 18

12 end
13

14 # Print out the final cost
15 puts "Ticket cost: " + cost.to_s

Note: The

program needs

another condition

for senior citizens

(c) 2012 Ophir Frieder et al

Review: Original Movie Ticket Program
(Example 4.6)

1 puts “Enter the customer's age:”

2 # Get an integer age value from the user
3 age = gets.to_i

4
5 # Determine the cost based on age

6 if (age <= 12)
7 cost = 9

8 else
9 cost = 18

10 end
11

12 # Print out the final cost

13 puts "Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

Alternatives

1 puts "Enter the customer's
age:”

2 # Get an integer age value
from the user

3 age = gets.to_i

4 cost = 18

5 # Determine the cost based on
age

6 if (age <= 12)then cost = 9
end

7 # Print out the final cost

8 puts "Ticket cost: " +
cost.to_s

1 puts "Enter the customer's
age:”

2 # Get an integer age value
from the user

3 age = gets.to_i

5 # Determine the cost based on
age

6 if (age<= 12)then (cost=9)else
(cost = 18) end

12 # Print out the final cost

13 puts "Ticket cost: " +
cost.to_s

Alternative Syntax Alternative Program

SYNTACTIC SUGAR IN ACTION:

Alternative syntax designed for ease of programming and readability

(c) 2012 Ophir Frieder et al

4/23/2013

6

Case Statements

� The case statement
handles multiple
options
� Alternative to if-elsif

statements

� Useful for a large number
of options

� Case statements
evaluate in order
� Only the first when clause
that evaluates to true gets
executed

� If none evaluates to true,
then the else clause is
executed

Figure 4.11:

1 case
2 when (expression1)
3 # section 1
4 when (expression2)
5 # section 2
6 else
7 # section 3
8 end

(c) 2012 Ophir Frieder et al

Movie Ticket Program: Rewritten
Using a Case Statement (Example 4.12)

1 puts "Enter the customer's age: "

2 # Get an integer age value from the user

3 age = gets.to_i

4

5 # Determine the cost based on age

6 case

7 when (age <= 12)

8 cost = 9

9 when (age >= 65)

10 cost = 12

11 else

12 cost = 18

13 end

14

15 # Print out the final cost

16 puts "Ticket cost: " + cost.to_s
(c) 2012 Ophir Frieder et al

Debugging:
Incorrect Movie Ticket Program (Example 4.13)

Example 1: The cost will always be 9
1 puts "Enter the customer's age: "

2 # Get an integer age value from the user

3 age = gets.to_i

4

5 # Determine the cost based on age

6 case

7

8 when (age = 12) then # Always evaluates to true

9 cost = 9

10 when (age >= 65) then

11 cost = 12

12 else

13 cost = 18

14 end

15

16 # Print out the final cost

17 puts "Ticket cost: " + cost.to_s

'=' is assignment NOT equality test '=='

(c) 2012 Ophir Frieder et al

Debugging:
Incorrect Movie Ticket Program (Example 4.14)

Example 2:
1 puts "Enter the customer's age: "

2 # Get an integer age value from the user

3 age = gets.to_i

4 # DEBUG

5 puts age

6

7 # Determine the cost based on age

8 case

9 # '=' is assignment NOT equality test '=='

10 when (age = 12) then

11 cost = 9

12 when (age >= 65) then

13 cost = 12

14 else

15 cost = 18

16 end
(c) 2012 Ophir Frieder et al

4/23/2013

7

Debugging

� Uses puts statements to help

identify errors.

� Show variable values where they

are not changing

Example 4.14 cont’d:
17 # DEBUG
18 puts age # Shows that age always equals 12
19
20 # Print out the final cost
21 puts "Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

Debugging: Alternatives

� Programs can also be debugged using
constants

� In each section, there is an if statement
with a debugging constant as the flag
� The flag determines whether a put statement
is executed

� When a section is judged to be correct, the
constant is set to false
� There is no need to check variables

� The debug output should be fully
descriptive
� puts “debug – age” + age.to_s

� NOT puts “age”
(c) 2012 Ophir Frieder et al

Debugging (Example 4.15)

1 # Flag for debugging (change the false when finished debugging)

2 DEBUG_MODULE_1 = true # Initialize and define a flag constant
as true.

3

4 puts "Enter the customer's age: "

5 # Get an integer age value from the user

6 age = gets.to_i

7

8 # Determine the cost based on age

9 if DEBUG_MODULE_1 # Changed to false if this section is correct

10 puts age # Prints age if the section is still # not debugged

11 end

12 case

13 # '=' is assignment NOT equality test '=='

14 when (age = 12) then

15 cost = 9 (c) 2012 Ophir Frieder et al

Debugging (Example 4.15 Cont’d)

16 when (age >= 65) then

17 cost = 12

18 else

19 cost = 18

20 end

21 if DEBUG_MODULE_1 # Changed to false if

this section is correct

22 puts age # prints age if the section is

still not debugged incorrect

23 end

24

25 # Print out the final cost

26 puts "Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

4/23/2013

8

Summary

� Every program follows a control flow,
which is determined by the logic flow
of its algorithms

� Logic and control flow can often be one
directional or conditional

� The relational operators are the key
operators to creating conditional flows

� Another way to create conditional flow
is by employing if, elsif, and case
statements

(c) 2012 Ophir Frieder et al

