Using a Relational Database for Scalable XML Search

Rebecca J. Cathey, Steven M. Beitzel, Eric C. Jensen, Daasgstan, Ophir Frieder
Information Retrieval Laboratory
Department of Computer Science
lllinois Institute of Technology
Chicago, IL 60616

{cathey, beitzel, jensen, grossman, frig@@rir.iit.edu

June 3, 2007

Abstract

XML is a flexible and powerful tool that enables informatiardasecurity sharing in heterogeneous environments.
Scalable technologies are needed to effectively managgdieng volumes of XML data. A wide variety of methods
exist for storing and searching XML data; the two most commechniques are conventional tree-based and relational
approaches. Tree-based approaches represent XML as anttesa indexes and path join algorithms to process
queries. In contrast, the relational approach utilizespiwer of a mature relational database to store and search
XML. This method relationally maps XML queries to SQL andasstructs the XML from the database results. To
date, the limited acceptance of the relational approachMa Erocessing is due to the need to redesign the relational
schema each time a new XML hierarchy is defined. We, in cantlascribe a relational approach that is fixed schema
eliminating the need for schema redesign at the expense@iimlly longer runtimes. We show, however, that these
potentially longer runtimes are still significantly shartlean those of the tree approach.

We use a popular XML benchmark to compare the scalabilityoti lapproaches. We generated large collections
of heterogeneous XML documents ranging in size from 500M8G®& using the XBench benchmark. The scalability
of each method was measured by running XML queries that coweide range of XML search features on each
collection. We measure the scalability of each method oiftardnt query features as the collection size increases.
In addition, we examine the performance of each method assthét size and the number of predicates increase.
Our results show that our relational approach provides klsieaapproach to XML retrieval by leveraging existing
relational database optimizations. Furthermore, we shaithe relational approach typically outperforms the-tree
based approach while scaling consistently over all cableststudied.

1 Introduction

The Extensible Markup Language (XML) is a simple, flexiblettiormat used for defining structured information.
XML is semi-structured data, however, the structure is satgid, regular, or complete as typical structured dataébu

in databases. Furthermore, since XML can be extended tadaaomain specific tags, information can be encoded
with meaningful structure and semantics that allows rapiidrimation sharing among devices and organizations [48].
XML was originally designed to meet the challenges of lasgale electronic publishing, however, the flexibility of
XML has caused it to play an increasingly important role ia &xchange of a wide variety of data [3]. Furthermore,
languages to search XML are formally defined, allowing siieML components to be retrieved regardless of an
individual XML document’s design.

The growing trend of using XML requires scalable technoltgeffectively store and search the volume and
variety of data. This growth has led to the development of dewange of XML query systems. These systems
employ a variety of methods ranging from simple file systemstiject relational databases. The two most common
techniques for storing and searching XML are conventiaes&-based approaches and relational approaches.

Tree-based approaches have typically been designed frermgridund up to deal with elements, attributes, and
text nodes while naturally handling document order andregifigal integrity issues [46]. Although, some tree-based
approaches rely on tree-traversals to find specific elenveitiién the XML tree, the majority of these methods use

indexes and path join algorithms to speed up query proagssinee-based methods are particularly effective for
retrieving complex elements and searching larger sectibtext.

In contrast to the tree-based approach, the relationabapprseeks to utilize the power of a relational database.
This method flattens the hierarchy of an XML document to stbie a relational database. XML queries are then
relationally mapped to SQL to retrieve the desired resufigcluding a small engine used to parse the query and
reconstruct the results, the database does the majoribeafork. This method is promising because efficient access
methods for relational data have been developed for ovay théars, and query planning and optimization in the
relational algebra is well understood. In addition, relal systems offer key features for productive use, coecee,
transactions and safety [54]. However, relational systsmnsetimes need to use complex joins which can increase the
time to process queries. In addition, reconstructing thel>@dften requires multiple calls to the database whereas a
tree-based approach can extract the desired node diremttythe tree hierarchy.

We compare two main approaches for XML retrieval. Both tleet#based approach and the relational approach
have been developed to efficiently search XML data. We addhesquestion of scalability by analyzing the two most
common approaches to XML retrieval. Our study examines maddly sized XML collections ranging from 500MB
to 8GB, similar in size to other used collections (376MB [2HaAGB [17]). We examine not only the performance
of each query on each system, but also the scaling mulspdisrthe collection size increase. We also examine the
scalability of each approach as the size of the result settendumber of predicates increase. In this way, we can
determine which approach has the potential to search laltgrtions of XML data.

Although comparisons have been made between systems [y&&}e unaware of a study looking at the underly-
ing techniques that each system uses. Our goal is to shoalthatgh relational databases are not the most common
way of viewing XML, they provide increased performance othex tree-based approach. In addition we provide a
framework for evaluating systems and techniques for fustudies. All queries and collections used are available at
http://ir.iit.edu/collections.

2 Background and Prior Work
21 XML Search

Motivated by the wide acceptance and use of XML, a rising nema XML retrieval systems are being developed.
The semi-structured aspect of XML makes storing and qugriyito be a challenging task. Although it has structure,
the structure is not as rigid, regular, or complete as tygitactured data found in databases. One of the major chal-
lenges of storing and searching XML data is preserving teeantchy of the data. Conventional tree-based approaches
use trees to represent the logical structural relatiosshgiween XML elements. Relational approaches flatten the
hierarchy by shredding an XML document into edges or nodatsate stored in a relational table.

Since conventional top-down tree traversal approacheseffecient for large document collections [33], the tree-
based approach uses indexes to efficiently process queriesge document collections. Indexes are created for
tree-based approaches through the use of numbering sché&xmasmbering scheme assigns a unique identifier to
each node in the logical document tree. The generated fideatare then used in indexes as references to the actual
nodes.

Numbering schemes range from simple level order numbetmgsore complex schemes. Numbering schemes
optimize query processing by quickly determining struatuelationships between nodes. A simple level order num-
bering assigns a unique identifier to every node while tsiagrthe document in level-order. This scheme allows the
ancestral relationship between nodes to be found by penfigrensimple calculation. Since the document is modeled
as a complet&-ary tree, space is wasted by the insertion of spare idastif82]. Extensions of this scheme [36]
partially drop the completeness constraint so the numbehitifren a node may have is recomputed for every level of
the tree. This reduces the number of spare identifiers ne@dealternative to level order numbering is a hierarchical
numbering such as the dynamic level numbering proposedHn This numbering scheme is based on variable-length
identifiers and thus avoids a limit on the size of the docuntefite indexed [37]. Xing and Tseng propose an ex-
tended range-based labeling that combines prefix baselihigibe eliminate the need to relabel nodes after arbitrary
insertions [55]. Other approaches include using a varinégions to express node-numbers [8] and extending the
pre-order numbering scheme to allow ancestor-descendkationships to be found in constant time [16]. Weigel,
et al introduce the BIRD family of tree numbering schemestam structural summaries. These schemes allow
tree relations to be found and reconstructed with simpthmetic operations [54]. Wang, et al present a method for
ordering nodes based on sequences. This approach trassfouttured XML data into sequences so that a structured

guery can be answered through subsequence matching [5@2int, et al [49] studies three numberings: global,
local, and dewey ordering. The global ordering assigns@esintegral value to each node. Local ordering assigns a
single value to each node, which denotes its relative ontengst its siblings in the XML document. Dewey ordering
is similar to the Dewey decimal system, and stores with eadke the concatenation of the local ordering identifiers
of the node and its ancestors.

One of the most common ways to process queries with the &eeebapproach is through the use of structural
joins [13, 42]. The tree-based approach uses structunas jm resolve path expressions based on the features of
the numbering scheme. Li, et al describe three algorithmgpifocessing regular path expressions [33]. Hie
join searches paths from an element to anotherBAgoin scans sorted elements and attributes to find elements
attribute pairs, and th&C join finds kleene closure on repeated paths or elements. ¢Zteral [57] proposed a
variation of the traditional merge join algorithm, calldtetmulti-predicate merge join (MPMGJN) algorithm, for
finding all occurrences of the basic structural relatiopshiTheir results suggest that with some modifications, a
native implementation in a relational database can supghttclass of query much more efficiently. Al-Khalifa,
et al discusses two other families of structural join altjonis called the tree-merge and stack-tree [42]. The tree-
merge algorithms are a natural extension of traditionaba@ins and the multi-predicate merge joins [57], while the
stack-tree algorithms have no counterpart in traditiogkdtional join processing. Their results show that white, i
some cases, tree-merge algorithms can have performangacainhe to stack-tree algorithms, in many cases they are
considerably worse.

In contrast to tree-based storage approaches, the relbtipproach flattens the hierarchy of an XML document
by storing it in tables within a relational database. Yoshik and Amagasa classify methods for designing an XML
relational database schema into two categories: struttimagpping approach and model-mapping approach [56]. In
the structure-mapping approach, a database schema isdifsfineach XML schema or Document Type Descriptor
(DTD) [18, 26, 44, 45, 50]. Storing XML documents with mulgpschemas generally requires different tables to
be created for each XML schema. The model-mapping appradatesses the issue of mapping XML documents
without schemas. In this approach, a fixed database scheuszdsto store the structure of all XML documents.
Examples of this include the Edge-oriented approach andale-oriented approach. The edge-oriented approach
developed by Florescu and Kossman is a simple scheme thes stibattributes in a single table [20]. Variants of the
edge approach store the attribute names in another tajl@{kdore all associations of the same type in the same
binary relation [43]. The node-oriented approach mairstaimdes rather than edges [56]. With the start and end points
of a node it maintains a containment relationship for ameedtscendent relationships. Grust, et al [23] present a
database structure specifically for XPath queries, whexrgthdecessor, size and level of an element are stored and
used to tailor specifically to XPath queries.

Searching XML documents stored in a database requires XMirigsi to be relationally mapped to SQL. Kr-
ishnamurthy, et al examine existing work for relationallgpping XML queries to SQL and describes several open
problems [30]. An algorithm that handles the open problemeoiirsive XML schemas is proposed in [29]. Another
method is presented for translation from XQuery to SQL witirequiring subsequent calls to the database [24].

The expanding popularity of XML has led to XML support in sealeeommercial databases. These XML enabled
relational databases use object relational mappings tehtloe XML data as a tree of objects that are specific to the
data in the document. Microsoft's SQL server 2005 storedéta as a BLOB and then provides a primary XML index
that shreds the XML into a node table and adds some secomdiayas for improving XQuery performance [38, 41].
Oracle and IBM DB2 provide a shredded physical represemtddtir certain schematized XML and a BLOB for the
general case. [40]. Krishnaprasad, et al [31] describe hosrigs can be rewritten for more efficient processing
on object relational frameworks with Oracle. Furthermddeacle translates XQuery into the same internal data
structures as SQL such as sub query blocks and SQL operalich enables the same underlying optimizer and
execution engine to be utilized [34].

Some methods combine the large body of work that has gonaleeloping a relational database with the in-
dexing structures inherent in tree-based approachesei8i(is a hybrid system that does this [10]. They leverage
the years of data management research to advance XML texhntol the same standards expected from mature rela-
tional systems. Weigel, et al combine the indexing strestaf a native XML database with the power of a relational
database in [53].

Vakali examines several emerging practices for storing Xddta with a particular emphasis on native XML stor-
age approaches [51]. Furthermore, Vakali examines theresabf several publicly available XML retrieval systems
that use different storage techniques for XML storage. MDB&XQuery is an XML retrieval engine that uses the
translation method described in [24] to store and queryaticglal database [11].

2.2 Collections

There are two types of XML documents: data-centric and tgpiatric. A topic-centric document contains signifi-
cantly more text than element tags, while a data-centricohent dedicates more parts to tags. Our study focuses on
data-centric XML retrieval .

Several collections have been used for evaluating XML $esystems. The Bosak Shakespeare collection contains
the complete plays of Shakespeare marked up in XML [12]. €bikection is widely used when experimenting with
XML search systems [25, 56], however, the size of this ctibecis only 765MB. Another collection that is often
used is the digital bibliography and library project (DBLd®)lection [2]. The DBLP collection provides bibliograhi
information on major computer science journals and proicgsdn the form of XML. The size of DBLP is 376MB.
Because of the need to evaluate existing XML systems, thiatNe for the Evaluation of XML retrieval (INEX)

[6] has started an international effort to promote evabraprocedures for topic-centric XML retrieval [9]. The aim
of INEX is to provide a large XML test collection with apprag@te scoring methods. INEX uses several collections
based on the Wikipedia XML corpus. The main corpus is arouA@B in size [17].

Several benchmarks are available for the evaluation of XBHreh systems. Afanasiev and Marx analyze the five
most popular XML benchmarks and examine how each benchaded, what they measure, and what can be learned
from each one [7]. Manegold compares the performance areifft XQuery engines using multiple benchmarks [35].
Our study differs from previous studies because it compapesific techniques for XML retrieval rather than specific
hardware. We evaluate methods rather than systems. One tgHive most popular XML benchmarks is XBench
[5]. XBench generates collections between 100KB and 10G#&ze. In addition, the type of XML can be specified.
For our study, we generated a multiple document, dataicex®L document collection using XBench.

3 Search Methods

We examine the relational and tree-based approaches to ¥Wikval. For each approach, we discuss the two primary
aspects of XML retrieval. The first aspect is storage of tha.dBhe second is searching the data. This study focuses
on the search aspect of XML retrieval, however, the speechathwan approach searches XML is largely dependent
on the storage method. Therefore, we also discuss the nwetised for storage.

3.1 Relational Approach

The relational approach stores multiple schema XML documiena relational database. We use the SQLGenerator
[1] to show the power of the relational approach. The SQLE®=we is an XML retrieval engine that uses MySQL
version 4.1.11 to store and search XML. All discussions ef storage and search techniques are the techniques
employed specifically by the SQLGenerator, however, anycssahema relational approach should employ similar
techniques.

3.1.1 Storage

The relational approach uses the edge-oriented, modepim@appproach to store a heterogeneous collection of XML
documents in a static schema relational database. Thimmilssto the method first described by Florescu and Kossman
in [20]. Each unique XML path and that path’s value are st@®d separate row in a relational table. This table also
has the values in-lined in the same table. This is a statiersalthat is capable of storing any XML document without
modification. The hierarchy of XML documents is kept intaatls that any document indexed by the database can be
reconstructed using only the information in the tables. \&&hooks. xnl (see Figure 1) as an example file to show
our storage scheme and the relational approach’s tramslatier it. All of the database tables shown in our examples
will reflect the data of this file.

The four main tables in the database are ghendx, tagpat ht bl , tagnanet bl , andat r nanet bl tables. In
Figure 2, we show the content of each table after the ingedidooks. xm . Thepi nndx table (Figure 2(a)) stores
the actual content of all the XML files that have been indeXsath row in thei nndx table stores information about
an XML element. Thei nndxnumcolumn is a unique integer assigned to each element anbagtiin a document.
Thecol | ecti onnum column can be used to divide tpenndx table into collections. Thpar ent column indicates
thepi nndxnumvalue of the tag that is the parent of the current tag. {fldg ype column indicates whether the path
terminates with an element or attribute. Th@numcolumn indicates the XML document this row correspondstee T

<books>

<book>

<nanme>The Geat Gatsbhy</name>
<author>F. Scott Fitzgeral d</author>
<price currency="USD"'>9.99</price>

</ book>
<book>

<name>Cat

in the Hat</name>

<author alias="true">Dr. Seuss</author>
<price currency="USD'>14.99</price>

</ book>
<panphl et >

<nanme>Common Sense</ nane>
<aut hor >Thomas Pai ne</ aut hor >

</ panphl et >
</ books>
Figure 1:books. xm
pinndxnum| collectionnum| parent| tagpath| tagtype| tagname| atrname| pinnum | indexpos| nvalue value
1 1 0 1 E 1 1 1 0
2 1 1 2 E 2 1 1 0
3 1 2 3 E 3 1 1 0 The Great Gatsh
4 1 2 4 E 4 1 1 0 F. Scott Fitzgerald
5 1 2 5 E 5 1 1 0 9.99 9.99
6 1 5 5 A 5 2 1 0 usD
7 1 1 2 E 2 1 1 0
8 1 7 3 E 3 1 1 0 Catin the Hat
9 1 7 4 E 4 1 1 0 Dr. Seuss
10 1 7 5 E 5 1 1 0 14.99 14.99
11 1 10 5 A 5 2 1 0 usD
12 1 1 6 E 6 1 1 0
13 1 12 7 E 3 1 1 0 Common Sense
14 1 12 8 E 4 1 1 0 Thomas Paine
@
vkey | value
1 [books]
2 | [books, book] vkey | value
1 books
3 [books, book, name]
2 book
4 [books, book, author] 3
. name
5 [books, book, price] vkey | value
4 author
6 [books, pamphlet] 5 : 1 -
price
7 [books, pamphlet, name] 6 amphlet 2 currency
8 [books, pamphlet, author] pamp
(b) (© (d)

Figure 2: The (api nndx, (b)t agpat ht bl , (c)t agnanet bl , and (d)at r nanet bl Tables

i ndexpos column is used for queries that use the index expressioarfeaf XML search and indicates the position of
this element relative to others under the same parenti(gjat zero). This column stores the original ordering of the
input XML for explicit usage in users’ queries. Thal ue column stores the textual contents of the element while the
nval ue column contains the numeric representation of the valuet &pat h, t agnane, andat r nane correspond to
primary keys in the agpat ht bl , t agnanet bl , andat r nanet bl tables, respectively.

Thet agpat ht bl (Figure 2(b))t agnanet bl (Figure 2(c)), anat r nanet bl (Figure 2(d)) store the metadata (data
about the data) of the XML files. Theagpat ht bl andt agnanet bl tables together store the information about tags
and paths within the XML file. Théagpat ht bl table stores the unique paths found in the XML documents. The
t agnanet bl table stores the name of each unique tag in the XML collecfitreat r nanet bl stores the names of all
the attributes. In each of these tablelsey is an integer assigned by the system and is the primary kdyeofable.
When an XML document is indexed and an element, path, obattiis encountered for the first time, the values
are added to theagnanet bl , t agpat ht bl , andat rnanet bl tables. Otherwise, the indexer caches these tables in
memory and uses their values to insert new rows int@tiedx table.

To optimize database performance, several indexes aftedouihepi nndx table. In addition to the primary key
index, we built indexes on thparent indexpos tagpath tagname atrname pinnum and nvaluecolumns of the
pi nndx table. Although an index on thal ue column would speed up simple string matching queries, sdntteeo
values are too large to realistically index. Since an indexalh the values would be too large, we build a partial
index on theval ue column that includes the first 30 characters of eaathue. The index built on th@ar ent column
is useful when complex joins are necessary to enforce asrcgsscendant relationships. MySQL does not support
multiple indexes for a query, however, we have found thagxed built on multiple columns are useful for most of
the queries. Several multicolumn indexes were also buithenagpathandparent tagpathandvalue tagpathand
nvalug andtagpathandpinnumcolumns.

3.1.2 Search

In Figure 3, we illustrate the complete algorithm for redatil XML search. There are three phases of the algorithm.
Firstan XML query is translated to an SQL query. Then the SQérgis executed on the relational database. Finally,
the XML is reconstructed from the database results.

Relationally Map XML Query
The first step in the algorithm relationally maps an XML quenBQL. The XML query is first examined to find the
specific constructs of the query. These constructs are taeslated to SQL.

The query is first parsed to find all the path expressions. A papression consists of a set of steps that form
paths. The path expressibA/ B/ C consists of three steps. The algorithm looks at each stepduslthose steps to an
address. If the path contains a predicate, then multipleesdds are created. For the path expregstoB[C="5"],
two addresses are created. The first is for the pathB, the second is for the path B/ C. Then since the second
address contains a literal, the valuis added to the second address. If the path expression isitbo@wvariable, that
variable is also added to the address. If the path expressiora return clause, the variable and address are added to
the results template. The template is a document object hiD@M) template that determines the formatting of the
final results. The elements in the return clause of a quergdded to the template for formatting. In addition, each
address in the template is also added to the set of all addredghe query is simple and does not contain a return
clause, the element corresponding to the final step in theeaddhat is not contained in a predicate is returned with
no extra formatting. If the address is in an order by cladseatdress is added to the set of elements used to order the
SQL query.

Once the query is parsed, each address is examined sepafatedddress is resolved by querying the database
and returning the set ofgpat hs from thet agpat ht bl where the path matches the address. Since regular expressio
are used to find the path, there is no time difference betweeries using/’ or’//' . An address may have multiple
matching paths. For example, the pa#it/ D matches the pathA/ C/ D and/ A/ B/ C/ D. For each resolved address, an
alias to thepi nndx table is created. The alias is then added to the list of SQéctel Multiple matching tag paths
are processed through the use of SQL UNIONSs. Predicatesftocerthet agpat h andt agt ype are added to the
list of SQL predicates. If the address is bound to a literglyedicate to enforce the literal value is also added to
the list of SQL predicates. Furthermore, predicates aeadsled to enforce the hierarchy between that address and
the previous address. The quéry B[C="5"] consists of two pathsA/ B/ and/ A/ B/ C, where/ A/ B/ Cis bound to
the literal5. After the SQL predicate to enforce the value"6f is added for the second alias, SQL predicates to

Algorithm

addresses{g}, sqlSelects{g}, sqlFroms{g}, sqlPredicates{ga},
sqlOrderBy{g}, resultSet{ga}, template{emptyDOMtemplate

Step 1 Translate XML Query to SQL Query
for eachpath expressiorin Query do
for eachstepin path.expressiordo
address— step
if stepis a literal then
bind literal and type t@ddress
end if
end for
if path.expressiorbound tovariablethen
addvariableto address
end if
addresses— address
if path.expressionn order by clausethen
SQLOrderBy— address
end if
if path.expressiorin return clausethen
template— address
end if
end for
for eachaddresdn addresseslo
tagpaths— all matching tagpaths fromagpat ht bl
createaliasto thepi nndx table
sqlFroms— alias
for eachtagpathin tagpathsdo
sqlPredicates— predicate to enforce the data source
sqlPredicates— predicate to require presence of ttag path
if addresds bound to literathen
sqlPredicates— predicate to enforce literal value
sqlPredicates— predicates to enforce hierarchy
end if
end for
end for
construct SQL fronsqlSelectssqlFroms sqlPredicatesndsqglOrderBy

Step 2 Execute SQL Query
resultSet—execution of SQL

Step 3 Reconstruct XML
create DOM elementjomResultfrom template
for eachrow in resultSetdodo
if rowis a simple elemerthen
domResults— row value
ese
domResults— row. t oDOV)
end if
end for
returndomResults

Figure 3: Relational Search Algorithm
7

enforce the hierarchy are also added. In this case, a pteditat says the second path aligss ent is equal to
the pi nndxnum of the first path sinc® is the parent o€. Finally, for each address in the template, the value for the
corresponding@i nndx alias is added to the list of SQL selects.

In general, the final SQL query is constructed using the iSQL selects, SQL predicates, SQL froms and SQL
order bys. The query is formed using the following format! SELECT [SQL sel ects] FROM [SQL froms] WHERE
[SQ predicates] ORDER BY [sql order by]". The method described in Figure 3 does not go into detail en th
translation of many of the advanced features of XML quepesticularly certain constructs of XQuery and XML-QL
that require more advanced features of SQL.

An example of translation from an XML query to SQL is given iglire 4. The XQuery query in this example re-
turns the identifier and price of all items bought by a speciiistomer using a Visa credit card. The relational algorithm
first finds all the addresses in the query. This query has fideesdes! order/item /order/itemn customer _id,
lorder/item credit_card/type,/order/itenlid, and/ order/iteniprice. Five aliases to the pinndx table are
created, one for each addres$;, ql, g2, g3, g4, andg5. These aliases are added to the list of SQL froms. Each
address is resolved by querying thagpat ht bl table in the database. For this example we assumeéatyeat h
values for each address are 1, 4, 5, 7, and 8, respectivetyedeh alias, théagpat h values are added to the list
of SQL predicates. Fay0, the predicatel0. t agpat h="1" is added to the list of SQL predicates. This process is
repeated for all of the aliases. Sing& andqg4 are in the return clause of the quegg. val ue, g3. pi nndxnum
g4. val ue, andg4. pi nndxnumare added to the list of SQL selects. Bgthandqg2 appear in a predicate condition.
Sinceql is bound to a numerical value, theal ue column is used. To enforce the predicate valile nval ue=3 and
g2.val ue="VI SA" are added to the list of SQL predicates. The results shoutddered by the item identifier where
the identifier is a numerical value. To enforce this ordeiinthe SQL queryg3. nval ue is added to the list of SQL
order bys. Next, SQL predicates are added to enforce thiéarsaips between the base pativder/itemand all
other paths. The pattorder /it emis the base path because it is bound tofthieemvariable and all other paths are
formed using th&i t emvariable. Sinceust oner _i d is a child ofi t em a simple predicate to enforce the parent child
relationship is added to the list of SQL predicatgk,par ent =q0. pi nndxnum Similar predicates are added for the
g3 andg4 aliases. Th@?2 alias is more complex. Since there are two elements betgZzandq0, another alias must
be created to enforce the hierarchy. This alias is caltedl. The new alias is added to the list of SQL froms. Then, the
predicates)2. par ent =q2_1. pi nndxnumandq2_1. par ent =q0. pi nndxnum are added to the list of SQL predicates.
Finally, the SQL query is constructed from the lists of SQlests, SQL froms, SQL order bys, and SQL predicates.

This step runs in time dependent on the size of the queryuluslly the fastest step since it is not dependent on
the collection size.

SELECT DI STINCT @3.val ue, g3.pinndxnum q4.val ue,
q4. pi nndxnum FROM pi nndx g0, pinndx g1, pinndx g2,
pinndx g2_1, pinndx g3, pinndx g4 WHERE
q0. tagpat h=1 AND ql1. nval ue=3 AND ql.t agpat h=4

— AND ql. parent =q0. pi nndxnum AND 2. t agpat h=5
AND 2. val ue="VI SA" AND @2. parent =g2_1. pi nndxnum
AND g2_1. par ent =q0. pi nndxnum AND q3. t agpat h=7
AND @3. par ent =q0. pi nndxnum AND qg4. t agpat h=8 AND
q4. par ent =q0. pi nndxnum ORDER BY q4. nval ue

let $item:= /order/item
where $itenfcustomer_id=3 and credit_card/type="VI SA"]
order by $itenfid
return
<item
<id>{$itenid}</id>
<price>{S$itent price}</price>
<litem

Figure 4: Relational Mapping of XQuery Query to SQL

SQL Execution

The second step in the relational search algorithm is towggédhe generated SQL. This step is handled by the relational
database and is often the most time-consuming step. An igiihdatabase, however, can vastly improve performance.
Without indexes, the database starts with the first recoddr@ads through the whole table to find the relevant rows.
If the table has an index for the columns in the query, thelidesa can quickly determine the positions to seek to in
the middle of the data without having to look at all the dat& W8e MySQL as our back-end database. Most MySQL
indexes are stored in B-trees. If a multiple-column indeggts»oncol 1 andcol 2, the appropriate rows can be fetched
directly. If separate single-columnindexes existohl andcol 2, the optimizer tries to find the most restrictive index
by deciding which index finds fewer rows and using that inaefetch the rows.

Although the storage method used is simple, often manyjeilé- of thepi nndx table are required to retrieve a
given XML element; one join for each sub-element [47]. Somes multiple self-joins can be very time consuming,
however simpler XML queries that do not require joins exea@fficiently.

XML Reconstruction

Once the results are returned from the database, the residiterated through and the known values are replaced into
the template obtained from the return clause. The temptateps the current result and returns a document object
model (DOM) document fragment. A list of these fragmentsosipiled and appended to our root document. If the
element is a complex elemehtyDOV) is called.t oDOM) queries the database for all the children of the element and
returns DOM objects for each child. The children are addetlédemplate and the resulting XML fragment is added
to the root document. The document is then formatted, ancethédting XML text is sent as output to the user.

3.2 Tree-Based Approach

The tree-based approach stores stores XML hierarchically tiee. We use eXist 1.0 [4], a popular native XML
database to test the tree-based approach. All discussfahg gtorage and search techniques are the techniques
employed specifically by eXist, however, a tree-based amirghould employ similar techniques.

3.2.1 Storage

Tree-based approaches are based on the XML data model, ttadinethe relational data model. This means that they
are designed from the ground up to deal with elements, atéshand text nodes, and they naturally handle document
order and referential integrity issues [46]. The tree-Hamgproach represents XML as a tree. Every node in the
tree is labeled with a unique identifier. This allows quickntification of structural relationships between a set of
given nodes. It also allows direct access to nodes by théjueridentifier. Furthermore, it reduces 10 operations by
deciding XPath expressions based on node identifiers amotésd

Numbering schemes range from simple level order numbetmgsore complex schemes. In Figure 5, we show
an example of the numbering scheme used by eXist, a varightdf— ary numbering schema [36], when storing
books. xm . The tree-based approach employed uses a level order numindrering scheme where a unique integer
identifier is assigned to every node while traversing the inelevel-order. Level-order numbering schemes model
the document tree as a complétary tree assuming that every node in the tree has exkathild nodes. Since
the actual number of children nodes varies in real documémtsremaining child identifiers are left empty before
continuing on to the next nodes. Consequently, the availaeintifiers can run out thus limiting the maximum size of
a document to be indexed. To solve this problem, eXist régehtinged their numbering scheme to use hierarchical
level numberings [37], however, our experiments use theipus version of eXist. Since the individual files in our
collections do not exceed the maximum size, we did not hayésasnes indexing files with eXist.

5 M3t
name [E—
~
~ ~
~ ~ | ~
DN DN | DN
- 5 r A -
14 15 18 19 29 30 31
The Lo 8 _J |currency 9.99 s [L [
Great | Scott | 1 | | 1 | | |
Gatsby | Fitzgerald | | | | | | | |
I I I I | I I | | I I I
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | I | | I | | | | | |
r r " r 7 r . 36 r r 7 r .7 n L n 1 1
32 33 34 35 o 37 38 39 45 46 47 48 49
Lo Lo Lo Lo UsD Lo Lo Lo 2 2

Figure 5: Tree-Based Approach Storage

A level-order numbering scheme allows the relationshigveen parent, sibling and possible ancestor/descendant
nodes to be easily determined using a simple calculatiore cBmpleteness constraint, however, imposes a major
restriction on the maximum document size. Generally, an Xddtument will have fewer children near the root than
near the leaf nodes. Thus, in a worst case scenario, a siodéeat a deeply structured level may have many children.
This causes a large number of spare identifiers to be insaettaltllevels of the tree to satisfy the completeness rule.
This causes the assigned identifiers to grow fast even fot do@ments. An extension to this method partially drops
the completeness constraint, requiring that each nodetheaame number of children as the node with the maximum
children on a specific level. Now, the number of children aenbds is recomputed on each level. We illustrate this
constraintin Figure 5. In this example, theok elements have three children each. Because of the comgéstenn-
straint, thepanphl et element must also have three children, so a spare idensifiesed. This approach accounts for
the fact that typical documents will have a larger numberaafes at lower levels of the document tree. Furthermore,
the document size limit is raised considerably to enableximd) of much larger document. Information about the
number of children each level of the tree can have is storacksimple array.

The tree-based approach provides storage of schema-lesgi¥timents in hierarchical collections. XML doc-
uments are stored as a multi root B+-tree using the variatitedf — ary numbering schema for indexes as described
in [36]. Four index files are used to store information abautXiL document:. col | ecti ons. dbx, dom dbx,
el enent s. dbx, andwor ds. dbx. col | ecti ons. dbx manages the collection hierarctipm dbx contains the associ-
ation of nodes with unique node identifiees.enent s. dbx contains the indexed elements and attributesds. dbx
keeps track of word occurrences and is primarily used fdtefkti search extensions. To reduce disk space usage, an
index on specific node values is not used.

3.2.2 Search

In Figure 6, we illustrate the complete algorithm for tressséd XML search. There are three steps to the tree-based
algorithm. The first step decomposes the path expressi@sXML query. The second step generates node sets cor-
responding to each element in the query. Finally, the thed suns a path join algorithm on the node sets to determine

the relationship between the nodes in the node sets.

Decomposition of Path Expressions

The first step decomposes all path expressions in an XML géepgath is decomposed by splitting it into individual
components and then forming subexpressions by combinicly @mponent with the component that comes after it
and the component that comes before it. For example, the paBi C="D"'] would be split into three subexpressions
A/ B, B[C, andC=D. Like the translation step for relational search, this ssepot dependent on the size of the XML
collection. It runs in time proportional to the length of thath.

Generate Node sets

The next step generates node sets for each subexpressienex@bt position of each element is provided in the
el enent s. dbx index file. A node set is generated by loading all the root elets for all documents in the input
document set. Each node set consistsdbcument-id, node-id pairs, ordered by document identifiers and unique
node identifiers. Each subexpression consists of two elem&he node set is only generated for the second element
in each subexpression except the first subexpression faha phis subexpression generates both node sets. For the
path/ A/ B/ C, two subexpressions are generat&®B andB/ C. Node sets are generated for béthndB for the first
subexpression, however, only a node setdds generated for the second subexpression. At the complefithis
step,m+ 1 node sets have been generated, wheiethe number of subexpressions.

Path-join Algorithm

The final step determines relationships between node sietg agpath join algorithm. The node sets are examined
to determine which elements of each set are descendants abttes in the next set. The path join algorithm takes
two ordered sets as input. The first contains potential ancesdes. The second contains potential descendants.
Every node in the two input sets is described<gocument-id, node-id pairs. The path join algorithm starts with

the first subexpression for a path. The first node set becdmemicestor node set and the second node set becomes
the descendant node set. The ancestor node set is the listenitial ancestors for all of the nodes in the descendant
node set. The actual ancestors are found by iterating thrthaglist of descendants. Every node in the two input
sets is described bydocument-id, node-id pairs. The parent of each node in the descendant node seinid &nd

10

Algorithm

basicSteps{g}, nodeSet{g}, finalResults{g}

Step 1 Decompose Path Expressions
for eachpathin Query do
for eachstepin path do
if stepis not last step ipaththen
subexpressiongh <+ createSUbExpressiastép, step, 1)
end if
end for
end for

Step 2 Generate Node Sets
for eachpathin Querydo
for eachsubexpressiom subexpressiopgn do
if subexpressiois first for paththen
subexpressigRgeset < node set for first element in subexpression
subexpressigRgesez < Node set for second element in subexpression
else
subexpressiqagesez < node set for second element in subexpression
end if
end for
end for

Step 3 Path Join Algorithm
for eachpathin Querydo
generatedNodeSetnodeSat
descendantNodeSenodeSet
for eachsubexpressioin subexpressiopg do
ancestorNodeSetgeneratedNodeSet
descendantNodeSenhodeSet
generatedNodeSet{g}
for eachdescin descendantNodeSeb
parent— parent ofdesc
while parentexistsdo
for eachancin ancestorNodeSeto
if ancnodeid equalsparentnodeid then
generatedNodeSet desc
end if
end for
end while
end for
end for
end for

Figure 6: Tree Approach Search Algorithm

11

compared with all of the nodes in the ancestor node set. If awlmis found, the parent of the parent is found and
similarly compared with the ancestor node set. The algoriskops when there are no more parents. If the parent
matches a node in the ancestor node set<ttiecument-id, node-id pair from the original descendant node set is
placed in a temporary node set. Once the algorithm has coeadier each parent of each node in the descendant node
list, the temporary set is used as the new ancestor nodeti#ié¢ next subexpression. For example, the patis/ C
is decomposed into two subexpressiohat B andB/ C. The resulting node set for the expressiiB becomes the
ancestor node set for the expresd#beg.

Bremer, et al claim that keeping both lists in document oedlexvs for executing this kind of join operation in at
most linear time with respect to the number of matching pafirsode identifiers [13].

4 Methodology

Generally speaking there are two main facets of searching Xddntent based and structure-based. Content-based
XML retrieval focuses on the traditional Information Retral (IR) notions of relevance while structure-based XML
retrieval focuses on semi-structured querying of hieraadidata. The INitiative for the Evaluation of XML (INEX)

[9] focuses on providing means to evaluate content-based ¥tieval. Their evaluation focuses on queries that
are relevant to the results. In contrast, we perforstalability studyto compare our relational approach against a
common XML retrieval approach.

4.1 Collections

To measure the scalability of structure-based XML retiidaage collections of XML documents were needed. Since
we are unaware of large collections of real world XML datat tin@et our requirements, we chose to use an XML
benchmark to create synthetic XML. We use XBench [5], oneheftbp five most popular XML benchmarks [7],
as we wanted to test the scalability over a large collectiodML documents. We modified the XBench templates
to create a heterogeneous collection of multiple schenmaakttric XML documents. Data-centric documents were
chosen because they contain more structure to text rathardbcuments marked up in XML, however, we also
included a subset of documents that contained primarily t&% chose to focus on data-centric XML to show how
each approach handles structure when searching XML. Thergiad XML captures e-commerce transactional data.
Three types of XML files were generated: orders, customex$jtams. The generated XML files test the ability of
an XML retrieval system to process queries with a large gtyaot matching paths, to search large XML documents,
and to perform simple text matching over large sectionsex fext.

We generated an 8GB collection from the modified XBench tatesl Then, we created 4GB, 2GB, 1GB, and
500MB collections from random subsets of the 8GB, 4GB, 2G1#8, BGB collections, respectively. The collections
were designed to test the performance of an XML retrievaksysas the size of the collections exceeds the size of the
memory. In Table 1, we show details for each collection.

collection | actual size| # elements| # attributes| # paths| depth
500MB 598.5MB | 5,239,454 827,664 82 3-7

1GB 1.1GB 9,900,264 | 1,566,570 82 3-7
2GB 2.2GB 19,613,565 2,169,724 82 3-7
4GB 4.2GB 37,836,196| 4,293,482 82 3-7
8GB 8.5GB 75,211,108| 8,542,838 83 3-7

Table 1: Collection Details

4.2 Queries

XBench provides a set of twenty queries that challenge @&systith XML-specific features as well as conventional
functionalities. Since XBench generates four differepety of XML, not all of the queries run on each type. We used
a subset of eleven queries designed specifically for theipleiichema data-centric XML document collection. We
maintain the original numberings used by XBench. The XMLideas covered by the queries include exact match,
ordered access, quantified expressions, regular pathsskpne, sorting document construction, retrieving irciial

12

documents, and text search. Q1 tests shallow queries,éh@sbnly the top level of XML document trees. Q5 returns
data based on the order in a document. Q6 and Q7 test for thieesé of some elements that satisfies a condition,
or whether all the elements in the same collection satisfyralition. Two queries test regular expressions. Q8 tests
unknown element name and Q9 tests unknown sub-path. Q10 Ehte&t the ability of the system to efficiently sort
values both in string and in non-string data types. Q12 thstability of a system to retrieve fragments of original
documents with original structures. Q17 tests the abilitthe system to search for matching text.

In addition to the XBench queries, we created a set of queasgned to compare the performance of the tree-
based approach with the relational approach. These quesesirge result sets and multiple predicate matching. The
collections and full query sets are available and explainedore detail ahttp: //ir.iit.edu/collections.

4.3 ENngines

We use two XML retrieval systems to compare the performaridberelational approach with the tree-based ap-
proach: The SQLGenerator [1] and eXist [4] 1.0. The SQLGatweuses a model mapping relational approach while
eXist uses a XML-specific B+-tree indexing approach. Botstems were shown to be scalable through some initial
scalability studies. eXist was compared against other iXBaery engines to show its efficiency. A second experi-
ment determined the scalability of eXist by observing lirga@ery execution time over collections ranging in size from
5MB to 39.15MB [37]. Although the conclusion of this studyosied linear execution time for eXist, the collections
used were not large enough to draw reliable conclusionstdbescalability of eXist on modern, real-world collec-
tions. Similarly, the SQLGenerator performed initial sdality studies by running a wide range of XML queries on
increasingly large collections ranging in size from 500MBGB [15].

5 Resultsand Analysis

All testing was performed on a ProLiant DL380 G4. This moded B Intel Xeon 3.4GHz with 1MB L2 Cache, 2GB
RAM on 4 DIMMs, and a 178GB Hardware RAID-5 array (composed GDkRPM SATA/a disks). The machine is
running Redhat Enterprise Server 3.0. The primary mode wipaison is the total execution time to run the query
using each system. All timings given represent the averageution time of the queries (in random order) over five
runs. To ensure a cold cache, the server was rebooted beturesen

Our results focus on the examination of several key aspécisadability. We compare the scalability of both
approaches using the XBench queries as the collection sizedses and as the query features change. We also
compare the scalability of both methods for increasingltesiis and an increasing number of predicates.

A large body of research examines the computational contpleksearching relational and tree structured data
[21, 22, 27, 28, 39]. The majority of this work defines comthexlasses or upper bounds. In some cases, subsets
of the search are examined to find a lower expected compleRiarching XML when stored as relational or tree-
based data does not fit into the specific subsets of searchitiEbsin prior work. Too many variables and internal
system unknowns are involved with both approaches to adelgyaedict theoretical behavior. Although a theoretical
analysis would be useful, given the disparity in the timiegults shown later, we do not attempt to theoretically
analyze or bound the relational or tree-based approachesholt, we show the difference of each approach strictly
through practical experimentation.

5.1 Query Features

We examine the scalability of different XML query featuresiacreasing collection sizes. In Table 2, we provide
the raw timings for each query over all the collections. Igufe 7, we plot the average time for each query feature
over all collections. In Figure 8, we plot the average pearfance over all query features. In Table 3, we show the
scaling multipliers for each query. The scaling multipfier a query is calculated by comparing the time to execute
on each collection with the time to execute on the 500MB ctilb@. In Figure 9, we examine the scaling multiplier
of each query feature as compared to the 500MB collectiofigare 10, we plot the average scaling multiplier over
all collections for the relational and tree-based appreach

In Figures 7 and 9, we plot the performance of each individuary type. The exact match ((a) in both figures),
ordered access ((b) in both figures), document structurseprimg ((f) in both figures), and retrieving individual
documents ((g) in both figures) features all exhibit simgarformance for both approaches over all collections. The

13

Collection Size
500MB 1GB 2GB 4GB 8GB

tree rel tree rel tree rel tree rel tree rel

Q1 15,52 | 0.43 | 26.75 | 0.44 | 59.41| 0.51 131.11 | 0.71 484.24 0.67
Q5 1452 | 0.77 | 25.72 | 0.78 | 56.20 | 0.96 129.61 | 1.27 498.83 1.47
Q6 2.03 31.08 | 4.64 50.26 | 18.97 | 52.37 | 28.73 183.10| TIMEOUT | 466.58
Q7 2.85 25.0 | 6.43 38.88| 10.32| 71.70 | 26.94 243.15| 217.72 594.19
Q8 1457 | 058 | 25.89 | 0.51 | 56.52| 0.69 131.00 | 0.87 478.43 1.10
Q9 14.73 | 0.40 | 25.38 | 0.41 | 53.50| 0.46 124.22 | 0.63 426.58 0.72
Q10 16.22 | 1.16 | 29.89 | 1.51 | 68.35| 2.73 139.53 | 5.97 1,850.99 13.22
Q11 16.75 | 0.68 | 29.73 | 0.76 | 65.58 | 1.46 137.04 | 2.81 1,829.84 6.17
Q12 14.35 | 0.64 | 25.41 | 0.63 | 54.03 | 0.79 129.80 | 0.89 458.05 1.06
Q16 1441 | 058 | 25.11 | 0.52 | 51.29| 0.70 125.06 | 0.76 440.00 0.80
Q17 3233 | 1.78 | 53.14 | 2.25 | 97.53| 19.50 | 638.29 | 37.29 | 1,317.18 21.86
mean | 14.39 5.74 25.27 8.81 53.79 | 13.81 158.29 43.40 800.18 100.71
total 158.28 | 63.09 | 278.09 | 96.94 | 591.7 | 151.88 | 1741.33 | 477.44 | 8001.86 1107.84

Table 2: Total Query Time (seconds) for XBench Queries

Collection Size
1GB 2GB 4GB 8GB

tree | rel tree | rel tree rel tree rel
Q1 1.72| 1.02| 3.83| 1.19 | 844 | 1.65 | 31.20 | 1.55
Q5 1.77| 1.01| 387|125 | 892 | 165 | 3435 | 191
Q6 229| 161|934 | 169 | 14.15| 589 | — 15.01
Q7 226 | 156 | 3.62| 2.87 | 945 | 9.73 | 76.39 | 23.77
Q8 1.78| 0.88| 3.88| 1.19 | 899 | 15 32.84 | 1.90
Q9 1.72| 1.03| 3.63| 1.15 | 843 | 1.58 | 20.96 | 1.8
Q10 1.84| 1.30| 4.21| 2.35 | 860 | 5.15 | 114.12| 11.40
Q11 1.77| 1.12| 391 | 2.15 | 8.18 | 4.13 | 109.24| 9.08
Q12 177 098 | 3.77| 1.23 | 9.05 | 1.39 | 31.92 | 1.66
Q16 1.74| 090 | 356| 1.21 | 868 | 1.31 | 30.53 | 1.38
Q17 1.64 | 1.26 | 3.02 | 10.96 | 19.74| 20.95| 40.74 | 12.28
mean | 1.75 | 1.53 | 3.74 | 241 11.00 | 7.56 50.55 17.55

Table 3: Scale multiplier of the Relational and Tree-Basp@maches as compared to the 500MB times

tree-based approach experiences a large increase in iexetinte on the 8GB collection for each of these feature
types. The relational approach on the other hand, has a wenstale-up as the collection size increases. The
relational approach outperforms the tree-based appraadllfof these features. In addition, the scaling multiplie
increases at a much lower for the relational approach. Tladaeal approach took between 0.67 and 1.47 times as
long to execute the 8GB queries than the 500MB queries. Itrasinthe tree-based approach took between 30.53 and
34.35 times as long to execute the 8GB queries.

Quantifier expressions ((c) in both figures) are the onlyuieathat the tree-based approach outperformed the
relational approach for most of the collections. The relzdi approach outperformed the tree-based approach on
the 8GB collection. The tree-based approach could not ceteixecution of the existential quantifier query. Even
though the tree-based approach outperformed the rela@ppaoach in terms of execution, the relational approach
scales better than the tree-based approach. For examgleelétional approach took 52.37 seconds to execute Q6
on the 2GB collection. The tree-based approach outperftiimselational approach with a time of 18.97 seconds.
However, the scaling multiplier of Q6 on the 2GB collectisrli69 with the relational approach as compared to 9.34
for the tree-based approach.

Regular expressions ((d) in both figures) experience sithéaavior to other query feature features. The different
types of regular expressions used are unknown sub-patth ¢) and unknown element § */ C). The timing differ-
ences between each type of regular expression differediveywith both approaches, showing that they are most
likely handled similarly internally. The relational apich outperforms the tree-based approach on all colledbiotins

14

Time (seconds)

Time (seconds)

Time (seconds)

Time (seconds)

(a) Exact Match (Q1) (b) Ordered Access (Q5)

1024 T T T T 512 — T T
tree —6— tree —6—
relational - 256 + relational ---&-
256 1 128 |
64] - 64
2 32t
=}
(53
16 R @ 16
[
£ 87
4t 1 F ol
r— - 1r y
0.25 - . . . 05 L . . .
051 2 4 8 05 1 2 4 8
Collection Size (GB) Collection Size (GB)
(c) Quantifier Expressions (Q6, Q7) (d) Regular Expression (Q8, Q9)
T T T - 512 — T T
tree —6— Wz tree —6—
256 | relational & -] 256 relational &
128 -
64 1 64 -
2 32
c
16] g 16 L
& gl
£
4 1 IS 4r
2L
17 1 1t =
05} m.g-®"
0.25 L . . . 0.25 —— . . .
051 2 4 8 051 2 4 8
Collection Size (GB) Collection Size (GB)
(e) Sorting Document Construction (Q10, Q11) (f) Document Structure Preserving (Q12)
4096 T T T T 512 — T T
tree —6— tree —6—
relational ---&- 256 + relational ---&-
1024 R
128
256 - 1 64 |
)
64 | 1 S
(53
@ 16
16 b)
m £ 8r
E
4t =] 4L
2L
1+ [T 4
1t -
0.25 - . . . 05 . .
051 2 4 8 4 8
Collection Size (GB) Collection Size (GB)
(9) Retrieve Individual Documents (Q16) (h) Text Search (Q17)
512 T T T 2048 — T T T
tree —o— tree —6—
256 + relational ---&- 4 1024 relational ---#-
128 4 512 -
6a | | e
(%2} L
32 b] S 128
16 g o
s a2y
8l]
.E 16 F
4t E sl
2t 1 4l
1r - | 2+ g
05 ®-m ‘ ‘ P ‘ ‘ ‘
05 1 2 4 8 051 2 4 8
Collection Size (GB) Collection Size (GB)

Figure 7: Query Feature execution time on all collections

15

900

‘tree —o—
800 | relational -l

700 -
600 -
500

400 r

Time (seconds)

300 |

200

100 -

Collection Size (GB)

Figure 8: Average execution time on all collections

in terms of scaling multipliers and execution time. In onareple, Q8 runs in 1.10 seconds on the 8GB collection
using the relational approach. The tree-based approatheather hand, takes 478.43 seconds to execute.

Even though the generic data type of element content in XMtudtents is a string, users may cast the string
type to other types. Therefore, an XML retrieval system $thdwe able to efficiently sort values both in string and
in non-string data types. The sorting document constrndéature ((e) in both figures) tests the ability of each
approach to sort by string and numeric value. Both queriggsnmédetween 16 and 258 elements as the collections
increase. It is interesting to note that the relational apph takes longer to sort by string type (5.97 seconds for the
string type on the 4GB collection as opposed to 2.81 secawdtié numerical sort), while the tree-based approach
experiences very little variation between the two type®(&3 and 137.04 seconds). Numeric sorting is faster with the
relational approach since the database performs numedogbarisons faster than string comparisons. Even with the
difference in time, the relational approach still outpenfis the tree-based approach for both types of sorting dostime
construction. The largest scale multiplier is 11.40 for thlational approach on the 8GB collection. In contrast, the
tree-based approach has a scaling multiplier of 114.12.

Text search plays a very important part in XML search systefite text search query searches through XML
documents that contain between 5 and 80KB of free text. Tttesearch feature ((h) in both figures) returns between
6 and 44 elements as the collection size increases. We seeagthbehavior exhibited by the relational approach for
this query on the 2GB and 4GB collections. Although the refatl approach outperforms the tree-based approach
in terms of execution time, the tree-based approach scelésrion the 2GB and 4GB collections. This query is an
example of the database choosing the wrong index and wilkkplmed further in the following section.

The underlying structure is a tree with the tree-based ambrand sets with the relational approach. In addition,
the relational approach uses trees to retrieve elementstiie relational sets. The highly optimized relational sets
resulted in a much lower than expected scaling multipliettie majority of the query features. In contrast, the tree-
based approach scaled much closer to our expectations dinsttfeur collections, but performed very poorly on the
8GB collection.

In Figures 8 and 10, we plot the average execution time oVeo#éctions as well as the average scale-up over
all collection. Overall, the relational approach outperied the tree-based approach on all five collections. The
tree-based approach outperformed the relational appfoabloth quantifier queries, however, the relational appinoa
scales better for these queries. On average, the relatippabach took 17.5 times as long to execute the 8GB queries
than the 500MB queries. On the other hand, the tree-basedagptook 50.55 times as long to execute the queries
on the 8GB collection.

5.1.1 AnomalousQueries

Both the tree-based and relational approaches experiaem@ions in time for Q6 and Q7. Both Q6 and Q7 include
guantified expressions which test for the existence of etésrtbat satisfy a condition. Q6 uses existential quantifica

16

Scale Factor

Scale Factor

Scale Factor

Scale Factor

(a) Exact Match Search

35

25 -

20 -

15 -

10 -

T
tree —6—
relational &

[N
N
I
©

Collection Size (GB)

(c) Quantifier Expressions

80

70 -

60 -

40 t

30

10 -

T
tree —o—
relational --®

120

100

80

60

40

20

Collection Size (GB)

(e) Sorting Document Construction

T T T
tree —6—
relational &

1 2 4 8
Collection Size (GB)

(9) Retrieving Individual Documents

35

T
tree —o—
relational --®

-
N
N
©

Collection Size (GB)

Scale Factor

Scale Factor

Scale Factor

Scale Factor

35

30 -

25

20

15

10

30

25

20

15

10

35

30

25

20

15

10

45
40
35
30
25
20
15

(b) Ordered Access

T
tree —6—
relational --®

[N
N
IN
©

Collection Size (GB)

(d) Regular Expressions

T
tree —o—
relational --®

-
N
IN
©

Collection Size (GB)

(f) Preserving Document Structure

T
tree —o—
relational --®

©

Collection Size (GB)

(h) Searching Text

T
tree —o—
relational --®

1 2 4 8
Collection Size (GB)

Figure 9: Query Feature Scale-up

tree —o—
50 - relational -k B

Scale Factor

Collection Size (GB)

Figure 10: Average Scale-up

tion while Q7 uses universal quantification. An existergantifier is evaluated to be true if some matching elements
satisfy a specified condition. Universal quantifiers arduatad to be true if all matching elements satisfy the spatifi
condition. The tree-based approach executes both questes than any other query, however, the relational approac
takes more time than any other query to execute both quetigmugh the tree-based approach outperforms the rela-
tional approach in terms of execution time, the relatiomgraach has a lower scaling multiplier for these queries as
the collection size increases. The relational approachiresimultiple calls to the database to process quantified ex
pressions while the tree-based approach performs a fask onehe nodes used in the quantified expression allowing
guantified expressions to be executed quickly.

The relational approach shows some odd behavior when rgiipéon the 1GB and 2GB collections. The query
execution time for Q6 is close for both collections. Furthere, Q6 experiences a large increase in execution time on
the 8GB collection. Note that Q7 does not have the same proaseQ6. Q7 is near linear on all collections, however,
there is an unusual increase in time for the 4GB and 8GB dallexz The result set returned by Q7 is large. As the
query is processed, the results are read from the databdsecmentarily exceed the size of memory causing memory
swapping. While this is the only query that incurs swappirithhe relational approach, several queries using the
tree-based approach heavily use memory swapping. We aasememory swapping while informally monitoring
(with the Unix utility, top) the memory and processes usedmuquery execution.

Another query that exhibits odd behavior for the relatiomaproach is Q17. This query takes much longer to
execute on the 2GB and 4GB collections than it should. Thabdee query optimizer first estimates the number of
rows it will need to read to satisfy the query using each fdssndex. Then, it selects the index with the fewest
number of rows. Occasionally, the MySQL optimizer will imoectly estimate the number of rows that match specific
values. Q17 is an example of the optimizer incorrectly esting the number of rows, causing the wrong indexes to
be used. We looked at the optimizer for Q17, it showed thaftdgpath, parentand tagpath, pinnurhindexes were
being used when, in fact, th&afpath, nvalupand fagpath, parentindexes should be used. If we modified the SQL
query to force the correct indexes on the 2GB and 4GB datap#se query would run in 9.14 and 14.76 seconds
respectively (as compared to 19.50 and 37.29 seconds wiithr@ing the index).

5.2 LargeResult Sets

In addition to the XBench queries, we ran some queries spaltffidesigned to measure large result sets. We use five
gueries that return increasingly large result sets. In&dblve provide the timings of each query on each collection.
Also shown are the sizes of each query. In Figure 11, we pbopé&nformance of each query as the result size increases
as well as the average performance over the average remailt si

Both R1 and R2 (Figure 11(a-b)) scale as the result set szedses. The scaling multiplier for the relational
approach is however lower. R1 has a scaling multiplier 0@ 700 the relational approach and 10.17 for the tree-based
approach. R2 has a scaling multiplier of 7.98 for the retatl@pproach and 12.49 for the tree-based approach.

18

Collection Size

500MB 1GB 2GB 4GB 8GB
Type | tree rel size tree rel size tree rel size tree rel size tree rel size
R1 24.77| 1.33 12,751 | 42.67 1.86 25,502 | 73.89 2.69 50,405 | 116.97 | 4.74 101,398 | 251.86 9.43 203,382
R2 15.64 | 1.42 12,751 | 28.47 1.87 25,502 | 60.83 3.27 63,992 | 89.82 | 5.00 101,459 195.41 11.33 | 206,780
R3 17.23 | 4.25 1,805 168.94 | 6.99 3,489 74.06 13.30 | 7,102 169.84 | 20.96 14,067 | 1,740.61 44,33 | 28,312
R4 30.72| 14.61| 2,800 | 72.65 | 27.88| 55516 | 156.91| 59.41 | 11,106 | 882.91| 124.40| 22,051 | MEMORY | 299.53| 44,228
R5 6.41 1.40 2,914 14.43 | 2.50 5,771 32.83 10.94 | 12,731 | 46.65 15.62 23,245 | 152.24 2756 | 47,331
mean | 18.95 | 4.60 6,604 65.43 8.22 13,156 | 79.70 17.92 | 29,067 | 261.24 | 34.14 52,444 585.03 78.44 106,007
Table 4: Total Query Time (seconds) for Queries with largriltesets
(a) R1 Execution Time (b) R2 Execution Time
300 — T T T 200 — T T
tree —6— tree —6—
relational & 180 relational &
250 160
& 200 | - 140 r
g g 1207
o 1=
g 150 g 100 [
£ g 8oy
= 100 [= 60 |
50 | 40
20 | -
13 26 50 101 203 13 26 64 102 207
Number of Results (in thousands) Number of Results (in thousands)
(c) R3 Execution Time (d) R4 Execution Time
1800 T T T 900 — T T
tree —6— tree —6—
1600 relational - 800 | relational &
1400 [700 [
% 1200 - % 600 |
2 2
S 1000 + S 500 -
a a
> 800 f o 400
£ £
[600 =~ 300 - |
400 200
200 | 100 a
0 - S . . .
1835 7.1 141 28.3 2855 111 221 44.2
Number of Results (in thousands) Number of Results (in thousands)
(e) R5 Execution Time (f) Mean Execution Time
160 T T T T 600 — T T
tree —6— tree —6—
140 | relational & relational -
500
120
g 100 - g 400
3 3
@ 80 I @ 300
Py Py
£ 60 €
- = 200
40 |
~: 100
g ‘ ‘) 0 T S ! - ‘
2958 12.7 23.2 47.3 6.613.2 29.1 52.4 106

Number of Results

Number of Results

Figure 11: Query Execution time for Large Result Sets

19

Note that R1 and R2 have the largest result set sizes, yetR3and R5 (Figure 11(c-e)) take more time to execute.
R1 and R2 return all the elements or attributes that matckengiath, while R3, R4, and R5 add conditions to the
guery. These queries contain predicates which take moeettinprocess for both approaches. As the result set size
increases, R4 runs out of memory for the tree-based appevatfails on the 8GB collection. Although the size of the
results returned from R4 are less than for the other qudtiesjode sets generated contain a large number of nodes
causing the query to run out of memory. The relational apghrsaxecution time outperforms the tree-based approach
for all queries, however, R5 scales better for two of the ltesi sizes using the tree-based approach. For example,
the relational approach has a scaling multiplier of 11.16¥ with 22,051 results while the tree-based approach has
a better scaling multiplier of 7.28. All other queries sdadtter with the relational approach.

In Figure 11(e) we plot the average performance over theageeresult set size. As the result set size grows,
the relational approach outperforms the tree-based apipfoaboth query execution time and scaling multiplier. On
average, the scaling multiplier on the largest result $2€7i05 for the relational approach which is much better than
the tree-based approach’s scaling multiplier of 30.87.

5.3 Multiple Predicate Matching

Finally, we examine the time to process queries with muétjgrledicates. Predicates are processed with the relational
approach through the use of self joins. The tree-based appmgenerates more node sets, which are later joined in
the path join algorithm. By looking at the performance ofteapproach as we increase the number of predicates, we
can get a view of the cost of self joins versus the cost of perifag the path join algorithm on more node sets.

We created four queries with one through four predicate3abie 5, we show the time to execute each query on
the 2GB collection. In Figure 12, we plot the performanceaxfteapproach as the number of predicates increase.

Number of Predicates
1 2 3 4
relational | 0.84 1.04 1.21 1.41
tree 57.73 93.96 139.76 182.8B

Table 5: Total Query Time (seconds) for Predicates on 2GRciibn

200

tree —6—
180 relational - 1

160 -
140 r
120 -
100 -
80

Time (seconds)

60

20

ol m |]
1 2 3

Number of Predicates

"L

Figure 12: Query Execution time for large number of predisat

Both approaches scale linearly as the number of predicatesdse, however, the relational approach outperforms
the tree-based approach for all of the queries. Furthernasréhe number of predicates increase, the relational ap-
proach’s execution time increases at a slower rate thanrdkebtased approach. The relational approach takes 1.67

20

times longer to execute a query with four predicates thannitieone predicate. In contrast, the tree-based approach
takes 3.17 times as long to execute a query with four presicat

Our results indicate that as the number of predicates iserghe cost of relational joins is less than the cost of
performing the path join algorithm in the tree-based apghoa

6 Conclusions

Over the last several years, XML search has migrated frorimteeest of the few to the need of the many. Furthermore,
XML collections previously considered large are now viewsadommon-place. Thus, as always, necessity has spurred
interest and innovation.

XML collections are viewed as either data or text-centrithvdata-centric collections containing a greater per-
centage of XML tags and often a greater depth in terms of thé. Xbhema hierarchies. Our focus is on data-centric
collections, and we compared the two common search appesd@hXML search, namely relational database oriented
and tree-based search systems.

We demonstrated the superior scalability of the relati@pgiroach for searching XML data over the tree-based
approach. We generated collections of heterogeneous XMurdents ranging in size from 500MB to 8GB using the
commonly used XBench benchmark suite. The scalability oheaethod was tested by running XQuery queries that
cover a wide range of XML search features on each collecthuiditional queries were developed specifically for
comparison between both approaches.

Our analysis shows that the relational approach is scatalilee collection size and the feature type. In addition,
the relational approach is also scalable as the result setases and for a varying number of predicates. Although
complex joins for predicate matching and reconstructimgdaesult sets do slow down the relational approach, it
still provides a significant improvement over the tree-basearch. Furthermore, our results support our claim that
the relational mapping of XML queries not only leveragessgrg relational database optimizations, but typically
outperforms standard tree-based indexing systems.

Future work involves further analysis of the relational @rek-based approaches. We plan to compare other
methods of relational and tree-based approaches usingplaiML benchmarks. In addition, we also plan to expand
our study to include text-centric data. Future work alsmlngs extending this study to include a wider variety of
XML search techniques over larger collections of XML docuntse Studying different XML retrieval techniques on
large collections of XML data may point to issues with cuthensed XML retrieval techniques.

As of recent, the SQLGenerator is in daily use, by dozens@fais each of dozens of places worldwide.

Acknowledgements

Special thanks to Fred Ingham, Tim Lewis, and Steve Conddkéa assistance with the design and testing of various
parts of the SQLGenerator.

References

[1] SQLGenerator. http://ir.iit.edu/projects/SQLGeater.html.

[2] DBLP. http://www.informatik.uni-trier.de/ ley/db/.

[3] Extensible Markup Language (XML). http://www.w3.0K¥IL/.
[4] Open Source Native XML Database. http://exist.sowogé.net/.

[5] XBench - A Family of Benchmarks for XML DBMSs. http://dbwaterloo.ca/ ddbms/
projects/xbench/index.html.

[6] INitiative for the Evaluation of XML Retrieval (INEX), Q07. http://inex.is.informatik.uni-duisburg.de/2007/

[7] L. Afanasiev and M. Marx. An Analysis of the Current XQydaBenchmarks. Idnternational Workshop on
Performance and Evaluation of Data Management Systems[QBXP006.

21

[8] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Robust bienmg Scheme for XML Documentg$2ro-
ceeding of the 19th International Conference on Data Engjiimg (ICDE’03), 2003.

[9] S. Amer-Yahia and M. Lalmas. XML Search: Languages, IN&X] Scoring.SIGMOD Record35(4):16-23,
2006.

[10] K. S. Beyer, R. Cochrane, V. Josifovski, J. Kleewein L @pis, G. M. Lohman, B. Lyle, F. Ozcan, H. Pirahesh,
N. Seemann, T. C. Truong, B. V. der Linden, B. Vickery, and 8aZg. System RX: One Part Relational, One
Part XML. In SIGMOD Conferencgages 347-358, 2005.

[11] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittin and J. Teubner. MonetDB/XQuery: a fast XQuery
processor powered by a relational engineSIGMOD international conference on Management of dptayes
479 — 490, 2006.

[12] J. Bosak. Shakespeare XML Collection. http://wwwbitn.org/bosak/xml/eg/.

[13] J. Bremer and M. Gertz. Integrating document and dat&wal based on XML.The VLDB Journgl15(1):53—
83, 2006.

[14] T. Bhme and E. Rahm. Supporting Efficient Streaming arsgtition of XML Data in RDBMS. Ir8rd Interna-
tional Workshop Data Integration over the Web (DIWet1)04.

[15] R. Cathey, S. Beitzel, E. Jensen, D. Grossman, and @déri Relationally Mapping XML Queries for Scalable
XML Search.Proceeding of IEEE conference on the Intelligence and Stydmformatics (1ISI'07) May 2007.

[16] S. Chien, V. Tsotras, C. Zaniolo, and D. Zhang. Effici€omplex Query Support for Multiversion XML Docu-
ments.Proceeding of the EDBT Conferen@o02.

[17] L. Denoyer and P. Gallinari. The Wikipedia XML CorpuSIGIR Forum 40(1):64—69, 2006.

[18] W. Fan, J. X. Yu, H. Lu, J. Lu, and R. Rastogi. Query Tratish from XPath to SQL in the Presence of Recursive
DTDs. InVLDB, pages 337-348, 2005.

[19] D. Florescu and D. Kossman. A performance evaluatioaltefnative mapping schemes for storing XML data
in a relational database. Technical report, INRIA, Frai@99.

[20] D. Florescu and D. Kossman. Storing and Querying XML&@asing an RDBMS.IEEE Data Engineering
Bulletin, 22(3):27-34, 1999.

[21] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The Ctewrjty of XPath Query Evaluation and XML Typing
. In Journal of the ACMvolume 52, pages 284—-335, 2005.

[22] M. Grohe. Parameterized Complexity for the Databasecfist. INACM SIGMOD Recorgdvolume 31, pages
86-96, 2002.

[23] T. Grust. Accelerating XPath Location Steps. StGMOD international conference on Management of data
pages 109-120, 2002.

[24] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Host¥LRB, pages 252—-263, 2004.

[25] H. Jiang, H. Lu, W. Wang, and J. X. Yu. Path MaterialipatRevisited: An Efficient Storage Model for XML
Data. Proceedings of the Thirteenth Australian Conference orabase Technologie5:85-94, 2002.

[26] L. Khan and Y. Rao. A Performance Evaluation of StoringlIXData in Relational Database Management
Systems. Proceeding of the third international workshop on Web infation and data managemenpages
31-38, 2001.

[27] C. Koch. On the Complexity of Nonrecursive XQuery andhEtional Query Languages on Complex Values. In
ACM Transactions on Database Systemmdume 31, pages 1215-1256, 2006.

[28] C. Koch. Processing Queries on Tree-Structured Dafigi&ftly. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of databgstemspages 213—-224, 2006.

22

[29] R. Krishnamurthy, V. Chakaravarthy, R. Kaushik, antldughton. Recursive XML Schemas, Recursive XML
Queries, and Relational Storage: XML-to-SQL Query Transta IEEE International Conference on Data
Engineering (ICDE)2004.

[30] R. Krishnamurthy, R. Kaushik, and J. Naughton. XMLS®L Query Translation Literature: The State of the
Art and Open Problems, September 2003.

[31] M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. W. Warn&t,Arora, and S. Kotsovolos. Query Rewrite for XML
in Oracle XML DB. InVLDB, pages 1122-1133, 2004.

[32] Y. Lee, S. Yoo, K. Yoon, and P. Berra. Index StructuresStructured Documentf2roceeding of the 1st ACM
International Conference on Digital Librarieslarch 1996.

[33] Q. Li and B. Moon. Indexing and Querying XML Data for ReguPath ExpressionsProceeding of the 27th
International Conference on Very large Databasgsptember 2001.

[34] Z. H. Liu, M. Krishnaprasad, and V. Arora. Native Xqueysocessing in oracle XMLDB. I$IGMOD Confer-
ence pages 828-833, 2005.

[35] S. Manegold. An Empirical Evaluation of XQuery Proaass Ininternational Workshop on Performance and
Evaluation of Data Management Systems (EXP,2BD6.

[36] W. Meier. eXist: An Open Source Native XML Databad#eb, Web-Services, and Database Systems. NODe
2002 Web- and Database-Related Worksh@utober 2002. Springer LNCS Series, 2593.

[37] W. Meier. Index-Driven XQuery Processing in the eXid¥vIK Database. InXML Prague 2006.

[38] S. Pal, I. Cseri, G. Schaller, O. Seeliger, L. Giakoursaénd V. V. Zolotov. Indexing XML Data Stored in a
Relational Database. MLDB, pages 1134-1145, 2004.

[39] C.H. Papadimitriou and M. Yannakakis. On the ComplegitDatabase Queries. Proceedings of the sixteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of detalsystempages 12—-19, 1997.

[40] M. Rys. XQuery in Relational Database SystemsXML 2004 2004.

[41] M. Rys. XML and relational database management systémsgde Microsoft SQL Server 2005. BIGMOD
international conference on Management of dgiages 958 — 962, 2005.

[42] S. S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, Dv&tava, and Y. Wu. Structural joins: a primitive for
efficient XML query pattern matching?roceedings of the IEEE International Conference on DatgiEeering
(ICDE), pages 141-152, 2002.

[43] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Héiit Relational Storage and Retrieval of XML
DocumentsLecture Notes in Computer Sciend®97:137+, 2001.

[44] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C.drah]. E. Funderburk. Querying XML Views of Rela-
tional Data. InVLDB, pages 261-270, 2001.

[45] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. Dee#it J. Naughton. Relational database for querying
XML documents: Limitations and Opportunities. In Proc. df¥B, 1999.

[46] J. Snelson. All XML Databses are EquITech 2005: XML, the Web and beyoad05.
[47] D. Suciu. On database theory and XMACM SIGMOD Record archive80(3):39-45, 2001.
[48] N. Suizo. XML Propels Security Intelligencletwork World August 2006.

[49] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundatanshekita, and C. Zhang. Storing and querying ordered
XML using a relational database systefroceedings of the 2002 ACM SIGMOD international confeecoic
Management of datgages 204-215, 2002.

23

[50] F. Tian, D. DeWitt, J. Chen, and C. Zhang. The Design arfidPmance Evaluation of Alternative XML Storage
StrategiesACM SIGMOD Record31(1):5-10, 2002.

[51] A. Vakali, B. Catania, and A. Maddalena. XML Data Stor&snerging PracticeslEEE Internet Computing
9(2):62-69, 2005.

[52] H. Wang and X. Meng. On the Sequencing of Tree StructfoeXML Indexing. In ICDE, pages 372-383,
2005.

[53] F. Weigel, K. U. Schulz, and H. Meuss. Exploiting NatX¥®L Indexing Techniques for XML Retrieval in
Relational Database Systems. Workshop On Web Information And Data Management (WIDM'@apes
23-30, 2005.

[54] F. Weigel, K. U. Schulz, and H. Meuss. The BIRD Number8aheme for XML and Tree Databases - Deciding
and Reconstructing Tree Relations Using Efficient Arithm@&perations. I'XSym pages 49—-67, 2005.

[55] G. Xing and B. Tseng. Extendible Range-Based NumbeSicigeme for XML DocumentProceeding of the
International Conference on Information Technology: Gupdand Computing (ITCC'042004.

[56] M. Yoshikawa and T. Amagasa. XRel: A Path-Based Appha@acStorage and Retrieval of XML Documents
Using Relational DatabaseACM Transactions on Internet Technology (TQIT{1):110-141, August 2001.

[57] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohmam gDpporting containment queries in relational
database management systeimceedings of the ACM SIGMOD International Conference @amafjement of
Data, pages 425-438, 2001.

24

