4/23/2013

(c) 2012 Ophir Frieder et al

CHAPTER 10
OBJECT INHERITANCE

Introduction to Computer Science Using Ruby

Inheritance

Classes can be defined so as to have
relationships with other classes

I e The most basic of these relationships is
called inheritance

\

o No need to redefine similar parts of
classes

o A class can inherit properties from
another class

o Inheritance can represent the relationship
between a generic ball, a baseball, a
tennis ball, and a ping pong ball: they are

all spherical objects
(c) 2012 Ophir Frieder et al

Inheritance

We expand our view
of accounts to create
both a checking and a
savings account
Analyze what they
have in common

Attributes Shared:

Have a balance

(c) 2012 Ophir Frieder et al

Can withdraw money

Can deposit money

Inheritance

T
Child Class or Subclass:

Defines attributes that Defines the differences
both types of accounts o i.e., checking and
can use savings accounts

Defines the similarities Main differences:

in the relationship o Cannot withdraw
beyond the minimum
balance from a savings

account

Eliminates the need to
duplicate common data

and methods o Savings account

generates interest

(c) 2012 Ophir Frieder et al

4/23/2013

Inheritance
|
> - The checking and savings account
= classes will define the differences

- O These are the child class or subclass

=
> The main differences are:

Example 10.1: Savings Account Version #1

—
1 require_relative '..Ichapter_09/account_5.rb'
2
3 class SavingsAccount < Account
4 def initialize (balance, name, phone_number,
interest, minimum)

5 super(balance, name, phone_number)
O You cannot withdraw beyond the minimum 6 @interest = interest
balance from a savings account ; d@mlnlmum = minimum
en
O A savings account generates interest 9
10 def accumulate_interest
11 @balance += @balance * @interest
12 end
(c) 2012 Ophir Frieder et al 13 end
(c) 2012 Ophir Frieder et al
class Account def dlsp!'qy R
def initialize(balance, name, phone_number) puts "Name: " + @name
puts "Phone number: " + @phone_number.to_s
@balance = balance puts "Balance: " + @balance.to_s
@name = name end
@phone_number = phone_number
end def transfer(amount, target_account)
@balance -= amount
def deposit(amount) target_account.deposit(amount)
@balance += amount end
end
def status
def withdraw(amount) return @balance
@balance -= amount end
end
end
(c) 2012 Ophir Frieder et al (c) 2012 Ophir Frieder et al

4/23/2013

. . < defines
1 require_relative "../Ichapter_09/acco inheritance in
2 Ruby

3 class SavingsAccount < Account
4 def initialize (balance, name, phone_number,
interest, minimum)

5 super(balance, name, phone_number)

6 @interest = interest

7 @minimum = minimum

8 end

9

10 def accumulate_interest

11 @balance += @balance * @interest
12 end

13 end

(c) 2012 Ophir Frieder et al

Inheritance
1

The SavingsAccount class can do more than the
method it defined

o It inherits all of the super class’ variables and methods

Table 10.1: SavingsAccount Inherited Summary

display

(c) 2012 Ophir Frieder et al

Inheritance: Polymorphism

—
Because SavingsAccount is subclass of Account, it
can use the transfer method to send funds to an
Account object
Does have its limits
o Cannot use the subclasses properties on a superclass
O Subclass has features the superclass does not

o Cannot use accumulate_interest() method on an Account
object

(c) 2012 Ophir Frieder et al

Basic Methods Overriding

It is sometimes convenient to alter
methods that already exist in a
superclass

N\

The SavingsAccount class needs to make

sure the balance does not go below the

minimum

o To achieve this, the SavingsAccount class
will need to override the withdraw
method

o Needs to define its own withdraw

functionality
(c) 2012 Ophir Frieder et al

4/23/2013

Example 10.2: SavingsAccount Version #2
I —

1
2
3
4

5
6
7
8

require_relative *..Ichapter_09/account_5.rb'
class SavingsAccount < Account
def initialize (balance, name, phone_number,
interest, minimum)
super(balance, name, phone_number)
@interest = interest
@minimum = minimum
end

def accumulate_interest

@balance += @balance * @interest
end

(c) 2012 Ophir Frieder et al

Accessing the Superclass

In many cases, the overriding methods are similar to
the methods they override

Instead of repeating code, we can call the
superclass inside an overridden method

o Simply insert the word super with all the parameters
that are needed

(c) 2012 Ophir Frieder et al

Example 10.3: SavingsAccount Version #3

I ——|
require_relative

1
2
3 class SavingsAccount < Account
4

© 0o ~NoO U

'../Ichapter_09/account_5.rb'

def initialize (balance, name,
phone_number, interest, minimum)
super(balance, name, phone_number)

@interest = interest
@minimum = minimum
end

def accumulate_interest
@balance += @balance * @interest
end

(c) 2012 Ophir Frieder et al

Summary
- - Inheritance: classes can be created
—
= from other classes and use the resources

i of the parent class
=
o The parent class or the superclass,
defines the relationship with the child
class or subclass

Subclasses inherit both data and
methods from their parent class

In some cases, methods used by the

child class need to be overridden
(c) 2012 Ophir Frieder et al

