4/23/2013

(c) 2012 Ophir Frieder et al

Flow of Execution
|

Every algorithm has a Figure 4.1:

logic flow Start ging South on Fver Road

o There is a start, steps that

happen in chronological Go East ; Main Steet

order, and an end

o There is a graphical way Turn South onto Ruby Lane

to describe program flow

Tumn Eastonto Algarithm Circle

Understanding control

flow is essential to
CHAPTER 4: creating and testing an

implementation of an

CONDITIONAL STRUCTURES algorithm

Introduction to Computer Science Using Ruby (c) 2012 Opir Frieder et al

Start going Soutr on T ver Moad

Conditional Control

If Main Strest £ urder ecnstuctcn, take Rva" Foadl <+—— Decision Step
If tis no, take Mar Sreet

> oninue Sout en e Fa 2 kast v e Steet / A condition is an expression defined using
% relational and Boolean operators
555

TIn Shm Ay [ane

o A condition has a Boolean value, either True

Z // or False
G Easlunly Aga Ui Gircle V £ irb(main):001:0> 5 ==
=>true
irb(main):002:0> 5 ==
=> false

irb(main):003:0> 5 <=5
Flow of Execution: Multiple Path Logic Flow (Figure 4. => true

irb(main):004:0> 5 1= 5
Conditional flow: a certain condition must be met to perform => false
the next step
< After doing the first step, follow the path that matches the given

condition, then the rest of the flow is one directional (c) 2012 Ophir Frieder et al
() 2012 Ophir Frieder et al

4/23/2013

== Is equal to

1= Not equal to

< Less than

> Greater than
<= Less than or equal to
>= Greater than of equal to

Relational Operators (Table 4.1)

(c) 2012 Ophir Frieder et al

Conditional Control

The “!” operator is the negation of a condition or

Boolean value

o “I” can work on any true or false statement or conditional

O Usually referred to as “not”

Boolean operators operate on Boolean values,
creating expressions that evaluate to True or False

o Operators include: and, or, not

The results of the operators are described by truth

tables

(c) 2012 Ophir Frieder et al

A8&B AllB
true true true true
true false false true
false true false true
false false false false

Truth Tables for “and” and “or” (Table 4.2)

(c) 2012 Ophir Frieder et al

Example: Boolean Expressions
|

irb(main) :001:0> !false
=>true

irb(main) :002:0> !(true or false)
=> false

irb(main) :003:0> first = true
=> true

irb(main) :004:0> second = false
=> false

irb(main) :005:0> (first and second or
I(first and second)

=>true

(c) 2012 Ophir Frieder et al

4/23/2013

Conditional Flow: If Statements

Ruby uses an if statement for basic conditional
control flow (Example 4.3)

1 -
if (condition) Section 1 is executed when the condition

2 # section 1 <€—— evaluates to true or is skipped when the
3 end condition evaluates to false

Input value of 11 (Example 4.4):
1# if a number is even, print out "Even"
2 puts "Enter a number
3 number = gets.to_i
4 if (number %
5 puts "Even” # does not execute
6 end

2 == 0) # evaluates to false

(c) 2012 Ophir Frieder et al

Conditional Flow: If-Then-Else Statements

Provides a second flow option

o lf the original condition is not met, then

car the second flow option is taken
o (Example 4.5)
1 if (condition)

section 1 executes if true

else

end

2
3
4 # section 2 executes if false
5

(c) 2012 Ophir Frieder et al

Example of Program that Determines Prices of
Movie Tickets (Example 4.6)
—

1 puts "Enter the customer's age: “
2 # Get an integer age value from the user
3 age = gets.to_i

4

5 # Determine the cost based on age
6 if (age < 12)

7 cost= 9

8 else

9 cost= 18

10 end

11

12 # Print out the final cost

13 puts "Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

If-Else Statement Logic Flow

To test the program,
input one value for
each logic flow option
Test the edge or
boundary conditions
(most errors occur here)

PN

e o

pusloioteost 12

(Fa)

(912012 Ophir Friederetal (™) g0 4.4

4/23/2013

Movie Ticket Example: Input Value of 8

(Example 4.6)
—
puts “Enter the customer's age: "

Get an integer age value from the user
age = gets.to_i

Determine the cost based on age

if (age < 12) # evaluates to true
cost= 9 # so the If portion Executes
else

cost= 18 # This portion DOES NOT
10 end

11

12 # Print out the final cost

13 puts "Ticket cost: " + cost.to_s

© 0O ~NOO O WNPR

(c) 2012 Ophir Frieder et al

Movie Ticket Example: Input Value of 25

(Example 4.6)
|

puts “Enter the customer's age: "
Get an integer age value from the user
age = gets.to_i

Determine the cost based on age

if (age < 12)# Evaluates to false
cost= 9 #This DOES NOT execute
else

cost= 18 # Executes

10 end

11

12 # Print out the final cost

13 puts "Ticket cost: “ + cost.to_s

© o ~NO U WN R

(c) 2012 Ophir Frieder et al

Movie Ticket Example: Input Value of 12
(Figure 4.9)
I —

1 puts "Enter the customer's age: "

2 # Get an integer age value from the user
3 age =gets.to_i

4

5 # Determine the cost based on age

6 if (age < 12) # Evaluates to false
7 cost= 9

8 else

9 cost= 18 # Executes

10 end

11

12 # Print out the final cost

13 puts "Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

Elsif Statements

&. Conditional flow can have more than
/ two flow options

| There are various ways to implement a
_ multi-flow control

0 One of them is using an elsif statement

(c) 2012 Ophir Frieder et al

4/23/2013

1
1
1

v

IF-ELSIF-
ELSIF-ELSE

ition1 else
mndiﬁszuondiﬁma
1 I | |
1] | |

Elsif Statement Logic Flow (Figure 4.5)

<t
-3
<1
<3

Only the first condition that evaluates to true gets

executed
() 2012 Ophir Frieder et al

Program that Discounts Tickets

for Children & Senior Citizens (Example 4.9)
—
1 puts “Enter the customer's age: "
Get an integer age value from the user
age = gets.to_i

Determine the cost based on age
if (age <= 12)

cost= 9

elsif (age >= 65)

cost= 12

10 else

11 cost= 18

12 end

©o0O~NOO O WN

14 # Print out the final cost

15 puts "Ticket cost: " + cost.to_s
(c) 2012 Ophir Frieder et al

Review: Original Movie Ticket Program

(Example 4.6)
—
puts “Enter the customer's age:”

Get an integer age value from the user
age = gets.to_i

Determine the cost based on age

if (age <= 12)

cost= 9

else

cost= 18

10 end

11

12 # Print out the final cost

13 puts "Ticket cost: " + cost.to_s

© 0O ~NOO O WNPR

(c) 2012 Ophir Frieder et al

Alternatives
|

Alternative Program

1 puts “Enter the customer's 1 puts “Enter the customer's
age:” age:”
2 # Get an integer age value 2 # Get an integer age value
from the user from the user
3 age = gets.to_i 3 age = gets.to_i
4 cost= 18
5 # Determine the cost based on 5 # Determine the cost based on
6 if (age <= 12)then cost =9 6 if (age<= 12)then (cost=9)else
end (cost=18) ent
7 # Print out the final cost
8 puts “Ticket cost: " + 12 # Print out the final cost
costto_s 13 puts "Ticket cost: " +
cost.to_s
SYNTACTIC SUGAR IN ACTION:
Alternative syntax d d for ease of progr ing and lability

(c) 2012 Ophir Frieder et al

4/23/2013

Case Statements

|
The case statement

handles multiple Figure 4.11:

options 1 case

o Alternative to if-elsif 2 when (expressionl)
statements 3 #section 1

o Useful for a large number 4 when (expression2)
of options 5 # section 2

Case statements 6 else

evaluate in order 7 # section 3

o Only the first when clause 8 end

that evaluates to true gets
executed

O If none evaluates to true,
then the else clause is

executed
(c) 2012 Ophir Frieder et al

Movie Ticket Program: Rewritten
Using a Case Statement (Example 4.12)
—
1 puts "Enter the customer's age: "
2 # Get an integer age value from the user
3 age =gets.to_i
4
5 # Determine the cost based on age
6 case
7 when (age <= 12)
8 cost= 9
9 when (age >= 65)
10 cost= 12
11 else
12 cost= 18
13 end
14
15 # Print out the final cost
16 puts “Ticket cost: " + cost.to_s
(c) 2012 Ophir Frieder et al

.
Debugging:
Incorrect Movie Ticket Program (Example 4.13)
I —
Example 1: The cost will always be 9
1 puts "Enter the customer's age: "
2 # Get an integer age value from the user
3 age =gets.to_i
4
5 # Determine the cost based on age
6 case
7 #'='is assignment NOT equality test '=="
8 when (age = 12) then # Always evaluates to true
9 cost= 9
10 when (age >= 65) then
11 cost= 12
12 else
13 cost= 18
14 end
15
16 # Print out the final cost
17 puts "Ticket cost: " +cost.to_s
(c) 2012 Ophir Frieder et al

Debugging:

Incorrect Movie Ticket Program (Example 4.14)
—

Example 2:

puts "Enter the customer's age: "

Get an integer age value from the user
age = gets.to_i

DEBUG

puts age

[

Determine the cost based on age
case

#'="is assignment NOT equality test '=="
when (age = 12) then

11 cost= 9

12 when (age >= 65) then

13 cost= 12

14 else

15 cost= 18

16 end

© O ~ND G WON

=
5]

(c) 2012 Ophir Frieder et al

4/23/2013

Debugging

f’;' Uses puts statements to help

— = . o

= identify errors.

= © o Show variable values where they
are not changing

Example 4.14 cont'd:

17 # DEBUG

18 puts age # Shows that age always equals 12
19

20 # Print out the final cost

21 puts “Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

Debugging: Alternatives

constants

/ Programs can also be debugged using
v

/

/ Y In each section, there is an if statement
-

with a debugging constant as the flag

o The flag determines whether a put statement
is executed

When a section is judged to be correct, the
constant is set to false

o There is no need to check variables

The debug output should be fully
descriptive

O puts “debug — age” + age.to_s

o NOT puts “age”

(c) 2012 Ophir Frieder et al

Debugging (Example 4.15)

1 # Flag for debugging (change the false when finished debugging)

DEBUG_MODULE_1 = true # Initialize and define a flag constant
as true.

N

puts "“Enter the customer's age: "
Get an integer age value from the user
age = gets.to_i

Determine the cost based on age

if DEBUG_MODULE_1 # Changed to false if this section is correct
puts age # Prints age if the section is still # not debugged

11 end

12 case

© o N o AW

i
1S)

13 #'="is assignment NOT equality test '=="
1

IS

when (age = 12) then
15 cost= 9 (c) 2012 Ophir Frieder et al

Debugging (Example 4.15 Cont’d)

—
16 when (age >= 65) then
17 cost= 12
18 else
19 cost= 18
20 end
21 if DEBUG_MODULE_1 # Changed to false if
this section is correct
22 puts age # prints age if the section is
still not debugged incorrect

23 end

24

25 # Print out the final cost

26 puts "Ticket cost: " + cost.to_s

(c) 2012 Ophir Frieder et al

Summary
|

= Every program follows a control flow,
(. which is determined by the logic flow
__af of its algorithms

P Logic and control flow can often be one
directional or conditional
The relational operators are the key
operators to creating conditional flows
Another way to create conditional flow
is by employing if, elsif, and case
statements

(c) 2012 Ophir Frieder et al

4/23/2013

