
Optimal Placement of Wavelength Converters in
Trees and Trees of Rings*

Peng-Jun Wan t Liwu Liu $ Ophir Frieder 5

Abstract

In wavelength routed optical networks, wavelength
converters can potentially reduce the requirement on
the number of wavelengths. The problem of plac-
ing a minimum number of wavelength converters in
a WDM network so that any routing can be satisfied
using no more wavelengths than if there were wave-
length converters at every node was raised in [16] and
shown to be NP-complete in general WDM networks.
Recently, it was proved in [8]  that this problem is as
hard as the well-known minimum vertex cover prob-
lem. In this paper, we further their study in two
topologies that are of more practical concrete rele-
vance to the telecommunications industry: trees and
tree of rings. We show that the optimal wavelength
converter placement problem in these two practical
topologies are tractable. Efficient polynomial-time
algorithms are presented.
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1 Introduction

In wavelength routed WDM (wavelength-division
multiplexed) optical networks [ll]  without any wave-
length conversion [12],  the wavelength assignment
must meet the wavelength continuity constraint, i.e.,
the same wavelength is allocated on all of the links
in the path established for a connection [l, 2, ?, 10,
13, 151. Such constraint can be relaxed when wave-
length converters are placed at certain nodes. If a
node of the network contains a wavelength converter,
any path that passes through this node may change
its wavelength. In a network with wavelength con-
verters, the wavelengths are assigned to individual
links of all paths, with the restriction that the same
wavelength is allocated on all of the links in any sub-
path that does not pass through a wavelength con-
verter. Clearly wavelength assignments in networks
with wavelength converters can sometimes be more
efficient (i.e. use fewer wavelengths) than optimal
wavelength assignments for the same set of paths
when no wavelength converters are available. One
extreme example is that if each node contains a wave-
length converter, the number of wavelengths required
for any routing is reduced down to the natural con-
gestion or load bound, defined to be the maximum
number of paths passing through any one link in the
network. Another extreme example is that placing a
converter at a single arbitrary node in a WDM ring
is sufficient to ensure that the number of wavelengths
required for any routing is equal to its load [16].

Motivated by this notion, the following question
was raised in [16]:  Where should the wavelength con-
verters be placed in a WDM network so that any
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routing can be satisfied using no more wavelengths
than if there were wavelength converters at every
node? A set S of nodes in a network is defined in [16]
to be sufficient  if, placing converters at the nodes in
S, every set of paths can be routed with a number
of wavelengths equal to its congestion bound. The
minimum sufficient  set problem was shown to be NP-
complete in [16] in general WDM networks. Recently
a breakthrough was made in [8]  by establishing a
tight connection between the minimum sufficient set
problem in bi-directed graphs and the minimum ver-
tex cover problem in undirected graphs. As a conse-
quence of this connection, a simple 2-approximation
algorithm for minimum sufficient set problem in bi-
directed graphs was obtained. Furthermore, it’s easy
to give an approximation-preserving reduction from
the minimum vertex cover problem to the minimum
sufficient set problem in bi-directed graphs [16].  Since
providing an approximation ratio better than 2 for
the minimum vertex cover problem is a long-standing
open problem, this indicates that improving on the
performance guarantee of two for minimum sufficient
set problem will be difficult as well.

A WDM network in this paper is a bi-directed graph
G = (V, E): one for which (u, w)  E E if and only if
(v,u)  E E. Let G,  = (V, E’) denote the skeleton of
the network G, the undirected graph obtained from
G by replacing each bi-directed pair of edges with a
single undirected edge. By partial abuse of terminol-
ogy, we will say a set is sufficient in G,  if and only
if it is sufficient in G. A vertex v is referred to as
a branching node if its degree in G,  is greater than
2, a relay node if its degree in G,  is equal to 2, or
a leaf node if its degree in G,  is equal to 1. We will
assume that G,  is connected and contains at least
one branching node, since otherwise G,  is either a
path or a cycle, and the minimum sufficient set can
be solved trivially. We say that a node of a path P
is an internal node in this path if it is not one of the
two endpoints.

While the work in [8]  provided approximation solu-
tions for general WDM networks, we notice that the
topologies of most practical WDM networks are not
general. In particular, trees and tree of rings are of
more practical concrete relevance to the telecommu-
nications industry. For practical reasons, backbone
telecommunication networks need to reflect irregu-
larity of geography, non-uniform clustering of users
and traffic, hierarchy of services, dynamic growth,
etc. In addition, wide-area multiwavelength tech-
nology is evolving around current signal wavelength
networking architectures and existing fiber networks.
These are mainly SONET  rings and tree-like inter-
connection of such rings [4, 3, 141. In this paper, we
will show that the minimum sufficient set problem in
these special topologies can be solved in polynomial
time and therefore is not NP-complete. Our algo-
rithms to find the minimum sufficient sets in these
topologies are based on the reduction of the mini-
mum sufficient set problem to the minimum vertex
cover problem established in [8]. These algorithms
are very efficient and easy to implement.

From the graph G,, we construct another undi-
rected graph G,  = (VC,  EC),  referred to as the con-
traction of the graph G,,  as follows: V,  consists of
all branching nodes in G,. For any two branching
nodes u and v, (u, v)  is an edge in E,  if and only if
there exists a path in G,  between u and v such that
all internal nodes in this path are relay nodes. Note
that G,  may have self-loops, which we retain as part
of the graph. The following lemma establishes the
connection between the minimum sufficient set in G
and the minimum vertex cover in G,.

The remaining of this paper is arranged as follows.
In Section 2, we first introduce some basic terminolo-
gies and the reduction from the minimum sufficient
set problem to the minimum vertex cover problem.
In Section 3, we present a polynomial-time algorithm
which finds a minimum sufficient set problem in tree
networks. In Section 4, we present a polynomial-time
algorithm which finds a minimum sufficient set prob-
lem in trees of rings. Finally Section 5 summarizes
this paper.

2 Preliminaries
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Lemma 1 [8]  Any minimum vertex cover of G, is
also a minimum suficient  set of G.

A consequence of Lemma 1 is that in order to find
a minimum sufficient set in a graph G, one only has
to find a minimum vertex cover of its contraction,
a potentially simpler undirected graph. In general,
the minimum vertex cover problem is NP-complete
and it has a 2-approximation algorithm. But it is
fixed-parameter tractable: whether a graph has a ver-
tex cover of size at most Ic  can be decided with time

O(f@)  . p(n)) (see e.g. [7]) where p is a polynomial
function. If the graphs are planar, a polynomial-time
approximation scheme exists [5, 61.  However, as will
show in this paper, when the graph is a tree or a
tree of rings, a minimum vertex cover can be found
in polynomial time.

3 Minimum Sufficient Set in
Trees

In this section, we consider the WDM networks whose
underlying topologies are trees. According to Lemma
1, any minimum vertex cover of the contraction tree
is also a minimum sufficient set of the original net-
work. As the contraction of any tree is also a tree
with the additional property that all internal nodes
have degrees of at least three, we only have to iden-
tify a minimum vertex cover of the contraction tree.
In the next we will present a general polynomial-time
algorithm to find minimum vertex covers in forests,
a broader set of topologies than trees.

We call an internal node of a forest to be a leaf-
root if its nodal degree is more than one and one
of its neighbors is a leaf node. If a forest has no
leaf-root then all edges are isolated and its minimum
vertex cover consists of one node from each edge. If a
forest contains some leaf-roots, then the next lemma
indicates that there is a minimum vertex cover which
contains all the leaf-roots.

Lemma 2 Let G be a forest. Then there exists a
minimum vertex cover of G which contains all leaf-
roots of G.

Proof. We prove the lemma by contradiction. As-
sume the lemma were not true. Let C be a minimum
vertex cover of G which contains the most number of
leaf-roots of G, and let u be any leaf-roots of G that
is not in C. Let u be any leaf node that is a neighbor
of u. Clearly, v must be in C, for otherwise the edge
(u, w)  would not be covered by C. Consider

C’ = (C - {v}) u {u}  .

Then C’  is also a minimum vertex cover of G, and
contains one more leaf-roots of G than C. This con-
tradicts the selection of C. Thus the lemma is true.
l

Let G be any forest and C  be any minimum vertex
cover of G which contains all leaf-roots of G. Let G’
be the graph obtained from G by removing all leaf-
roots of G and their incident edges. G’  is referred to
as the residue of G. Let C’ be the vertex set obtained
from C by removing all leaf-roots of G. Then G’
is also a forest and C’ is a minimum vertex cover
of G’. Thus we can apply Lemma 2 to G’ to get
another minimum vertex cover C” which contains all
leaf-roots of G’. Based on this observation, we have
the following recursive algorithm to find a minimum
vertex cover of a forest described in Table 1.

In the algorithm MVC-Forest,  we select all leaf-
roots in a single recursive step. Another variation is
to select only one leaf-root in a step. Such leaf-node
can be chosen such that the removal of it and its inci-
dent edges from a tree G results in another tree. Such
selection could potentially simplify the implementa-
tion. For both approaches, suitable data structures
must be carefully designed in order to achieve faster
running time. The details are omitted over here.

394



Algorithm: MVC-Forest
Input: a forest G;
Output: a minimum vertex cover of G;
begin

if G has no leaf root
return the set consisting of one node
from each edge;

else
add all leaf-roots of G to the vertex
cover of G;
orm the residue graph G’of G;
find the minimum vertex cover of G’
recursively;
add them to the vertex cover of G;

-I

Table 1: Recursive algorithm to find a minimum ver-
tex cover of a forest.

4 Minimum Sufficient Set in
Trees of Rings

The tree of rings, illustrated in Figure 1, is a widely-
used interconnection topology in the telecommunica-
tions industry. In this topology, each node is within
a ring and these rings are interconnected via a tree-
like topology. It’s easy to see that the contraction of
any tree of rings is also a tree of ring. As the mini-
mum vertex coverof  the contraction graph provides
an optimal sufficient set of the original graph, we will
provide a polynomial-time algorithm that finds the
minimum vertex cover in an arbitrary tree of rings.

It’s well-known that there are at least two leaf-
nodes in any tree. Similarly, one can show that in any
tree of rings, there exist at least two rings in which
all nodes have degree of two except one whose degree
is three. Such rings are referred to as leaf-rings. The
only node in a leaf-ring whose degree is three is called
a bridging-node. Suppose that a leaf-ring contains m
nodes. Then any minimum vertex cover contains at
least [yk)  nodes in this leaf-ring. In the next we show
that there is always a minimum vertex cover which
contains the bridging node of any leaf ring.

Figure 1: An example of tree of rings.

Lemma 3 Let G be a tree of rings. Then there ex-
ists a minimum vertex cover of G which contains a61
bridging-nodes of all leaf-rings in G.

Proof. We prove the lemma by contradiction. As-
sume the lemma were not true. Let C be a minimum
vertex cover of G which contains the most number
of bridging-nodes of G, and let u be any bridging-
nodes of G that is not in C. Let R be the leaf-ring
containing the bridging-node u. Then R can’t be a
self-loop, for otherwise u must be in any vertex cover
of G and thus in C too. So R contains m 2 2 nodes,
sayu =vi,v2,..-  ,v, in the clockwise order. Clearly
C must contain at least 171 nodes in R, i.e.,

Consider

C’=(C-R)u{vi:lLi~m,iisodd}.

Then C’ is also a vertex cover of G, and

IC’I  = IC - RI  + IF1

= ICI - IC  n RI  + [sj

2 ICI’

Thus C’ is also a minimum vertex cover of G. On the
other hand, C’ contains one more bridging-nodes of
G than C. This contradicts the selection of C. Thus
the lemma is true. n
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The proof of Lemma 3 suggests a minimum ver- explicitly count the cardinality of any minimum ver-
tex covering of a leaf-ring. Suppose that a leaf-ring tex cover of a tree of rings.
R contains more m nodes, say vi, us,  . . . , vm  in the
clockwise order in which wi  is its bridging node. The
set of vertices Theorem 4 Let G = (V,  E) be a tree of rings, and k

be the number of odd-sized rings in G. Then the car-
{vi:lLi<m,iisodd} dinality  of any minimum vertex  cover of G is v.

is called a canonical vertex cover of the leaf-ring R.
Then Lemma 3 indicates that for any leaf-ring R,
there is a minimum vertex cover C of G which con-
tains its canonical vertex cover. Let G - R denote
the graph obtained from G by removing all node in
R and their incident edges. Let C -R denote the ver-
tex set obtained from C by removing the canonical
vertex cover of R. Then G - R is also a tree of rings
and C - R is a minimum vertex cover of G’. On the
other hand, the union of the canonical vertex cover
of R and any minimum vertex cover of G - R is also
a minimum vertex cover of G. Based on this obser-
vation, we have the following incremental algorithm
to find the minimum vertex cover of a tree of rings
listed in Table 2.

Algorithm: MVC-TreeRings
Input: a tree of rings G;
Output: a minimum vertex cover of G;
begin

C = 0; //  the vertex cover of G
while G is not empty

find a leaf-ring R in G;
add the canonical vertex cover of R to C;
G = G - R ;

output c;
end

Table 2: Recursive algorithm to find a minimum ver-
tex cover of a tree of rings.

Proof. Let RI, R2,. . . , Re be the component rings
in G. According to our above algorithm, each ring
will eventually become a leaf-ring and its canonical
vertex cover will be added to the minimum vertex
cover of G. Note that the canonical vertex covers of
different component rings are disjoint. Thereby, the
cardinality of any minimum vertex cover of G is

As a corollary of Theorem 4, the cardinality of any
minimum sufficient set is at least half of the number
of branching-nodes. In order to reduce the number of
converters needed, the topology should be carefully
designed. For an example, we can choose the topol-
ogy such that the number of branching nodes in each
component ring to be even.

The algorithm MVC-TreeRings  removes one
leaf-ring at each incremental step and add its canon-
ical vertex cover. With carefully selected data strut- 5
tures and implementation, its run-time can be linear

Summary

in the network size. The details are omit over here.
The minimum sufficient set problem is in general NP-

From the algorithm MVC-TreeRings,  we can complete and is as hard as the minimum vertex cover
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problem. However, the underlying topologies of most
WDM networks in the telecommunications industry
are built around trees, rings, and trees of rings. For
these topologies, this paper showed that both min-
imum sufficient problem and the minimum vertex
cover problem can be solved in polynomial time. Ef-
ficient algorithms have been provided for the mini-
mum vertex cover problem in these topologies which
in turn are used to solve the minimum sufficient set
problem in these topologies.
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