
Using a Relational Database for Scalable XML Search

Rebecca J. Cathey, Steven M. Beitzel, Eric C. Jensen, David Grossman, Ophir Frieder
Information Retrieval Laboratory
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616

{cathey, beitzel, jensen, grossman, frieder}@ ir.iit.edu

June 3, 2007

Abstract

XML is a flexible and powerful tool that enables information and security sharing in heterogeneous environments.
Scalable technologies are needed to effectively manage thegrowing volumes of XML data. A wide variety of methods
exist for storing and searching XML data; the two most commontechniques are conventional tree-based and relational
approaches. Tree-based approaches represent XML as a tree and use indexes and path join algorithms to process
queries. In contrast, the relational approach utilizes thepower of a mature relational database to store and search
XML. This method relationally maps XML queries to SQL and reconstructs the XML from the database results. To
date, the limited acceptance of the relational approach to XML processing is due to the need to redesign the relational
schema each time a new XML hierarchy is defined. We, in contrast, describe a relational approach that is fixed schema
eliminating the need for schema redesign at the expense of potentially longer runtimes. We show, however, that these
potentially longer runtimes are still significantly shorter than those of the tree approach.

We use a popular XML benchmark to compare the scalability of both approaches. We generated large collections
of heterogeneous XML documents ranging in size from 500MB to8GB using the XBench benchmark. The scalability
of each method was measured by running XML queries that covera wide range of XML search features on each
collection. We measure the scalability of each method over different query features as the collection size increases.
In addition, we examine the performance of each method as theresult size and the number of predicates increase.
Our results show that our relational approach provides a scalable approach to XML retrieval by leveraging existing
relational database optimizations. Furthermore, we show that the relational approach typically outperforms the tree-
based approach while scaling consistently over all collections studied.

1 Introduction

The Extensible Markup Language (XML) is a simple, flexible text format used for defining structured information.
XML is semi-structured data, however, the structure is not as rigid, regular, or complete as typical structured data found
in databases. Furthermore, since XML can be extended to include domain specific tags, information can be encoded
with meaningful structure and semantics that allows rapid information sharing among devices and organizations [48].
XML was originally designed to meet the challenges of large-scale electronic publishing, however, the flexibility of
XML has caused it to play an increasingly important role in the exchange of a wide variety of data [3]. Furthermore,
languages to search XML are formally defined, allowing specific XML components to be retrieved regardless of an
individual XML document’s design.

The growing trend of using XML requires scalable technologyto effectively store and search the volume and
variety of data. This growth has led to the development of a wide range of XML query systems. These systems
employ a variety of methods ranging from simple file systems to object relational databases. The two most common
techniques for storing and searching XML are conventional tree-based approaches and relational approaches.

Tree-based approaches have typically been designed from the ground up to deal with elements, attributes, and
text nodes while naturally handling document order and referential integrity issues [46]. Although, some tree-based
approaches rely on tree-traversals to find specific elementswithin the XML tree, the majority of these methods use

1

indexes and path join algorithms to speed up query processing. Tree-based methods are particularly effective for
retrieving complex elements and searching larger sectionsof text.

In contrast to the tree-based approach, the relational approach seeks to utilize the power of a relational database.
This method flattens the hierarchy of an XML document to storeit in a relational database. XML queries are then
relationally mapped to SQL to retrieve the desired results.Excluding a small engine used to parse the query and
reconstruct the results, the database does the majority of the work. This method is promising because efficient access
methods for relational data have been developed for over thirty years, and query planning and optimization in the
relational algebra is well understood. In addition, relational systems offer key features for productive use, concurrence,
transactions and safety [54]. However, relational systemssometimes need to use complex joins which can increase the
time to process queries. In addition, reconstructing the XML often requires multiple calls to the database whereas a
tree-based approach can extract the desired node directly from the tree hierarchy.

We compare two main approaches for XML retrieval. Both the tree-based approach and the relational approach
have been developed to efficiently search XML data. We address the question of scalability by analyzing the two most
common approaches to XML retrieval. Our study examines moderately sized XML collections ranging from 500MB
to 8GB, similar in size to other used collections (376MB [2] and 4GB [17]). We examine not only the performance
of each query on each system, but also the scaling multipliers as the collection size increase. We also examine the
scalability of each approach as the size of the result set andthe number of predicates increase. In this way, we can
determine which approach has the potential to search large collections of XML data.

Although comparisons have been made between systems [7, 35], we are unaware of a study looking at the underly-
ing techniques that each system uses. Our goal is to show thatalthough relational databases are not the most common
way of viewing XML, they provide increased performance overthe tree-based approach. In addition we provide a
framework for evaluating systems and techniques for futurestudies. All queries and collections used are available at
http://ir.iit.edu/collections.

2 Background and Prior Work

2.1 XML Search

Motivated by the wide acceptance and use of XML, a rising number of XML retrieval systems are being developed.
The semi-structured aspect of XML makes storing and querying it to be a challenging task. Although it has structure,
the structure is not as rigid, regular, or complete as typical structured data found in databases. One of the major chal-
lenges of storing and searching XML data is preserving the hierarchy of the data. Conventional tree-based approaches
use trees to represent the logical structural relationships between XML elements. Relational approaches flatten the
hierarchy by shredding an XML document into edges or nodes that are stored in a relational table.

Since conventional top-down tree traversal approaches areinefficient for large document collections [33], the tree-
based approach uses indexes to efficiently process queries on large document collections. Indexes are created for
tree-based approaches through the use of numbering schemes. A numbering scheme assigns a unique identifier to
each node in the logical document tree. The generated identifiers are then used in indexes as references to the actual
nodes.

Numbering schemes range from simple level order numberingsto more complex schemes. Numbering schemes
optimize query processing by quickly determining structural relationships between nodes. A simple level order num-
bering assigns a unique identifier to every node while traversing the document in level-order. This scheme allows the
ancestral relationship between nodes to be found by performing a simple calculation. Since the document is modeled
as a completek-ary tree, space is wasted by the insertion of spare identifiers [32]. Extensions of this scheme [36]
partially drop the completeness constraint so the number ofchildren a node may have is recomputed for every level of
the tree. This reduces the number of spare identifiers needed. An alternative to level order numbering is a hierarchical
numbering such as the dynamic level numbering proposed in [14]. This numbering scheme is based on variable-length
identifiers and thus avoids a limit on the size of the documentto be indexed [37]. Xing and Tseng propose an ex-
tended range-based labeling that combines prefix based labeling to eliminate the need to relabel nodes after arbitrary
insertions [55]. Other approaches include using a variant of regions to express node-numbers [8] and extending the
pre-order numbering scheme to allow ancestor-descendant relationships to be found in constant time [16]. Weigel,
et al introduce the BIRD family of tree numbering schemes based on structural summaries. These schemes allow
tree relations to be found and reconstructed with simple arithmetic operations [54]. Wang, et al present a method for
ordering nodes based on sequences. This approach transforms structured XML data into sequences so that a structured

2

query can be answered through subsequence matching [52]. Tatarinov, et al [49] studies three numberings: global,
local, and dewey ordering. The global ordering assigns a single integral value to each node. Local ordering assigns a
single value to each node, which denotes its relative order amongst its siblings in the XML document. Dewey ordering
is similar to the Dewey decimal system, and stores with each node the concatenation of the local ordering identifiers
of the node and its ancestors.

One of the most common ways to process queries with the tree-based approach is through the use of structural
joins [13, 42]. The tree-based approach uses structural joins to resolve path expressions based on the features of
the numbering scheme. Li, et al describe three algorithms for processing regular path expressions [33]. TheEE
join searches paths from an element to another, theEA join scans sorted elements and attributes to find elements
attribute pairs, and theKC join finds kleene closure on repeated paths or elements. Zhang, et al [57] proposed a
variation of the traditional merge join algorithm, called the multi-predicate merge join (MPMGJN) algorithm, for
finding all occurrences of the basic structural relationships. Their results suggest that with some modifications, a
native implementation in a relational database can supportthis class of query much more efficiently. Al-Khalifa,
et al discusses two other families of structural join algorithms called the tree-merge and stack-tree [42]. The tree-
merge algorithms are a natural extension of traditional merge joins and the multi-predicate merge joins [57], while the
stack-tree algorithms have no counterpart in traditional relational join processing. Their results show that while, in
some cases, tree-merge algorithms can have performance comparable to stack-tree algorithms, in many cases they are
considerably worse.

In contrast to tree-based storage approaches, the relational approach flattens the hierarchy of an XML document
by storing it in tables within a relational database. Yoshikawa and Amagasa classify methods for designing an XML
relational database schema into two categories: structured-mapping approach and model-mapping approach [56]. In
the structure-mapping approach, a database schema is defined for each XML schema or Document Type Descriptor
(DTD) [18, 26, 44, 45, 50]. Storing XML documents with multiple schemas generally requires different tables to
be created for each XML schema. The model-mapping approach addresses the issue of mapping XML documents
without schemas. In this approach, a fixed database schema isused to store the structure of all XML documents.
Examples of this include the Edge-oriented approach and thenode-oriented approach. The edge-oriented approach
developed by Florescu and Kossman is a simple scheme that stores all attributes in a single table [20]. Variants of the
edge approach store the attribute names in another table [19] or store all associations of the same type in the same
binary relation [43]. The node-oriented approach maintains nodes rather than edges [56]. With the start and end points
of a node it maintains a containment relationship for ancestor-descendent relationships. Grust, et al [23] present a
database structure specifically for XPath queries, where the predecessor, size and level of an element are stored and
used to tailor specifically to XPath queries.

Searching XML documents stored in a database requires XML queries to be relationally mapped to SQL. Kr-
ishnamurthy, et al examine existing work for relationally mapping XML queries to SQL and describes several open
problems [30]. An algorithm that handles the open problem ofrecursive XML schemas is proposed in [29]. Another
method is presented for translation from XQuery to SQL without requiring subsequent calls to the database [24].

The expanding popularity of XML has led to XML support in several commercial databases. These XML enabled
relational databases use object relational mappings to model the XML data as a tree of objects that are specific to the
data in the document. Microsoft’s SQL server 2005 stores thedata as a BLOB and then provides a primary XML index
that shreds the XML into a node table and adds some secondary indexes for improving XQuery performance [38, 41].
Oracle and IBM DB2 provide a shredded physical representation for certain schematized XML and a BLOB for the
general case. [40]. Krishnaprasad, et al [31] describe how queries can be rewritten for more efficient processing
on object relational frameworks with Oracle. Furthermore,Oracle translates XQuery into the same internal data
structures as SQL such as sub query blocks and SQL operators which enables the same underlying optimizer and
execution engine to be utilized [34].

Some methods combine the large body of work that has gone intodeveloping a relational database with the in-
dexing structures inherent in tree-based approaches. SystemRX is a hybrid system that does this [10]. They leverage
the years of data management research to advance XML technology to the same standards expected from mature rela-
tional systems. Weigel, et al combine the indexing structures of a native XML database with the power of a relational
database in [53].

Vakali examines several emerging practices for storing XMLdata with a particular emphasis on native XML stor-
age approaches [51]. Furthermore, Vakali examines the features of several publicly available XML retrieval systems
that use different storage techniques for XML storage. MonetDB/XQuery is an XML retrieval engine that uses the
translation method described in [24] to store and query a relational database [11].

3

2.2 Collections

There are two types of XML documents: data-centric and topic-centric. A topic-centric document contains signifi-
cantly more text than element tags, while a data-centric document dedicates more parts to tags. Our study focuses on
data-centric XML retrieval .

Several collections have been used for evaluating XML search systems. The Bosak Shakespeare collection contains
the complete plays of Shakespeare marked up in XML [12]. Thiscollection is widely used when experimenting with
XML search systems [25, 56], however, the size of this collection is only 7.65MB. Another collection that is often
used is the digital bibliography and library project (DBLP)collection [2]. The DBLP collection provides bibliographic
information on major computer science journals and proceedings in the form of XML. The size of DBLP is 376MB.
Because of the need to evaluate existing XML systems, the INitiative for the Evaluation of XML retrieval (INEX)
[6] has started an international effort to promote evaluation procedures for topic-centric XML retrieval [9]. The aim
of INEX is to provide a large XML test collection with appropriate scoring methods. INEX uses several collections
based on the Wikipedia XML corpus. The main corpus is around 4.4GB in size [17].

Several benchmarks are available for the evaluation of XML search systems. Afanasiev and Marx analyze the five
most popular XML benchmarks and examine how each benchmark is used, what they measure, and what can be learned
from each one [7]. Manegold compares the performance of different XQuery engines using multiple benchmarks [35].
Our study differs from previous studies because it comparesspecific techniques for XML retrieval rather than specific
hardware. We evaluate methods rather than systems. One of the top five most popular XML benchmarks is XBench
[5]. XBench generates collections between 100KB and 10GB insize. In addition, the type of XML can be specified.
For our study, we generated a multiple document, data-centric XML document collection using XBench.

3 Search Methods

We examine the relational and tree-based approaches to XML retrieval. For each approach, we discuss the two primary
aspects of XML retrieval. The first aspect is storage of the data. The second is searching the data. This study focuses
on the search aspect of XML retrieval, however, the speed at which an approach searches XML is largely dependent
on the storage method. Therefore, we also discuss the methods used for storage.

3.1 Relational Approach

The relational approach stores multiple schema XML documents in a relational database. We use the SQLGenerator
[1] to show the power of the relational approach. The SQLGenerator is an XML retrieval engine that uses MySQL
version 4.1.11 to store and search XML. All discussions of the storage and search techniques are the techniques
employed specifically by the SQLGenerator, however, any static schema relational approach should employ similar
techniques.

3.1.1 Storage

The relational approach uses the edge-oriented, model-mapping approach to store a heterogeneous collection of XML
documents in a static schema relational database. This is similar to the method first described by Florescu and Kossman
in [20]. Each unique XML path and that path’s value are storedas a separate row in a relational table. This table also
has the values in-lined in the same table. This is a static schema that is capable of storing any XML document without
modification. The hierarchy of XML documents is kept intact such that any document indexed by the database can be
reconstructed using only the information in the tables. We usebooks.xml (see Figure 1) as an example file to show
our storage scheme and the relational approach’s translation over it. All of the database tables shown in our examples
will reflect the data of this file.

The four main tables in the database are thepinndx, tagpathtbl, tagnametbl, andatrnametbl tables. In
Figure 2, we show the content of each table after the insertion of books.xml. Thepinndx table (Figure 2(a)) stores
the actual content of all the XML files that have been indexed.Each row in thepinndx table stores information about
an XML element. Thepinndxnum column is a unique integer assigned to each element and attribute in a document.
Thecollectionnum column can be used to divide thepinndx table into collections. Theparent column indicates
thepinndxnum value of the tag that is the parent of the current tag. Thetagtype column indicates whether the path
terminates with an element or attribute. Thepinnum column indicates the XML document this row corresponds to. The

4

<books>
<book>

<name>The Great Gatsby</name>
<author>F. Scott Fitzgerald</author>
<price currency="USD">9.99</price>

</book>
<book>

<name>Cat in the Hat</name>
<author alias="true">Dr. Seuss</author>
<price currency="USD">14.99</price>

</book>
<pamphlet>

<name>Common Sense</name>
<author>Thomas Paine</author>

</pamphlet>
</books>

Figure 1:books.xml

pinndxnum collectionnum parent tagpath tagtype tagname atrname pinnum indexpos nvalue value
1 1 0 1 E 1 1 1 0
2 1 1 2 E 2 1 1 0
3 1 2 3 E 3 1 1 0 The Great Gatsby
4 1 2 4 E 4 1 1 0 F. Scott Fitzgerald
5 1 2 5 E 5 1 1 0 9.99 9.99
6 1 5 5 A 5 2 1 0 USD
7 1 1 2 E 2 1 1 0
8 1 7 3 E 3 1 1 0 Cat in the Hat
9 1 7 4 E 4 1 1 0 Dr. Seuss
10 1 7 5 E 5 1 1 0 14.99 14.99
11 1 10 5 A 5 2 1 0 USD
12 1 1 6 E 6 1 1 0
13 1 12 7 E 3 1 1 0 Common Sense
14 1 12 8 E 4 1 1 0 Thomas Paine

(a)

vkey value
1 [books]
2 [books, book]
3 [books, book, name]
4 [books, book, author]
5 [books, book, price]
6 [books, pamphlet]
7 [books, pamphlet, name]
8 [books, pamphlet, author]

vkey value
1 books
2 book
3 name
4 author
5 price
6 pamphlet

vkey value
1 -
2 currency

(b) (c) (d)

Figure 2: The (a)pinndx, (b) tagpathtbl, (c) tagnametbl, and (d)atrnametbl Tables

5

indexpos column is used for queries that use the index expression feature of XML search and indicates the position of
this element relative to others under the same parent (starting at zero). This column stores the original ordering of the
input XML for explicit usage in users’ queries. Thevalue column stores the textual contents of the element while the
nvalue column contains the numeric representation of the value. Thetagpath, tagname, andatrname correspond to
primary keys in thetagpathtbl, tagnametbl, andatrnametbl tables, respectively.

Thetagpathtbl (Figure 2(b)),tagnametbl (Figure 2(c)), andatrnametbl (Figure 2(d)) store the metadata (data
about the data) of the XML files. Thetagpathtbl andtagnametbl tables together store the information about tags
and paths within the XML file. Thetagpathtbl table stores the unique paths found in the XML documents. The
tagnametbl table stores the name of each unique tag in the XML collection. Theatrnametbl stores the names of all
the attributes. In each of these tables,vkey is an integer assigned by the system and is the primary key of the table.
When an XML document is indexed and an element, path, or attribute is encountered for the first time, the values
are added to thetagnametbl, tagpathtbl, andatrnametbl tables. Otherwise, the indexer caches these tables in
memory and uses their values to insert new rows into thepinndx table.

To optimize database performance, several indexes are built on thepinndx table. In addition to the primary key
index, we built indexes on theparent, indexpos, tagpath, tagname, atrname, pinnum, andnvaluecolumns of the
pinndx table. Although an index on thevalue column would speed up simple string matching queries, some of the
values are too large to realistically index. Since an index on all the values would be too large, we build a partial
index on thevalue column that includes the first 30 characters of eachvalue. The index built on theparent column
is useful when complex joins are necessary to enforce ancestor descendant relationships. MySQL does not support
multiple indexes for a query, however, we have found that indexes built on multiple columns are useful for most of
the queries. Several multicolumn indexes were also built onthe tagpathandparent, tagpathandvalue, tagpathand
nvalue, andtagpathandpinnumcolumns.

3.1.2 Search

In Figure 3, we illustrate the complete algorithm for relational XML search. There are three phases of the algorithm.
First an XML query is translated to an SQL query. Then the SQL query is executed on the relational database. Finally,
the XML is reconstructed from the database results.

Relationally Map XML Query
The first step in the algorithm relationally maps an XML queryto SQL. The XML query is first examined to find the
specific constructs of the query. These constructs are then translated to SQL.

The query is first parsed to find all the path expressions. A path expression consists of a set of steps that form
paths. The path expression/A/B/C consists of three steps. The algorithm looks at each step andadds those steps to an
address. If the path contains a predicate, then multiple addresses are created. For the path expression/A/B[C="5"],
two addresses are created. The first is for the path,/A/B, the second is for the path/A/B/C. Then since the second
address contains a literal, the value5 is added to the second address. If the path expression is bound to a variable, that
variable is also added to the address. If the path expressionis in a return clause, the variable and address are added to
the results template. The template is a document object model (DOM) template that determines the formatting of the
final results. The elements in the return clause of a query areadded to the template for formatting. In addition, each
address in the template is also added to the set of all addresses. If the query is simple and does not contain a return
clause, the element corresponding to the final step in the address that is not contained in a predicate is returned with
no extra formatting. If the address is in an order by clause, the address is added to the set of elements used to order the
SQL query.

Once the query is parsed, each address is examined separately. An address is resolved by querying the database
and returning the set oftagpaths from thetagpathtbl where the path matches the address. Since regular expressions
are used to find the path, there is no time difference between queries using’/’ or ’//’. An address may have multiple
matching paths. For example, the path/A//D matches the path/A/C/D and/A/B/C/D. For each resolved address, an
alias to thepinndx table is created. The alias is then added to the list of SQL selects. Multiple matching tag paths
are processed through the use of SQL UNIONs. Predicates to enforce thetagpath andtagtype are added to the
list of SQL predicates. If the address is bound to a literal, apredicate to enforce the literal value is also added to
the list of SQL predicates. Furthermore, predicates are also added to enforce the hierarchy between that address and
the previous address. The query/A/B[C="5"] consists of two paths/A/B/ and/A/B/C, where/A/B/C is bound to
the literal5. After the SQL predicate to enforce the value of"5" is added for the second alias, SQL predicates to

6

Algorithm
addresses={ø}, sqlSelects={ø}, sqlFroms={ø}, sqlPredicates={ø},
sqlOrderBy={ø}, resultSet={ø}, template={emptyDOMtemplate}

Step 1: Translate XML Query to SQL Query
for eachpath expressionin Query do

for eachstepin path expressiondo
address← step
if stepis a literal then

bind literal and type toaddress
end if

end for
if path expressionbound tovariablethen

addvariableto address
end if
addresses← address
if path expressionin order by clausethen

SQLOrderBy← address
end if
if path expressionin return clausethen

template← address
end if

end for
for eachaddressin addressesdo

tagpaths← all matching tagpaths fromtagpathtbl
createalias to thepinndx table
sqlFroms← alias
for eachtagpathin tagpathsdo

sqlPredicates← predicate to enforce the data source
sqlPredicates← predicate to require presence of thistagpath
if addressis bound to literalthen

sqlPredicates← predicate to enforce literal value
sqlPredicates← predicates to enforce hierarchy

end if
end for

end for
construct SQL fromsqlSelects, sqlFroms, sqlPredicatesandsqlOrderBy

Step 2: Execute SQL Query
resultSet←execution of SQL

Step 3: Reconstruct XML
create DOM element,domResultsfrom template
for eachrow in resultSetdo do

if row is a simple elementthen
domResults← row value

else
domResults← row.toDOM()

end if
end for
returndomResults

Figure 3: Relational Search Algorithm

7

enforce the hierarchy are also added. In this case, a predicate that says the second path alias’sparent is equal to
thepinndxnum of the first path sinceB is the parent ofC. Finally, for each address in the template, the value for the
correspondingpinndx alias is added to the list of SQL selects.

In general, the final SQL query is constructed using the list of SQL selects, SQL predicates, SQL froms and SQL
order bys. The query is formed using the following format:"SELECT [SQL selects] FROM [SQL froms] WHERE
[SQL predicates] ORDER BY [sql order by]". The method described in Figure 3 does not go into detail on the
translation of many of the advanced features of XML queries,particularly certain constructs of XQuery and XML-QL
that require more advanced features of SQL.

An example of translation from an XML query to SQL is given in Figure 4. The XQuery query in this example re-
turns the identifier and price of all items bought by a specificcustomer using a Visa credit card. The relational algorithm
first finds all the addresses in the query. This query has five addresses:/order/item, /order/item/customer id,
/order/item/credit card/type, /order/item/id, and/order/item/price. Five aliases to the pinndx table are
created, one for each address:q0, q1, q2, q3, q4, andq5. These aliases are added to the list of SQL froms. Each
address is resolved by querying thetagpathtbl table in the database. For this example we assume thetagpath
values for each address are 1, 4, 5, 7, and 8, respectively. For each alias, thetagpath values are added to the list
of SQL predicates. Forq0, the predicateq0.tagpath="1" is added to the list of SQL predicates. This process is
repeated for all of the aliases. Sinceq3 andq4 are in the return clause of the query,q3.value, q3.pinndxnum,
q4.value, andq4.pinndxnum are added to the list of SQL selects. Bothq1 andq2 appear in a predicate condition.
Sinceq1 is bound to a numerical value, thenvalue column is used. To enforce the predicate value.q1.nvalue=3 and
q2.value="VISA" are added to the list of SQL predicates. The results should beordered by the item identifier where
the identifier is a numerical value. To enforce this orderingin the SQL query,q3.nvalue is added to the list of SQL
order bys. Next, SQL predicates are added to enforce the relationships between the base path/order/item and all
other paths. The path/order/item is the base path because it is bound to the$item variable and all other paths are
formed using the$item variable. Sincecustomer id is a child ofitem, a simple predicate to enforce the parent child
relationship is added to the list of SQL predicates,q1.parent=q0.pinndxnum. Similar predicates are added for the
q3 andq4 aliases. Theq2 alias is more complex. Since there are two elements betweenq2 andq0, another alias must
be created to enforce the hierarchy. This alias is calledq2 1. The new alias is added to the list of SQL froms. Then, the
predicatesq2.parent=q2 1.pinndxnum andq2 1.parent=q0.pinndxnum are added to the list of SQL predicates.
Finally, the SQL query is constructed from the lists of SQL selects, SQL froms, SQL order bys, and SQL predicates.

This step runs in time dependent on the size of the query. It isusually the fastest step since it is not dependent on
the collection size.

let $item := /order/item
where $item[customer_id=3 and credit_card/type="VISA"]
order by $item/id
return
<item>

<id>{$item/id}</id>
<price>{$item/price}</price>

</item>

−→

SELECT DISTINCT q3.value, q3.pinndxnum, q4.value,
q4.pinndxnum FROM pinndx q0, pinndx q1, pinndx q2,
pinndx q2_1, pinndx q3, pinndx q4 WHERE
q0.tagpath=1 AND q1.nvalue=3 AND q1.tagpath=4
AND q1.parent=q0.pinndxnum AND q2.tagpath=5
AND q2.value="VISA" AND q2.parent=q2_1.pinndxnum
AND q2_1.parent=q0.pinndxnum AND q3.tagpath=7
AND q3.parent=q0.pinndxnum AND q4.tagpath=8 AND
q4.parent=q0.pinndxnum ORDER BY q4.nvalue

Figure 4: Relational Mapping of XQuery Query to SQL

SQL Execution
The second step in the relational search algorithm is to execute the generated SQL. This step is handled by the relational
database and is often the most time-consuming step. An optimized database, however, can vastly improve performance.
Without indexes, the database starts with the first record and reads through the whole table to find the relevant rows.
If the table has an index for the columns in the query, the database can quickly determine the positions to seek to in
the middle of the data without having to look at all the data. We use MySQL as our back-end database. Most MySQL
indexes are stored in B-trees. If a multiple-column index exists oncol1 andcol2, the appropriate rows can be fetched
directly. If separate single-column indexes exist oncol1 andcol2, the optimizer tries to find the most restrictive index
by deciding which index finds fewer rows and using that index to fetch the rows.

8

Although the storage method used is simple, often many self-joins of thepinndx table are required to retrieve a
given XML element; one join for each sub-element [47]. Sometimes multiple self-joins can be very time consuming,
however simpler XML queries that do not require joins execute efficiently.

XML Reconstruction
Once the results are returned from the database, the result set is iterated through and the known values are replaced into
the template obtained from the return clause. The template accepts the current result and returns a document object
model (DOM) document fragment. A list of these fragments is compiled and appended to our root document. If the
element is a complex element,toDOM() is called.toDOM() queries the database for all the children of the element and
returns DOM objects for each child. The children are added tothe template and the resulting XML fragment is added
to the root document. The document is then formatted, and theresulting XML text is sent as output to the user.

3.2 Tree-Based Approach

The tree-based approach stores stores XML hierarchically as a tree. We use eXist 1.0 [4], a popular native XML
database to test the tree-based approach. All discussions of the storage and search techniques are the techniques
employed specifically by eXist, however, a tree-based approach should employ similar techniques.

3.2.1 Storage

Tree-based approaches are based on the XML data model, rather than the relational data model. This means that they
are designed from the ground up to deal with elements, attributes and text nodes, and they naturally handle document
order and referential integrity issues [46]. The tree-based approach represents XML as a tree. Every node in the
tree is labeled with a unique identifier. This allows quick identification of structural relationships between a set of
given nodes. It also allows direct access to nodes by their unique identifier. Furthermore, it reduces IO operations by
deciding XPath expressions based on node identifiers and indexes.

Numbering schemes range from simple level order numberingsto more complex schemes. In Figure 5, we show
an example of the numbering scheme used by eXist, a variant ofthe k− ary numbering schema [36], when storing
books.xml. The tree-based approach employed uses a level order numbernumbering scheme where a unique integer
identifier is assigned to every node while traversing the tree in level-order. Level-order numbering schemes model
the document tree as a completek-ary tree assuming that every node in the tree has exactlyk child nodes. Since
the actual number of children nodes varies in real documents, the remaining child identifiers are left empty before
continuing on to the next nodes. Consequently, the available identifiers can run out thus limiting the maximum size of
a document to be indexed. To solve this problem, eXist recently changed their numbering scheme to use hierarchical
level numberings [37], however, our experiments use the previous version of eXist. Since the individual files in our
collections do not exceed the maximum size, we did not have any issues indexing files with eXist.

books
1

book
2

book
3

pamphlet
4

name
5

author
6

price
7

name
8

author
9

price
10

name
11

author
12 13

The
Great
Gatsby

14 15
F.

Scott
Fitzgerald

16 17
currency

18

9.99
19

Cat
in the
Hat

20 21
alias
22

Dr.
Seuss

23

currency
24

14.99
25

Common
Sense

26 27
Thomas
Paine

28 29 30 31

32 33 34 35
USD
36 37 38 39

true
40 41

USD
42 43 44 45 46 47 48 49

Figure 5: Tree-Based Approach Storage

9

A level-order numbering scheme allows the relationship between parent, sibling and possible ancestor/descendant
nodes to be easily determined using a simple calculation. The completeness constraint, however, imposes a major
restriction on the maximum document size. Generally, an XMLdocument will have fewer children near the root than
near the leaf nodes. Thus, in a worst case scenario, a single node at a deeply structured level may have many children.
This causes a large number of spare identifiers to be insertedat all levels of the tree to satisfy the completeness rule.
This causes the assigned identifiers to grow fast even for small documents. An extension to this method partially drops
the completeness constraint, requiring that each node havethe same number of children as the node with the maximum
children on a specific level. Now, the number of children a node has is recomputed on each level. We illustrate this
constraint in Figure 5. In this example, thebook elements have three children each. Because of the completeness con-
straint, thepamphlet element must also have three children, so a spare identifier is used. This approach accounts for
the fact that typical documents will have a larger number of nodes at lower levels of the document tree. Furthermore,
the document size limit is raised considerably to enable indexing of much larger document. Information about the
number of children each level of the tree can have is stored ina simple array.

The tree-based approach provides storage of schema-less XML documents in hierarchical collections. XML doc-
uments are stored as a multi root B+-tree using the variant ofthek−ary numbering schema for indexes as described
in [36]. Four index files are used to store information about an XML document:. collections.dbx, dom.dbx,
elements.dbx, andwords.dbx. collections.dbx manages the collection hierarchy.dom.dbx contains the associ-
ation of nodes with unique node identifiers.elements.dbx contains the indexed elements and attributes.words.dbx
keeps track of word occurrences and is primarily used for fulltext search extensions. To reduce disk space usage, an
index on specific node values is not used.

3.2.2 Search

In Figure 6, we illustrate the complete algorithm for tree-based XML search. There are three steps to the tree-based
algorithm. The first step decomposes the path expressions inan XML query. The second step generates node sets cor-
responding to each element in the query. Finally, the third step runs a path join algorithm on the node sets to determine
the relationship between the nodes in the node sets.

Decomposition of Path Expressions
The first step decomposes all path expressions in an XML query. A path is decomposed by splitting it into individual
components and then forming subexpressions by combining each component with the component that comes after it
and the component that comes before it. For example, the path/A/B[C="D"] would be split into three subexpressions
A/B, B[C, andC=D. Like the translation step for relational search, this stepis not dependent on the size of the XML
collection. It runs in time proportional to the length of thepath.

Generate Node sets
The next step generates node sets for each subexpression. The exact position of each element is provided in the
elements.dbx index file. A node set is generated by loading all the root elements for all documents in the input
document set. Each node set consists of<document-id, node-id> pairs, ordered by document identifiers and unique
node identifiers. Each subexpression consists of two elements. The node set is only generated for the second element
in each subexpression except the first subexpression for a path. This subexpression generates both node sets. For the
path/A/B/C, two subexpressions are generated:A/B andB/C. Node sets are generated for bothA andB for the first
subexpression, however, only a node set forC is generated for the second subexpression. At the completion of this
step,m+1 node sets have been generated, wherem is the number of subexpressions.

Path-join Algorithm
The final step determines relationships between node sets using a path join algorithm. The node sets are examined
to determine which elements of each set are descendants of the nodes in the next set. The path join algorithm takes
two ordered sets as input. The first contains potential ancestor nodes. The second contains potential descendants.
Every node in the two input sets is described by<document-id, node-id> pairs. The path join algorithm starts with
the first subexpression for a path. The first node set becomes the ancestor node set and the second node set becomes
the descendant node set. The ancestor node set is the list of potential ancestors for all of the nodes in the descendant
node set. The actual ancestors are found by iterating through the list of descendants. Every node in the two input
sets is described by<document-id, node-id> pairs. The parent of each node in the descendant node set is found and

10

Algorithm
basicSteps={ø}, nodeSet={ø}, f inalResults={ø}

Step 1: Decompose Path Expressions
for eachpath in Query do

for eachstepin path do
if stepis not last step inpaththen

subexpressionspath← createSubExpression(stepi , stepi+1)
end if

end for
end for

Step 2: Generate Node Sets
for eachpath in Querydo

for eachsubexpressionin subexpressionspath do
if subexpressionis first for paththen

subexpressionnodeset1← node set for first element in subexpression
subexpressionnodeset2← node set for second element in subexpression

else
subexpressionnodeset2← node set for second element in subexpression

end if
end for

end for

Step 3: Path Join Algorithm
for eachpath in Querydo

generatedNodeSet←nodeSet1
descendantNodeSet←nodeSet2
for eachsubexpressionin subexpressionspath do

ancestorNodeSet←generatedNodeSet
descendantNodeSet←nodeSet2
generatedNodeSet←{ø}
for eachdescin descendantNodeSetdo

parent← parent ofdesc
while parentexistsdo

for eachanc in ancestorNodeSetdo
if anc.nodeid equalsparent.nodeid then

generatedNodeSet← desc
end if

end for
end while

end for
end for

end for

Figure 6: Tree Approach Search Algorithm

11

compared with all of the nodes in the ancestor node set. If no match is found, the parent of the parent is found and
similarly compared with the ancestor node set. The algorithm stops when there are no more parents. If the parent
matches a node in the ancestor node set, the<document-id, node-id> pair from the original descendant node set is
placed in a temporary node set. Once the algorithm has completed for each parent of each node in the descendant node
list, the temporary set is used as the new ancestor node list for the next subexpression. For example, the path/A/B/C
is decomposed into two subexpressions:/A/B andB/C. The resulting node set for the expressionA/B becomes the
ancestor node set for the expressionB/C.

Bremer, et al claim that keeping both lists in document orderallows for executing this kind of join operation in at
most linear time with respect to the number of matching pairsof node identifiers [13].

4 Methodology

Generally speaking there are two main facets of searching XML: content based and structure-based. Content-based
XML retrieval focuses on the traditional Information Retrieval (IR) notions of relevance while structure-based XML
retrieval focuses on semi-structured querying of hierarchical data. The INitiative for the Evaluation of XML (INEX)
[9] focuses on providing means to evaluate content-based XML retrieval. Their evaluation focuses on queries that
are relevant to the results. In contrast, we perform ascalability studyto compare our relational approach against a
common XML retrieval approach.

4.1 Collections

To measure the scalability of structure-based XML retrieval, large collections of XML documents were needed. Since
we are unaware of large collections of real world XML data that meet our requirements, we chose to use an XML
benchmark to create synthetic XML. We use XBench [5], one of the top five most popular XML benchmarks [7],
as we wanted to test the scalability over a large collection of XML documents. We modified the XBench templates
to create a heterogeneous collection of multiple schema data-centric XML documents. Data-centric documents were
chosen because they contain more structure to text rather than documents marked up in XML, however, we also
included a subset of documents that contained primarily text. We chose to focus on data-centric XML to show how
each approach handles structure when searching XML. The generated XML captures e-commerce transactional data.
Three types of XML files were generated: orders, customers, and items. The generated XML files test the ability of
an XML retrieval system to process queries with a large quantity of matching paths, to search large XML documents,
and to perform simple text matching over large sections of free text.

We generated an 8GB collection from the modified XBench templates. Then, we created 4GB, 2GB, 1GB, and
500MB collections from random subsets of the 8GB, 4GB, 2GB, and 1GB collections, respectively. The collections
were designed to test the performance of an XML retrieval system as the size of the collections exceeds the size of the
memory. In Table 1, we show details for each collection.

collection actual size # elements # attributes # paths depth
500MB 598.5MB 5,239,454 827,664 82 3-7
1GB 1.1GB 9,900,264 1,566,570 82 3-7
2GB 2.2GB 19,613,565 2,169,724 82 3-7
4GB 4.2GB 37,836,196 4,293,482 82 3-7
8GB 8.5GB 75,211,108 8,542,838 83 3-7

Table 1: Collection Details

4.2 Queries

XBench provides a set of twenty queries that challenge a system with XML-specific features as well as conventional
functionalities. Since XBench generates four different types of XML, not all of the queries run on each type. We used
a subset of eleven queries designed specifically for the multiple schema data-centric XML document collection. We
maintain the original numberings used by XBench. The XML features covered by the queries include exact match,
ordered access, quantified expressions, regular path expressions, sorting document construction, retrieving individual

12

documents, and text search. Q1 tests shallow queries, it matches only the top level of XML document trees. Q5 returns
data based on the order in a document. Q6 and Q7 test for the existence of some elements that satisfies a condition,
or whether all the elements in the same collection satisfy a condition. Two queries test regular expressions. Q8 tests
unknown element name and Q9 tests unknown sub-path. Q10 and Q11 test the ability of the system to efficiently sort
values both in string and in non-string data types. Q12 teststhe ability of a system to retrieve fragments of original
documents with original structures. Q17 tests the ability of the system to search for matching text.

In addition to the XBench queries, we created a set of queriesdesigned to compare the performance of the tree-
based approach with the relational approach. These queriestest large result sets and multiple predicate matching. The
collections and full query sets are available and explainedin more detail athttp://ir.iit.edu/collections.

4.3 Engines

We use two XML retrieval systems to compare the performance of the relational approach with the tree-based ap-
proach: The SQLGenerator [1] and eXist [4] 1.0. The SQLGenerator uses a model mapping relational approach while
eXist uses a XML-specific B+-tree indexing approach. Both systems were shown to be scalable through some initial
scalability studies. eXist was compared against other XPath query engines to show its efficiency. A second experi-
ment determined the scalability of eXist by observing linear query execution time over collections ranging in size from
5MB to 39.15MB [37]. Although the conclusion of this study showed linear execution time for eXist, the collections
used were not large enough to draw reliable conclusions about the scalability of eXist on modern, real-world collec-
tions. Similarly, the SQLGenerator performed initial scalability studies by running a wide range of XML queries on
increasingly large collections ranging in size from 500MB to 8GB [15].

5 Results and Analysis

All testing was performed on a ProLiant DL380 G4. This model has 4 Intel Xeon 3.4GHz with 1MB L2 Cache, 2GB
RAM on 4 DIMMs, and a 178GB Hardware RAID-5 array (composed of4 10kRPM SATA/a disks). The machine is
running Redhat Enterprise Server 3.0. The primary mode of comparison is the total execution time to run the query
using each system. All timings given represent the average execution time of the queries (in random order) over five
runs. To ensure a cold cache, the server was rebooted betweenruns.

Our results focus on the examination of several key aspects of scalability. We compare the scalability of both
approaches using the XBench queries as the collection size increases and as the query features change. We also
compare the scalability of both methods for increasing result sets and an increasing number of predicates.

A large body of research examines the computational complexity of searching relational and tree structured data
[21, 22, 27, 28, 39]. The majority of this work defines complexity classes or upper bounds. In some cases, subsets
of the search are examined to find a lower expected complexity. Searching XML when stored as relational or tree-
based data does not fit into the specific subsets of search described in prior work. Too many variables and internal
system unknowns are involved with both approaches to adequately predict theoretical behavior. Although a theoretical
analysis would be useful, given the disparity in the timing results shown later, we do not attempt to theoretically
analyze or bound the relational or tree-based approaches. In short, we show the difference of each approach strictly
through practical experimentation.

5.1 Query Features

We examine the scalability of different XML query features on increasing collection sizes. In Table 2, we provide
the raw timings for each query over all the collections. In Figure 7, we plot the average time for each query feature
over all collections. In Figure 8, we plot the average performance over all query features. In Table 3, we show the
scaling multipliers for each query. The scaling multiplierfor a query is calculated by comparing the time to execute
on each collection with the time to execute on the 500MB collection. In Figure 9, we examine the scaling multiplier
of each query feature as compared to the 500MB collection. InFigure 10, we plot the average scaling multiplier over
all collections for the relational and tree-based approaches.

In Figures 7 and 9, we plot the performance of each individualquery type. The exact match ((a) in both figures),
ordered access ((b) in both figures), document structure preserving ((f) in both figures), and retrieving individual
documents ((g) in both figures) features all exhibit similarperformance for both approaches over all collections. The

13

Collection Size
500MB 1GB 2GB 4GB 8GB

tree rel tree rel tree rel tree rel tree rel
Q1 15.52 0.43 26.75 0.44 59.41 0.51 131.11 0.71 484.24 0.67
Q5 14.52 0.77 25.72 0.78 56.20 0.96 129.61 1.27 498.83 1.47
Q6 2.03 31.08 4.64 50.26 18.97 52.37 28.73 183.10 TIMEOUT 466.58
Q7 2.85 25.0 6.43 38.88 10.32 71.70 26.94 243.15 217.72 594.19
Q8 14.57 0.58 25.89 0.51 56.52 0.69 131.00 0.87 478.43 1.10
Q9 14.73 0.40 25.38 0.41 53.50 0.46 124.22 0.63 426.58 0.72
Q10 16.22 1.16 29.89 1.51 68.35 2.73 139.53 5.97 1,850.99 13.22
Q11 16.75 0.68 29.73 0.76 65.58 1.46 137.04 2.81 1,829.84 6.17
Q12 14.35 0.64 25.41 0.63 54.03 0.79 129.80 0.89 458.05 1.06
Q16 14.41 0.58 25.11 0.52 51.29 0.70 125.06 0.76 440.00 0.80
Q17 32.33 1.78 53.14 2.25 97.53 19.50 638.29 37.29 1,317.18 21.86
mean 14.39 5.74 25.27 8.81 53.79 13.81 158.29 43.40 800.18 100.71
total 158.28 63.09 278.09 96.94 591.7 151.88 1741.33 477.44 8001.86 1107.84

Table 2: Total Query Time (seconds) for XBench Queries

Collection Size
1GB 2GB 4GB 8GB

tree rel tree rel tree rel tree rel
Q1 1.72 1.02 3.83 1.19 8.44 1.65 31.20 1.55
Q5 1.77 1.01 3.87 1.25 8.92 1.65 34.35 1.91
Q6 2.29 1.61 9.34 1.69 14.15 5.89 – 15.01
Q7 2.26 1.56 3.62 2.87 9.45 9.73 76.39 23.77
Q8 1.78 0.88 3.88 1.19 8.99 1.5 32.84 1.90
Q9 1.72 1.03 3.63 1.15 8.43 1.58 20.96 1.8
Q10 1.84 1.30 4.21 2.35 8.60 5.15 114.12 11.40
Q11 1.77 1.12 3.91 2.15 8.18 4.13 109.24 9.08
Q12 1.77 0.98 3.77 1.23 9.05 1.39 31.92 1.66
Q16 1.74 0.90 3.56 1.21 8.68 1.31 30.53 1.38
Q17 1.64 1.26 3.02 10.96 19.74 20.95 40.74 12.28
mean 1.75 1.53 3.74 2.41 11.00 7.56 50.55 17.55

Table 3: Scale multiplier of the Relational and Tree-Based Approaches as compared to the 500MB times

tree-based approach experiences a large increase in execution time on the 8GB collection for each of these feature
types. The relational approach on the other hand, has a very low scale-up as the collection size increases. The
relational approach outperforms the tree-based approach for all of these features. In addition, the scaling multiplier
increases at a much lower for the relational approach. The relational approach took between 0.67 and 1.47 times as
long to execute the 8GB queries than the 500MB queries. In contrast, the tree-based approach took between 30.53 and
34.35 times as long to execute the 8GB queries.

Quantifier expressions ((c) in both figures) are the only feature that the tree-based approach outperformed the
relational approach for most of the collections. The relational approach outperformed the tree-based approach on
the 8GB collection. The tree-based approach could not complete execution of the existential quantifier query. Even
though the tree-based approach outperformed the relational approach in terms of execution, the relational approach
scales better than the tree-based approach. For example, the relational approach took 52.37 seconds to execute Q6
on the 2GB collection. The tree-based approach outperformsthe relational approach with a time of 18.97 seconds.
However, the scaling multiplier of Q6 on the 2GB collection is 1.69 with the relational approach as compared to 9.34
for the tree-based approach.

Regular expressions ((d) in both figures) experience similar behavior to other query feature features. The different
types of regular expressions used are unknown sub-path (/A//C) and unknown element (/A/*/C). The timing differ-
ences between each type of regular expression differed verylittle with both approaches, showing that they are most
likely handled similarly internally. The relational approach outperforms the tree-based approach on all collectionsboth

14

 0.25

 1

 4

 16

 64

 256

 1024

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

(a) Exact Match (Q1)

tree
relational

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

(b) Ordered Access (Q5)

tree
relational

 0.25

 1

 4

 16

 64

 256

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

(c) Quantifier Expressions (Q6, Q7)

tree
relational

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

(d) Regular Expression (Q8, Q9)

tree
relational

 0.25

 1

 4

 16

 64

 256

 1024

 4096

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

(e) Sorting Document Construction (Q10, Q11)

tree
relational

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

(f) Document Structure Preserving (Q12)

tree
relational

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

(g) Retrieve Individual Documents (Q16)

tree
relational

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

(h) Text Search (Q17)

tree
relational

Figure 7: Query Feature execution time on all collections

15

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0.5 1 2 4 8

T
im

e
(s

ec
on

ds
)

Collection Size (GB)

tree
relational

Figure 8: Average execution time on all collections

in terms of scaling multipliers and execution time. In one example, Q8 runs in 1.10 seconds on the 8GB collection
using the relational approach. The tree-based approach, onthe other hand, takes 478.43 seconds to execute.

Even though the generic data type of element content in XML documents is a string, users may cast the string
type to other types. Therefore, an XML retrieval system should be able to efficiently sort values both in string and
in non-string data types. The sorting document construction feature ((e) in both figures) tests the ability of each
approach to sort by string and numeric value. Both queries return between 16 and 258 elements as the collections
increase. It is interesting to note that the relational approach takes longer to sort by string type (5.97 seconds for the
string type on the 4GB collection as opposed to 2.81 seconds for the numerical sort), while the tree-based approach
experiences very little variation between the two types (139.53 and 137.04 seconds). Numeric sorting is faster with the
relational approach since the database performs numericalcomparisons faster than string comparisons. Even with the
difference in time, the relational approach still outperforms the tree-based approach for both types of sorting document
construction. The largest scale multiplier is 11.40 for therelational approach on the 8GB collection. In contrast, the
tree-based approach has a scaling multiplier of 114.12.

Text search plays a very important part in XML search systems. The text search query searches through XML
documents that contain between 5 and 80KB of free text. The text search feature ((h) in both figures) returns between
6 and 44 elements as the collection size increases. We see some odd behavior exhibited by the relational approach for
this query on the 2GB and 4GB collections. Although the relational approach outperforms the tree-based approach
in terms of execution time, the tree-based approach scales better on the 2GB and 4GB collections. This query is an
example of the database choosing the wrong index and will be explained further in the following section.

The underlying structure is a tree with the tree-based approach and sets with the relational approach. In addition,
the relational approach uses trees to retrieve elements from the relational sets. The highly optimized relational sets
resulted in a much lower than expected scaling multiplier for the majority of the query features. In contrast, the tree-
based approach scaled much closer to our expectations on thefirst four collections, but performed very poorly on the
8GB collection.

In Figures 8 and 10, we plot the average execution time over all collections as well as the average scale-up over
all collection. Overall, the relational approach outperformed the tree-based approach on all five collections. The
tree-based approach outperformed the relational approachfor both quantifier queries, however, the relational approach
scales better for these queries. On average, the relationalapproach took 17.5 times as long to execute the 8GB queries
than the 500MB queries. On the other hand, the tree-based approach took 50.55 times as long to execute the queries
on the 8GB collection.

5.1.1 Anomalous Queries

Both the tree-based and relational approaches experience variations in time for Q6 and Q7. Both Q6 and Q7 include
quantified expressions which test for the existence of elements that satisfy a condition. Q6 uses existential quantifica-

16

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

(a) Exact Match Search

tree
relational

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

(b) Ordered Access

tree
relational

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

(c) Quantifier Expressions

tree
relational

 0

 5

 10

 15

 20

 25

 30

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

(d) Regular Expressions

tree
relational

 0

 20

 40

 60

 80

 100

 120

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

(e) Sorting Document Construction

tree
relational

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

(f) Preserving Document Structure

tree
relational

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

(g) Retrieving Individual Documents

tree
relational

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

(h) Searching Text

tree
relational

Figure 9: Query Feature Scale-up

17

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 4 8

S
ca

le
 F

ac
to

r

Collection Size (GB)

tree
relational

Figure 10: Average Scale-up

tion while Q7 uses universal quantification. An existentialquantifier is evaluated to be true if some matching elements
satisfy a specified condition. Universal quantifiers are evaluated to be true if all matching elements satisfy the specified
condition. The tree-based approach executes both queries faster than any other query, however, the relational approach
takes more time than any other query to execute both queries.Although the tree-based approach outperforms the rela-
tional approach in terms of execution time, the relational approach has a lower scaling multiplier for these queries as
the collection size increases. The relational approach requires multiple calls to the database to process quantified ex-
pressions while the tree-based approach performs a fast check on the nodes used in the quantified expression allowing
quantified expressions to be executed quickly.

The relational approach shows some odd behavior when running Q6 on the 1GB and 2GB collections. The query
execution time for Q6 is close for both collections. Furthermore, Q6 experiences a large increase in execution time on
the 8GB collection. Note that Q7 does not have the same problem as Q6. Q7 is near linear on all collections, however,
there is an unusual increase in time for the 4GB and 8GB collections. The result set returned by Q7 is large. As the
query is processed, the results are read from the database and momentarily exceed the size of memory causing memory
swapping. While this is the only query that incurs swapping with the relational approach, several queries using the
tree-based approach heavily use memory swapping. We observed memory swapping while informally monitoring
(with the Unix utility, top) the memory and processes used during query execution.

Another query that exhibits odd behavior for the relationalapproach is Q17. This query takes much longer to
execute on the 2GB and 4GB collections than it should. The database query optimizer first estimates the number of
rows it will need to read to satisfy the query using each possible index. Then, it selects the index with the fewest
number of rows. Occasionally, the MySQL optimizer will incorrectly estimate the number of rows that match specific
values. Q17 is an example of the optimizer incorrectly estimating the number of rows, causing the wrong indexes to
be used. We looked at the optimizer for Q17, it showed that the(tagpath, parent) and (tagpath, pinnum) indexes were
being used when, in fact, the (tagpath, nvalue) and (tagpath, parent) indexes should be used. If we modified the SQL
query to force the correct indexes on the 2GB and 4GB databases, the query would run in 9.14 and 14.76 seconds
respectively (as compared to 19.50 and 37.29 seconds without forcing the index).

5.2 Large Result Sets

In addition to the XBench queries, we ran some queries specifically designed to measure large result sets. We use five
queries that return increasingly large result sets. In Table 4, we provide the timings of each query on each collection.
Also shown are the sizes of each query. In Figure 11, we plot the performance of each query as the result size increases
as well as the average performance over the average result size.

Both R1 and R2 (Figure 11(a-b)) scale as the result set size increases. The scaling multiplier for the relational
approach is however lower. R1 has a scaling multiplier of 7.09 for the relational approach and 10.17 for the tree-based
approach. R2 has a scaling multiplier of 7.98 for the relational approach and 12.49 for the tree-based approach.

18

Collection Size
500MB 1GB 2GB 4GB 8GB

Type tree rel size tree rel size tree rel size tree rel size tree rel size
R1 24.77 1.33 12,751 42.67 1.86 25,502 73.89 2.69 50,405 116.97 4.74 101,398 251.86 9.43 203,382
R2 15.64 1.42 12,751 28.47 1.87 25,502 60.83 3.27 63,992 89.82 5.00 101,459 195.41 11.33 206,780
R3 17.23 4.25 1,805 168.94 6.99 3,489 74.06 13.30 7,102 169.84 20.96 14,067 1,740.61 44.33 28,312
R4 30.72 14.61 2,800 72.65 27.88 5,516 156.91 59.41 11,106 882.91 124.40 22,051 MEMORY 299.53 44,228
R5 6.41 1.40 2,914 14.43 2.50 5,771 32.83 10.94 12,731 46.65 15.62 23,245 152.24 27.56 47,331
mean 18.95 4.60 6,604 65.43 8.22 13,156 79.70 17.92 29,067 261.24 34.14 52,444 585.03 78.44 106,007

Table 4: Total Query Time (seconds) for Queries with large result sets

 0

 50

 100

 150

 200

 250

 300

13 26 50 101 203

T
im

e
(s

ec
on

ds
)

Number of Results (in thousands)

(a) R1 Execution Time

tree
relational

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

13 26 64 102 207

T
im

e
(s

ec
on

ds
)

Number of Results (in thousands)

(b) R2 Execution Time

tree
relational

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1.83.5 7.1 14.1 28.3

T
im

e
(s

ec
on

ds
)

Number of Results (in thousands)

(c) R3 Execution Time

tree
relational

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2.85.5 11.1 22.1 44.2

T
im

e
(s

ec
on

ds
)

Number of Results (in thousands)

(d) R4 Execution Time

tree
relational

 0

 20

 40

 60

 80

 100

 120

 140

 160

2.9 5.8 12.7 23.2 47.3

T
im

e
(s

ec
on

ds
)

Number of Results

(e) R5 Execution Time

tree
relational

 0

 100

 200

 300

 400

 500

 600

6.613.2 29.1 52.4 106

T
im

e
(s

ec
on

ds
)

Number of Results

(f) Mean Execution Time

tree
relational

Figure 11: Query Execution time for Large Result Sets

19

Note that R1 and R2 have the largest result set sizes, yet R3, R4, and R5 (Figure 11(c-e)) take more time to execute.
R1 and R2 return all the elements or attributes that match a given path, while R3, R4, and R5 add conditions to the
query. These queries contain predicates which take more time to process for both approaches. As the result set size
increases, R4 runs out of memory for the tree-based approachand fails on the 8GB collection. Although the size of the
results returned from R4 are less than for the other queries,the node sets generated contain a large number of nodes
causing the query to run out of memory. The relational approach’s execution time outperforms the tree-based approach
for all queries, however, R5 scales better for two of the result set sizes using the tree-based approach. For example,
the relational approach has a scaling multiplier of 11.16 for R5 with 22,051 results while the tree-based approach has
a better scaling multiplier of 7.28. All other queries scalebetter with the relational approach.

In Figure 11(e) we plot the average performance over the average result set size. As the result set size grows,
the relational approach outperforms the tree-based approach for both query execution time and scaling multiplier. On
average, the scaling multiplier on the largest result size is 17.05 for the relational approach which is much better than
the tree-based approach’s scaling multiplier of 30.87.

.

5.3 Multiple Predicate Matching

Finally, we examine the time to process queries with multiple predicates. Predicates are processed with the relational
approach through the use of self joins. The tree-based approach generates more node sets, which are later joined in
the path join algorithm. By looking at the performance of each approach as we increase the number of predicates, we
can get a view of the cost of self joins versus the cost of performing the path join algorithm on more node sets.

We created four queries with one through four predicates. InTable 5, we show the time to execute each query on
the 2GB collection. In Figure 12, we plot the performance of each approach as the number of predicates increase.

Number of Predicates
1 2 3 4

relational 0.84 1.04 1.21 1.41
tree 57.73 93.96 139.76 182.83

Table 5: Total Query Time (seconds) for Predicates on 2GB collection

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4

T
im

e
(s

ec
on

ds
)

Number of Predicates

tree
relational

Figure 12: Query Execution time for large number of predicates

Both approaches scale linearly as the number of predicates increase, however, the relational approach outperforms
the tree-based approach for all of the queries. Furthermore, as the number of predicates increase, the relational ap-
proach’s execution time increases at a slower rate than the tree-based approach. The relational approach takes 1.67

20

times longer to execute a query with four predicates than onewith one predicate. In contrast, the tree-based approach
takes 3.17 times as long to execute a query with four predicates.

Our results indicate that as the number of predicates increase, the cost of relational joins is less than the cost of
performing the path join algorithm in the tree-based approach.

6 Conclusions

Over the last several years, XML search has migrated from theinterest of the few to the need of the many. Furthermore,
XML collections previously considered large are now viewedas common-place. Thus, as always, necessity has spurred
interest and innovation.

XML collections are viewed as either data or text-centric with data-centric collections containing a greater per-
centage of XML tags and often a greater depth in terms of the XML schema hierarchies. Our focus is on data-centric
collections, and we compared the two common search approaches for XML search, namely relational database oriented
and tree-based search systems.

We demonstrated the superior scalability of the relationalapproach for searching XML data over the tree-based
approach. We generated collections of heterogeneous XML documents ranging in size from 500MB to 8GB using the
commonly used XBench benchmark suite. The scalability of each method was tested by running XQuery queries that
cover a wide range of XML search features on each collection.Additional queries were developed specifically for
comparison between both approaches.

Our analysis shows that the relational approach is scalableto the collection size and the feature type. In addition,
the relational approach is also scalable as the result set increases and for a varying number of predicates. Although
complex joins for predicate matching and reconstructing large result sets do slow down the relational approach, it
still provides a significant improvement over the tree-based search. Furthermore, our results support our claim that
the relational mapping of XML queries not only leverages existing relational database optimizations, but typically
outperforms standard tree-based indexing systems.

Future work involves further analysis of the relational andtree-based approaches. We plan to compare other
methods of relational and tree-based approaches using multiple XML benchmarks. In addition, we also plan to expand
our study to include text-centric data. Future work also involves extending this study to include a wider variety of
XML search techniques over larger collections of XML documents. Studying different XML retrieval techniques on
large collections of XML data may point to issues with currently used XML retrieval techniques.

As of recent, the SQLGenerator is in daily use, by dozens of users in each of dozens of places worldwide.

Acknowledgements

Special thanks to Fred Ingham, Tim Lewis, and Steve Condas for their assistance with the design and testing of various
parts of the SQLGenerator.

References

[1] SQLGenerator. http://ir.iit.edu/projects/SQLGenerator.html.

[2] DBLP. http://www.informatik.uni-trier.de/ ley/db/.

[3] Extensible Markup Language (XML). http://www.w3.org/XML/.

[4] Open Source Native XML Database. http://exist.sourceforge.net/.

[5] XBench - A Family of Benchmarks for XML DBMSs. http://db.uwaterloo.ca/ ddbms/
projects/xbench/index.html.

[6] INitiative for the Evaluation of XML Retrieval (INEX), 2007. http://inex.is.informatik.uni-duisburg.de/2007/.

[7] L. Afanasiev and M. Marx. An Analysis of the Current XQuery Benchmarks. InInternational Workshop on
Performance and Evaluation of Data Management Systems (EXPDB), 2006.

21

[8] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Robust Numbering Scheme for XML Documents.Pro-
ceeding of the 19th International Conference on Data Engineering (ICDE’03), 2003.

[9] S. Amer-Yahia and M. Lalmas. XML Search: Languages, INEXand Scoring.SIGMOD Record, 35(4):16–23,
2006.

[10] K. S. Beyer, R. Cochrane, V. Josifovski, J. Kleewein, G.Lapis, G. M. Lohman, B. Lyle, F. Ozcan, H. Pirahesh,
N. Seemann, T. C. Truong, B. V. der Linden, B. Vickery, and C. Zhang. System RX: One Part Relational, One
Part XML. In SIGMOD Conference, pages 347–358, 2005.

[11] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. MonetDB/XQuery: a fast XQuery
processor powered by a relational engine. InSIGMOD international conference on Management of data, pages
479 – 490, 2006.

[12] J. Bosak. Shakespeare XML Collection. http://www.ibiblio.org/bosak/xml/eg/.

[13] J. Bremer and M. Gertz. Integrating document and data retrieval based on XML.The VLDB Journal, 15(1):53–
83, 2006.

[14] T. Bhme and E. Rahm. Supporting Efficient Streaming and Insertion of XML Data in RDBMS. In3rd Interna-
tional Workshop Data Integration over the Web (DIWeb), 2004.

[15] R. Cathey, S. Beitzel, E. Jensen, D. Grossman, and O. Frieder. Relationally Mapping XML Queries for Scalable
XML Search.Proceeding of IEEE conference on the Intelligence and Security Informatics (ISI’07), May 2007.

[16] S. Chien, V. Tsotras, C. Zaniolo, and D. Zhang. EfficientComplex Query Support for Multiversion XML Docu-
ments.Proceeding of the EDBT Conference, 2002.

[17] L. Denoyer and P. Gallinari. The Wikipedia XML Corpus.SIGIR Forum, 40(1):64–69, 2006.

[18] W. Fan, J. X. Yu, H. Lu, J. Lu, and R. Rastogi. Query Translation from XPath to SQL in the Presence of Recursive
DTDs. InVLDB, pages 337–348, 2005.

[19] D. Florescu and D. Kossman. A performance evaluation ofalternative mapping schemes for storing XML data
in a relational database. Technical report, INRIA, France,1999.

[20] D. Florescu and D. Kossman. Storing and Querying XML Data using an RDBMS.IEEE Data Engineering
Bulletin, 22(3):27–34, 1999.

[21] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The Complexity of XPath Query Evaluation and XML Typing
. In Journal of the ACM, volume 52, pages 284–335, 2005.

[22] M. Grohe. Parameterized Complexity for the Database Theorist. InACM SIGMOD Record, volume 31, pages
86–96, 2002.

[23] T. Grust. Accelerating XPath Location Steps. InSIGMOD international conference on Management of data,
pages 109–120, 2002.

[24] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. InVLDB, pages 252–263, 2004.

[25] H. Jiang, H. Lu, W. Wang, and J. X. Yu. Path Materialization Revisited: An Efficient Storage Model for XML
Data.Proceedings of the Thirteenth Australian Conference on Database Technologies, 5:85–94, 2002.

[26] L. Khan and Y. Rao. A Performance Evaluation of Storing XML Data in Relational Database Management
Systems. Proceeding of the third international workshop on Web information and data management, pages
31–38, 2001.

[27] C. Koch. On the Complexity of Nonrecursive XQuery and Functional Query Languages on Complex Values. In
ACM Transactions on Database Systems, volume 31, pages 1215–1256, 2006.

[28] C. Koch. Processing Queries on Tree-Structured Data Efficiently. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of databasesystems, pages 213–224, 2006.

22

[29] R. Krishnamurthy, V. Chakaravarthy, R. Kaushik, and J.Naughton. Recursive XML Schemas, Recursive XML
Queries, and Relational Storage: XML-to-SQL Query Translation. IEEE International Conference on Data
Engineering (ICDE), 2004.

[30] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-to-SQL Query Translation Literature: The State of the
Art and Open Problems, September 2003.

[31] M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. W. Warner,V. Arora, and S. Kotsovolos. Query Rewrite for XML
in Oracle XML DB. InVLDB, pages 1122–1133, 2004.

[32] Y. Lee, S. Yoo, K. Yoon, and P. Berra. Index Structures for Structured Documents.Proceeding of the 1st ACM
International Conference on Digital Libraries, March 1996.

[33] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expressions.Proceeding of the 27th
International Conference on Very large Databases, September 2001.

[34] Z. H. Liu, M. Krishnaprasad, and V. Arora. Native Xqueryprocessing in oracle XMLDB. InSIGMOD Confer-
ence, pages 828–833, 2005.

[35] S. Manegold. An Empirical Evaluation of XQuery Processors. InInternational Workshop on Performance and
Evaluation of Data Management Systems (EXPDB), 2006.

[36] W. Meier. eXist: An Open Source Native XML Database.Web, Web-Services, and Database Systems. NODe
2002 Web- and Database-Related Workshops, October 2002. Springer LNCS Series, 2593.

[37] W. Meier. Index-Driven XQuery Processing in the eXist XML Database. InIXML Prague, 2006.

[38] S. Pal, I. Cseri, G. Schaller, O. Seeliger, L. Giakoumakis, and V. V. Zolotov. Indexing XML Data Stored in a
Relational Database. InVLDB, pages 1134–1145, 2004.

[39] C. H. Papadimitriou and M. Yannakakis. On the Complexity of Database Queries. InProceedings of the sixteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 12–19, 1997.

[40] M. Rys. XQuery in Relational Database Systems. InXML 2004, 2004.

[41] M. Rys. XML and relational database management systems: inside Microsoft SQL Server 2005. InSIGMOD
international conference on Management of data, pages 958 – 962, 2005.

[42] S. S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, and Y. Wu. Structural joins: a primitive for
efficient XML query pattern matching.Proceedings of the IEEE International Conference on Data Engineering
(ICDE), pages 141–152, 2002.

[43] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient Relational Storage and Retrieval of XML
Documents.Lecture Notes in Computer Science, 1997:137+, 2001.

[44] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan,and J. E. Funderburk. Querying XML Views of Rela-
tional Data. InVLDB, pages 261–270, 2001.

[45] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relational database for querying
XML documents: Limitations and Opportunities. In Proc. of VLDB, 1999.

[46] J. Snelson. All XML Databses are Equal.XTech 2005: XML, the Web and beyond, 2005.

[47] D. Suciu. On database theory and XML.ACM SIGMOD Record archive, 30(3):39–45, 2001.

[48] N. Suizo. XML Propels Security Intelligence.Network World, August 2006.

[49] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system.Proceedings of the 2002 ACM SIGMOD international conference on
Management of data, pages 204–215, 2002.

23

[50] F. Tian, D. DeWitt, J. Chen, and C. Zhang. The Design and Performance Evaluation of Alternative XML Storage
Strategies.ACM SIGMOD Record, 31(1):5–10, 2002.

[51] A. Vakali, B. Catania, and A. Maddalena. XML Data Stores: Emerging Practices.IEEE Internet Computing,
9(2):62–69, 2005.

[52] H. Wang and X. Meng. On the Sequencing of Tree Structuresfor XML Indexing. In ICDE, pages 372–383,
2005.

[53] F. Weigel, K. U. Schulz, and H. Meuss. Exploiting NativeXML Indexing Techniques for XML Retrieval in
Relational Database Systems. InWorkshop On Web Information And Data Management (WIDM’05), pages
23–30, 2005.

[54] F. Weigel, K. U. Schulz, and H. Meuss. The BIRD NumberingScheme for XML and Tree Databases - Deciding
and Reconstructing Tree Relations Using Efficient Arithmetic Operations. InXSym, pages 49–67, 2005.

[55] G. Xing and B. Tseng. Extendible Range-Based NumberingScheme for XML Document.Proceeding of the
International Conference on Information Technology: Coding and Computing (ITCC’04), 2004.

[56] M. Yoshikawa and T. Amagasa. XRel: A Path-Based Approach to Storage and Retrieval of XML Documents
Using Relational Databases.ACM Transactions on Internet Technology (TOIT), 1(1):110–141, August 2001.

[57] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On supporting containment queries in relational
database management systems.Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 425–438, 2001.

24

