Language Model

(COSC 488)

Nazli Goharian
nazli@ir.cs.georgetown.edu

Retrieval using Language Model

- A probabilistic model of text
- Documents or queries are modeled based on probability distribution over sequences of words
- Ponte and Croft's pioneering paper [ACM SIGIR 1998]
- Variations studied since then
- Three main approaches:
- Query likelihood model : generating query from the document language model
- Document likelihood model: generating document from query language model
- KL-Divergence model: Can compare the document and query language models

Retrieval Using Language Models

(from: C. Manning, P. Raghavan \& H. Schütze, Introduction to Information Retrieval, Cambridge University Press., 2008)

Retrieval: Query likelihood (1), Document likelihood (2), Model comparison (3)

Query Likelihood Scoring Method: Computing $p(Q \mid D)$ or $p(Q \mid \theta D)$

- Goal: determine which document or document model best derives (specific) query Q
- A query is sample of words drawn from a document based on the model defined for the document (document language model θD)
- Documents are then ranked based on their likelihood of giving (generating) that query
- Document models that give a higher probability to the query indicate having more terms of the query (capturing the notion of $T F)$

$$
\operatorname{score}(Q, D)=p(Q \mid \theta D)
$$

Query Likelihood Model

- Unigram query likelihood

$$
\begin{aligned}
& P(Q \mid \theta D)=\prod_{i=1}^{n} P\left(q_{i} \mid D\right) \\
& P\left(q_{i} \mid D\right)=\frac{t f_{q_{i, D}}}{|D|} \Longleftarrow \begin{array}{l}
\text { Maximum liklihood (ML) estimate, } \\
\text { defined as: } \\
\text { Tf of query term appearing in doc }
\end{array}
\end{aligned}
$$

Example: divided by document length
Q: "computer virus,"
$p($ computer $\mid D)=0.1, p($ virus $\mid D)=0.05 \rightarrow p(Q \mid \theta D)=0.1 * 0.05=0.005$

- Problems:
- Results in zero if a term is missing in document (estimation problem)
- Document may be relevant to query but the query term is absent from document (data sparsity problem)

Need smoothing! Assume $P($ virus $\mid D 1)=0$

Need for Smoothing: Example

(example from: Grossman \& Frieder, Information Retrieval Algorithms and Heuristics. 1998, $2^{\text {nd }}$ Edition, Springer, 2004.)

- If a term in a query does not occur in a document, the whole similarity measure becomes zero
- Example:

Q: "gold silver truck"
D1: "Shipment of gold damaged in a fire"
D2: "Delivery of silver arrived in a silver truck"
D3: "Shipment of gold arrived in a truck"

- Term Silver does not appear in D_{1}. Similarly, silver does not appear in D_{3} and gold does not appear in D_{2}.
- This would result in Score=0 for all 3 documents.

$$
p_{m l}\left(\text { silver } \mid \theta D_{i}\right)=\frac{t f\left(\text { silver }, D_{i}\right)}{\left|D_{i}\right|}=0
$$

Query = "the		algorithms	for	data	mining"
d1:	0.04	0.001	0.02	0.002	0.003
d2:	0.02	0.001	0.01	0.003	0.004
	$\begin{aligned} p(" \text { "algorithms" } \mid d 1) & =p(" \text { algorithm" } \mid d 2) \\ p(" d a t a " \mid d 1) & <p(" d a t a " \mid d 2) \\ p(" \text { "mining" } \mid d 1) & <p(" \text { mining" } \mid d 2) \end{aligned}$				

We should make p("the") and p("for") less different for all docs.

Variations of Language Modeling Approach

- Variations of basic language modeling approach, based on:
- Estimating document model θD
- Various smoothing methods (Jelinek-Mercer, Dirichlet, ...)
- Document Prior P(D) (document features such as page rank, url length, time, anchor text....)

Smoothing Query Likelihood Model

- To deal with the estimation problem and data sparsity, smooth the probability estimates by:
- Lowering the probability estimate of the terms in document
- Assigning probabilities to unseen terms in document (calculated generally based on the entire collection - collection language model/background language/background probability)

$$
\begin{aligned}
& P\left(q_{i} \mid D\right)=\left(1-\alpha_{D}\right) P\left(q_{i} \mid D\right)+\alpha_{D} P\left(q_{i} \mid C\right)
\end{aligned}
$$

- Various smoothing based on how to handle α_{D}

Jelinek-Mercer Smoothing

- Set the coefficient to a constant $\alpha_{D}=\lambda \in[0,1]$

$$
P\left(q_{i} \mid D\right)=(1-\lambda) \frac{t f_{q_{i}, D}}{|D|}+\lambda \frac{t f_{q_{i}, C}}{|C|}
$$

$\lambda=\mathbf{O} \rightarrow$ Query similar to Boolean AND
Larger $\lambda \rightarrow$ Query similar to Boolean OR
In TREC evaluations: $\lambda=0.1$ for short queries
$\lambda=0.7$ for long queries
(if no training data, generally: 0.5)

Jelinek-Mercer Smoothing (Cont'd)

$$
\begin{aligned}
& P\left(q_{i} \mid D\right)=(1-\lambda) \frac{t f_{q_{i}, D}}{|D|}+\lambda \frac{t f_{q_{i}, C}}{|C|} \\
& P(Q \mid D)=\prod_{i=1}^{n}\left((1-\lambda) \frac{t f_{q_{i}, D}}{|D|}+\lambda \frac{t f_{q, C}}{|C|}\right) \\
& \log P(Q \mid D)=\sum_{i=1}^{n} \log \left((1-\lambda) \frac{t f_{q_{i}, D}}{|D|}+\lambda \frac{t f_{q, C}}{|C|}\right)
\end{aligned}
$$

Dirichlet Smoothing

- Considers document length (μ terms are added to increase the chance of match)

$$
\begin{aligned}
& P\left(q_{i} \mid D\right)=\frac{t f_{q_{i}, D}+\mu \frac{t f_{q_{i}, C}}{|C|}}{|D|+\mu} \\
& \log P(Q \mid D)=\sum_{i=1}^{n} \log \frac{t f_{q_{i}, D}+\mu \frac{t f_{q_{i}, C}}{|C|}}{|D|+\mu}
\end{aligned}
$$

- Longer documents are impacted less by μ (should be tuned or pick average document length)
- Comparable to well-tuned retrieval models of TF-IDF with pivoted length normalization, and BM25

KL-Divergence Model: Computing $P(\theta Q \| \theta D)$

- A state-of-the-art LM approach to rank documents
- Similar concept as to vector space model; however, probabilistic representation of text and distance function
- The difference between document model and query model (relevance model) is measured

$$
\begin{gathered}
\operatorname{score}(D, Q)=\sum_{m \in v} P(w \mid \theta Q) \log p(w \mid \theta D) \\
\operatorname{score}(D, Q)=\sum_{m \in v} \frac{f_{w, Q}}{\sum_{\text {MLEstimate }}} \log p(w \mid \theta D) \\
\uparrow \\
\text { Use Dirichletsmoothing } \\
{ }_{13}
\end{gathered}
$$

Language Models vs. Traditional Retrieval Models

- Query likelihood with Dirichlet smoothing offers similar performance to TF-IDF \& BM25 retrieval functions
- Sophisticated language models can be computationally expensive

References

- Ponte and Croft's pioneering paper[ACM SIGIR 1998]
- D. Grossman \& O. Frieder, Information Retrieval Algorithms and Heuristics, 1998, $2^{\text {nd }}$ Edition, Springer, 2004.
- ChengXiang Zhai, Statistical Language Models for Information Retrieval: A Critical Review, Foundation \& Trends in Information Retrieval, 2008
- C. Manning, P. Raghavan \& H. Schütze, Introduction to Information Retrieval. Cambridge University Press., 2008.
- W. Croft, D. Metzler, T. Strohman, Search Engines: Information Retrieval in Practice, Addison Wesley, 2010
- S. Buttcher, C. Clarke, G. Cormack, Information Retrieval: Implementing and Evaluating search Engines. Addison Wesley, 2010

