
4/23/2013

1

CHAPTER 10
OBJECT INHERITANCE

Introduction to Computer Science Using Ruby

(c) 2012 Ophir Frieder et al

Inheritance

� Classes can be defined so as to have
relationships with other classes

� The most basic of these relationships is
called inheritance
� No need to redefine similar parts of
classes

� A class can inherit properties from
another class

� Inheritance can represent the relationship
between a generic ball, a baseball, a
tennis ball, and a ping pong ball: they are
all spherical objects

(c) 2012 Ophir Frieder et al

Inheritance

� We expand our view
of accounts to create
both a checking and a
savings account

� Analyze what they
have in common

� Have a balance

� Can withdraw money

� Can deposit money

Account class:

Attributes Shared:

(c) 2012 Ophir Frieder et al

Inheritance

� Defines attributes that
both types of accounts
can use

� Defines the similarities
in the relationship

� Eliminates the need to
duplicate common data
and methods

� Defines the differences
� i.e., checking and
savings accounts

� Main differences:
� Cannot withdraw
beyond the minimum
balance from a savings
account

� Savings account
generates interest

Parent Class or Superclass: Child Class or Subclass:

(c) 2012 Ophir Frieder et al

4/23/2013

2

Inheritance

� The checking and savings account
classes will define the differences

� These are the child class or subclass

� The main differences are:

� You cannot withdraw beyond the minimum
balance from a savings account

� A savings account generates interest

(c) 2012 Ophir Frieder et al

Example 10.1: Savings Account Version #1

1 require_relative '../chapter_09/account_5.rb'
2
3 class SavingsAccount < Account
4 def initialize (balance, name, phone_number,

interest, minimum)
5 super(balance, name, phone_number)
6 @interest = interest
7 @minimum = minimum
8 end
9

10 def accumulate_interest
11 @balance += @balance * @interest
12 end
13 end

(c) 2012 Ophir Frieder et al

class Account
def initialize(balance, name, phone_number)

@balance = balance
@name = name
@phone_number = phone_number

end

def deposit(amount)
@balance += amount

end

def withdraw(amount)
@balance -= amount

end

(c) 2012 Ophir Frieder et al

def display
puts "Name: " + @name
puts "Phone number: " + @phone_number.to_s
puts "Balance: " + @balance.to_s

end

def transfer(amount, target_account)
@balance -= amount
target_account.deposit(amount)
end

def status
return @balance

end

end
(c) 2012 Ophir Frieder et al

4/23/2013

3

1 require_relative '../chapter_09/account_5.rb'
2
3 class SavingsAccount < Account
4 def initialize (balance, name, phone_number,

interest, minimum)
5 super(balance, name, phone_number)
6 @interest = interest
7 @minimum = minimum
8 end
9

10 def accumulate_interest
11 @balance += @balance * @interest
12 end
13 end

< defines
inheritance in

Ruby

(c) 2012 Ophir Frieder et al

Inheritance

� The SavingsAccount class can do more than the
method it defined

� It inherits all of the super class’ variables and methods

Table 10.1: SavingsAccount Inherited Summary

Data Methods

@balance withdraw(amount)

@name deposit(amount)

@phone_number transfer(amount,targetAmount)

display

(c) 2012 Ophir Frieder et al

Inheritance: Polymorphism

� Because SavingsAccount is subclass of Account, it
can use the transfer method to send funds to an
Account object

� Does have its limits

� Cannot use the subclasses properties on a superclass

� Subclass has features the superclass does not

� Cannot use accumulate_interest() method on an Account
object

(c) 2012 Ophir Frieder et al

Basic Methods Overriding

� It is sometimes convenient to alter
methods that already exist in a
superclass

� The SavingsAccount class needs to make
sure the balance does not go below the
minimum

� To achieve this, the SavingsAccount class
will need to override the withdraw
method

� Needs to define its own withdraw
functionality

(c) 2012 Ophir Frieder et al

4/23/2013

4

Example 10.2: SavingsAccount Version #2

1 require_relative '../chapter_09/account_5.rb'
2
3 class SavingsAccount < Account
4 def initialize (balance, name, phone_number,

interest, minimum)
5 super(balance, name, phone_number)
6 @interest = interest
7 @minimum = minimum
8 end
9

10 def accumulate_interest
11 @balance += @balance * @interest
12 end
13

(c) 2012 Ophir Frieder et al

Accessing the Superclass

� In many cases, the overriding methods are similar to
the methods they override

� Instead of repeating code, we can call the
superclass inside an overridden method

� Simply insert the word super with all the parameters
that are needed

(c) 2012 Ophir Frieder et al

Example 10.3: SavingsAccount Version #3

1 require_relative '../chapter_09/account_5.rb'
2
3 class SavingsAccount < Account
4 def initialize (balance, name,

phone_number, interest, minimum)
5 super(balance, name, phone_number)
6 @interest = interest
7 @minimum = minimum
8 end
9
10 def accumulate_interest
11 @balance += @balance * @interest
12 end
13 (c) 2012 Ophir Frieder et al

Summary

� Inheritance: classes can be created
from other classes and use the resources
of the parent class

� The parent class or the superclass,
defines the relationship with the child
class or subclass

� Subclasses inherit both data and
methods from their parent class

� In some cases, methods used by the
child class need to be overridden

(c) 2012 Ophir Frieder et al

