
2/7/2013

1

CHAPTER 3:
CORE PROGRAMMING ELEMENTS

Introduction to Computer Science Using Ruby

(c) 2012 Ophir Frieder et al

Variables

� A variable is a single datum or an
accumulation of data attached to a
name

�The datum is (or data are) stored in
memory

�The name is mostly arbitrary but
should be chosen wisely

�Variables can have almost any name

�Names should improve the readability
of the code

(c) 2012 Ophir Frieder et al

Variables in Ruby

� Use the format variable_name = value

� This format also initializes variable data
irb(main):001:0> a = 4

=> 4
irb(main):002:0> b = 3

=> 3

� The equal sign (=) assigns the right-hand side to the
variables in the left hand side

(c) 2012 Ophir Frieder et al

Common Standards for Variable Names

� Cannot start with an
integer
� Ex: bank1, not 1bank

� Should avoid having
special characters
� Ex: money_spent, not
$_spent

� Special characters have
specific uses in many
languages, including
Ruby

� Should explain the data
they stand for
� Ex: balance, not b

� Should complement the
programming language
style
� Ex: check_balance, not
checkBalance or
checkbalance
� Names with underscores
match Ruby’s style

� Last two names are
different because names
are case sensitive(c) 2012 Ophir Frieder et al

2/7/2013

2

Variables

� Most programming languages assign the variable’s
data to an address in memory

� The programmer does not need to decide the location

Memory – Figure 3.2

variable_2variable_1

(c) 2012 Ophir Frieder et al

Variables

� Constants are “variables” that are
assigned a value that “cannot” be
changed

� Constant names contain only capital
letters

� Ex: PI or PAI for 3.14159286 (π) ; C for
speed of light constant

(c) 2012 Ophir Frieder et al

Data Classes

� Variables can represent words, numbers, and other
entities depending on their data classes

� A data class indicates the properties of the data
stored in a variable

� The nomenclature “Data Type” is used in non-object
oriented languages

� The notion of “Class” has far more reaching meaning
than “Type”

(c) 2012 Ophir Frieder et al

Data Classes

� Specify the domain of
valid values of variables

� Determine the amount of
memory allocated

� Determine the
operations allowed for
(or on) it

� Integers (Fixnum and
Bignum)

� Floats

� Strings

� Boolean

� Many more… Stay
tuned

Data classes can: Data classes in Ruby include:

(c) 2012 Ophir Frieder et al

2/7/2013

3

Data Classes in Ruby: Fixnum

� Natural numbers in integer range and their
negatives

� Integer values range from -2,147,483,648 to
2,147,483,647 in a 32-bit system

� Standard in almost all languages

� Note: asymmetry between the positive and negative
numbers

(c) 2012 Ophir Frieder et al

Data Classes in Ruby: Integers

� Stores values within

the 32-bit range

irb(main):01:0> x = 5

=> 5

� Stores values outside
the 32-bit range

irb(main):02:0>
x=1_000_000_000_000_
000

=>1000000000000000

� Note: No use of
commas with the
numbers

Fixnum Bignum

(c) 2012 Ophir Frieder et al

Data Classes in Ruby: Float

� A decimal number that includes positive and
negative values

� Can be defined using decimal places or scientific

notation

�3.5e2 indicates 3.5 x 102 in scientific notation

Float Examples:

irb(main):001:0> x = 5.0
=> 5.0

irb(main):002:0> x = -3.1415
=> -3.1415

irb(main):003:0> x = 3.5e2
=> 350.0

(c) 2012 Ophir Frieder et al

Data Classes in Ruby: Strings

� Character sequence surrounded by
quotes

� Both double (“) and single (‘) quotes can
be used, but double quotes must be used
if a single quote is inside a string

irb(main):001:0> x = ‘hello world’

=> hello world

irb(main):002:0> y = “hello,‘world’”

=> hello ‘world’

(c) 2012 Ophir Frieder et al

2/7/2013

4

Basic Arithmetic Operators

� Used to perform mathematical operations

� Most are binary operators and require two

operands

Symbol Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

** Power
Table 3.1 (c) 2012 Ophir Frieder et al

Basic Arithmetic Operators

� The modulus operator, %, is used
to find the remainder when diving
two integers

irb(main):001:0> x = 5%2

=> 1

(c) 2012 Ophir Frieder et al

Advanced Mathematical Functions

� Ruby’s Math Module provides advanced mathematical
functions, referred to as Methods (Table 3.2)

� Math Module methods are used in the following format:
Math.Function_name(Value)

irb(main):001:0> x = Math.sqrt(16)

=> 4

Method Operation

sqrt() Square Root

sin() Sine

cos() Cosine

tan() Tangent

log() Natural Log (ln)

log10() Log (Base 10)

(c) 2012 Ophir Frieder et al

Use of Methods

� Ruby’s Math Module provides advanced mathematical
functions, referred to as Methods

� There is a way to include a whole module (like

Math), without the need to specify it with every

use

(c) 2012 Ophir Frieder et al

2/7/2013

5

Input & Output: Direct Output

� The puts instruction displays text on the screen (i.e.,
standard out)

irb(main):001:0> puts “Hello World”

� Variables are displayed on the screen using puts

� To use puts for a variable, enter the variable name
without quotations

irb(main):002:0> text = “Hello World”

=> “Hello World”

irb(main):003:0> puts text

=> Hello World

(c) 2012 Ophir Frieder et al

Input & Output: Input Using Variables

� The gets instruction stores values that are entered
from the keyboard (i.e., standard input device)

� Its format is very similar to puts

irb(main):001:0> age_input = gets

� gets stops the program and waits for the user to type

� Type the input, then press enter

(c) 2012 Ophir Frieder et al

Input & Output: Input Using Variables

� gets will store values as character strings

� To change the data from one class to another (i.e., a
string into an integer), you need to explicitly
perform a type (class) conversion, usually creating
a new variable of the appropriate class

(c) 2012 Ophir Frieder et al

Input & Output: Conversion

� gets will store character strings
irb(main):001:0> age_input = gets

� If you typed 19, age_input will be the

string “19”, NOT the number 19

� To convert “19” to 19, perform the
following:
irb(main):002:0> age =
age_input.to_i

� .to_i converts the contents of a variable to

an integer

(c) 2012 Ophir Frieder et al

2/7/2013

6

Common Programming Errors

� Syntax errors refer to code that Ruby cannot
execute
irb(main):001:0> x = 1 + “hello”

Type Error: String can’t be coerced into Fixnum

from (irb):1:in ‘+‘

from (irb):1

� Ruby stops execution and tells the location where it
had to stop

(c) 2012 Ophir Frieder et al

Common Programming Errors

� Error messages can seem unrelated to
the problem
irb(main):002:0> x = hello

NameError: undefined local
variable or method ‘hello’ for

main: Object

from (irb):2

� Ruby assumed that hello was a

variable since strings have quotes

(c) 2012 Ophir Frieder et al

Common Programming Errors

� Ruby cannot catch logic errors

� The program runs, but the results are incorrect

� Logic errors are often harder to find because the
error’s location is not given

� A common logic error involves integer division

� Ruby performs integer division correctly, but many
casual users expect a different result

irb(main):003:0> 5/2

=> 2

� A result of 2.5 may be expected, but it would not be an
integer

(c) 2012 Ophir Frieder et al

Mixing Data Classes

� Ruby always tries to keep
the same data class for
all of its operands

� Ruby will convert data
classes when it has
different ones in the same
arithmetic operation

� To get a decimal from the
previous example, add a
float or perform an
explicit conversion

irb(main):003:0>
1.0*5/2

=> 2.5

� However, some data classes
cannot be converted
� Ruby will either create an

error condition, or worse,
produce an incorrect result

irb(main):002:0> x
= “hello”.to_i
=> 0

NOTE possible
version
dependency!!!

(c) 2012 Ophir Frieder et al

2/7/2013

7

Summary

� A variable is data attached to a name

� There are common guidelines to follow when
creating variable names

� Constants are “variables” (really values) that
never change

� Programs use various methods (operators and
functions) available in each of the data classes to
perform operations

� Ruby has many classes of operators and methods to
perform math and other operations

(c) 2012 Ophir Frieder et al

Summary

� The puts command is
used to generate
output on the screen
(i.e., standard out)

� The gets command is
used to obtain
information from the
keyboard (i.e.,
standard in)

puts gets

Three types of programming errors are syntax

errors, logic errors, and type errors

(c) 2012 Ophir Frieder et al

