On Search in Peer-to-Peer File Sharing Systems

Wai Gen Yee
Information Retrieval Lab
lllinois Institute of Technology
10 West 31st Street
Chicago, IL 60616 USA

yee@iit.edu

ABSTRACT

We consider the problem of information retrieval in a peer-
to-peer file sharing system. We assume that peers are unre-
liable, metadata are sparse, and queries are short. In light
of this, the question becomes whether there exists a com-
bination of metadata management and ranking techniques
that can consistently improve query results. We try several
alternatives, and, through analysis and simulation, show a
combination that generally yields the best results.

1. INTRODUCTION

Peer-to-peer (P2P) file sharing is one of the leading ap-
plications of P2P technology. In such a system, there is no
centralized authority, so users are free to join and leave at
any time. One of the problems of such a system, however,
is that it may be hard to find desired data. We consider
the problems of using traditional information retrieval (IR)
techniques in a P2P environment, and determine ways by
which users can best find desired data.

In particular, a P2P file sharing environment has the fol-
lowing characteristics:

1. Short queries - In our application domain, users gen-
erally find data objects (files) by comparing them to
queries, not by comparing them to other data objects.
Queries are manually created, and are therefore gen-
erally short.

2. Sparse metadata sets - Shared data objects are often
binary files that are generally annotated by retrieving
data from simple Web databases [4] or by hand. The
available metadata are generally sparse.

3. High churn rates - Churn refers to tendency for peers
to join and leave the network. Researchers have ob-
served a high churn rate in P2P file sharing systems
[13].

Considering these characteristics, many problems arise
that are not common in traditional IR. Because metadata

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC' 05 March 13-17, 2005, Santa Fe, New Mexico, USA

Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

Ophir Frieder
Information Retrieval Lab
lllinois Institute of Technology
10 West 31st Street
Chicago, IL 60616 USA

ophir@ir.iit.edu

are sparse and queries are short, it may be difficult to dis-
tinguish and rank data objects. Because of the high churn
rate, the set of shared data is constantly changing, and it
is therefore difficult to maintain the accurate statistics re-
quired by many IR techniques. For example, Google uses
statistics on the topology of the Web to rank pages. The
Web’s topology is relatively static, so these statistics can be
assumed to be valid until the next Web crawl.
Our P2P IR system performs three major functions:

1. P2P file sharing - Each peer can serve and request files,
route queries, and handle peers joining and leaving the
network;

2. Metadata management - One of the features of a P2P
IR system is that a peer has the ability to function
as a server for data objects. Since a data object is
identified by metadata, and each client manages its
own metadata, the client can control the effectiveness
of its service by judiciously managing its metadata;

3. Result ranking - Given that a query may return many
ambiguous results, it is important to correctly rank
them. Good ranking reduces the cognitive load on the
user and computational load on the client.

Commonly available P2P file sharing systems (e.g., LimeWire’s

Gnutella implementation) either have or can be extended to
have these three parts. The question we address is, consid-
ering our application domain, how should the second and
third parts, which are essential to IR, be designed?

2. RELATED WORK

Much of today’s work in P2P IR focuses on identifying
highly reliable peers, and giving them specialized roles in
statistics maintenance, indexing, and routing [7, 8, 17]. The
performance of such systems is impressive; however, the ap-
plication domain is different than the one we consider. We
make no assumptions about the relative capabilities of the
peers, and our work is therefore more applicable to ad hoc
environments, where functionality is fully distributed among
all participants. Put another way, our work focuses on query
management from the perspective of clients, whereas previ-
ous work focuses on query management from the perspective
of servers.

Our work also bears many similarities to that of metasearch
engines [9]. The problems related to such systems include
source selection and merging of results from independent
sources. Again, metasearch engines operate in a highly sta-
ble environment, and solutions such as sampling sources to

determine content and using ontologies for ranking results
have been developed [3].

There are also systems that discriminate among peers
based on their past behavior. Results coming from cer-
tain peers’ may be ranked higher based on previous re-
sponses to queries [16]. These systems require that statis-
tics be maintained on peers, which may not be scalable in a
large system. This technique may lead to the formation of
communities within the network as well. Communities are
useful when members have similar interests. Communities,
however, may make the search for unexpected data objects
harder and may make the network more brittle.

Finally, our approach is conceptually different from pre-
vious approaches in that we consider peers to have some
influence in the form of the body of metadata for the shared
data objects in a P2P system. This control implies an in-
fluence (albeit small) in the way data objects are described
and thereby ranked. We also leave it up to the client to rank
query results. Of course, extensions to our system, like the
ones described in the cited work are possible, but ultimately
in a P2P environment, there must be some guessing as to
the current state of the data in the system.

3. MODEL

In our model, we assume that the peers of a P2P system
collectively share a set of data objects. Each data object
is a file (e.g., a music file), which is wholly identified by
a descriptor. A descriptor is a metadata set, which is
composed of terms. Depending on the implementation, a
term may be a single word or a phrase. (A metadata set
is technically a bag of terms, because each term may occur
multiple times.) We assume that a data object is a binary
file. This generally precludes directly searching the data
object.

A peer acts as a client by initiating a query for a par-
ticular data object (as opposed to any one of a category of
data objects). A query is also a metadata set, composed
of terms that a user thinks best describe the desired data
object. A query is routed to all reachable peers, which act
as servers. Query results are references to data objects
that fulfill the matching criterion:

DO 2@7 (1)

where Do is the descriptor of data object O, and @ is the
query. In other words, the data object’s descriptor must
contain all the query terms.

A query result contains the data object’s descriptor as
well as the identity of the source server. The descriptor
helps the user distinguish the relevance of the data object
to the query, and the server identity is required to initiate
the data object’s download.

Once the user selects a result, a local replica of the data
object is made. In addition, the user has the option of ma-
nipulating the replica’s descriptor. She may manipulate it
for personal identification or to better share it in the P2P
system.

Our model is independent of the underlying routing pro-
tocol. This is a deliberate design decision that maximizes
its generality. As a basis, we assume Gnutella-style flooding
[6], but our model does not preclude more advanced routing
protocols, such as shortcuts [16] or those allowed by hybrid
networks [15].

4. IRCOMPONENTSINOURP2PSYSTEM

Our P2P IR system is composed of metadata management
and IR extensions built on top of a P2P file sharing sys-
tem. It is designed to be compatible with existing systems,
be computationally simple, and make as few architectural
assumptions as possible. These constraints together maxi-
mize its usability and likelihood of adoption. The question
is whether our IR extensions can offer any benefits while sat-
isfying these constraints. Before answering this question, we
first describe the general operation of our P2P IR system.
We then describe its two major components: the metadata
management system and the ranking system.

4.1 Overview of our P2P IR System

We assume that each instance of a (binary) data object
has a hash key (e.g., SHA-1 [10]) computed for it using a
well-known hash function. Therefore, all instances of a given
data object have the same hash key. The use of hash key for
shared data is a common practice [2], typically for validation
and identification purposes. This hash key is inserted into
the instance’s descriptor as a unit of metadata.

When a client issues a query, results are grouped based on
hash key. Each group consists of a descriptor, which contains
the collective metadata of all contained results, and pointers
to their servers. Groups are ranked based on the contents
of their descriptors using the ranking system.

When a group is selected, an instance of the corresponding
data object is created on the client. The client initializes a
descriptor for this data object with the data object’s hash
key. It then adds additional term from the group’s descriptor
using the metadata management system. When this is done,
the client becomes a server for this data object. We now
discuss the metadata management and ranking systems in
more detail.

4.2 Metadata Management

The goal of the metadata management system is to build a
body of metadata in the spirit of P2P that best supports
high quality query results: many users independently do
some metadata management work in a way that improves
overall query performance. Because metadata analysis is
the means by which data objects are identified, the proper
management of metadata is critical.

Today’s P2P file sharing systems manage metadata in a
way that increases the reliability and load balance of the
overall system. When a client downloads a data object, it
(logically) does so from a single server. In downloading this
data object, the client also replicates the associated descrip-
tor from the server. Reliability and balance are improved
because the client can now serve queries that match the
descriptor; because these are the same queries that the orig-
inal server could handle, the client can act as an alternate of
the original server. Furthermore, depending on the routing
topology, this new server can be reachable by peers whose
queries could not reach the original server.

However, note that the benefit of replicating a given de-
scriptor decreases with the number of duplicates. If there
are N replicas, and the probability of failure is p << 1,
then the increase in reliability with replica number N + 1 is
1 —p™ (1 — p). Clearly, the benefit of replication diminishes
very quickly with the number of replicas. A similar argu-
ment can be made about the benefits of such replication to
load balancing and reachability.

Hash Key Server

Result # Terms
1 Mozart Concerto A Major
2 Mozart Violin Concerto
3 Mozart Piano Concerto
4 Mozart Clarinet Concerto
5 Mozart Concerto A Major

12fed 123.45.6.7
ag231 123.45.6.7
3f4a7 34.1.34.1
12fed 98.12.4.5
12fed 85.34.254.5

Figure 1: Ungrouped Results for the Query “Mozart Concerto.”

Group # Hash Key Terms Server(s) Group Size Precision
1 12fed Mozart Concerto A Major Mozart 123.45.6.7 3 0.55
Clarinet Concerto Mozart Concerto 98.12.4.5
A Major 85.34.254.5
2 ag231 Mozart Violin Concerto 123.45.6.7 1 0.67
3 3f4a7 Mozart Piano Concerto 34.1.34.1 1 0.67

Figure 2: Results for the Query “Mozart Concerto” Grouped by Hash Key.

Our P2P file sharing system’s metadata management scheme

has the dual goals of increasing the wvariety of queries that
can be answered as well as the system’s ranking effective-
ness. This is done by heuristically selecting metadata from
a group’s descriptor, and not from the descriptor of a sin-
gle server. We assume that the volume of metadata that
can fit in a data object’s descriptor is limited. The client
must therefore be careful in the terms in places in it in or-
der to maximize query effectiveness. We discuss metadata
selection heuristics in Section 5.

4.3 Ranking

For each query, many groups may result. To simplify the
task of selecting a group, the client ranks each group in
terms of its relevance to the query. Our current goal is not to
devise new ranking functions, but to consider the feasibility
of well-known functions in the current application domain.
We discuss various ranking functions in Section 5.

ExAMPLE 1. Consider a query “Mozart Concerto”. The
query is sent to all reachable peers, which return results that
fulfill the matching criterion. Assume the query returns five
results, as shown in Figure 1. (Notice that the results fulfill
the matching criterion.) They are grouped according to hash
key, as shown in Figure 2. Each group is then ranked by
some criterion. In Figure 2, we show the ranking scores us-
ing group size and precision (defined in Section 5.8). Notice
that each ranking function returns a different high score.

Assume that the user selects Group 1. By doing so, the
user initiates a download for the file with key 12fed. Along
with replicating the file, the client must create a descriptor
for its local replica. We give two example descriptors in
Figure 8. The one on the left is a duplicate of Results 1
(or 5). The one on the right is a random sample of Group
1’s descriptor. Notice that this descriptor contains a new
combination of terms, and can support new queries.

As mentioned above, the benefit of duplicating a single
server’s descriptor is greater load balance and reliability.
The benefit of the random selection is that the client can
serve a previously unsupported request for the data object
(i.e., those with some subset of the terms “Mozart Clarinet
Concerto A”).

5. EXPERIMENTAL RESULTS

We now search for a good metadata distribution technique
and ranking function combination. We measure the perfor-
mance of a combination by the number successful queries
(i.e., those that lead to the download of the desired data
object, described in Section 5.1.1) that the clients perform.

We do not consider traditional IR metrics, such as preci-
sion and recall. Precision measures the percentage of correct
results to a query, and is irrelevant because, in our model,
any single replica of the desired data object will satisfy the
user. For the same reason, recall, the percentage of possible
results returned, is also irrelevant in our model.

We first describe our experimental model as well as our
P2P system simulator. Subsequently, we describe our rank-
ing functions and metadata distribution techniques. We
present experimental results and analyses at the end of this
section.

5.1 The Simulator

The design of our simulator is based on observations and
analyses of P2P file sharing systems. In the event that
relevant design parameters are unavailable, we borrow from
work on done on Web information systems and IR.

The major objects in our simulator are terms, data ob-
jects, peers, and queries. The universal set of terms T
that can describe a data object is finite, and each term is
assigned a relative access probability based on the accepted
Zipf distribution [5]. A random number of terms from 7" are
assigned to each data object’s (F3) universal term subset
(T%) based on the initial Zipf distribution. The terms of each
data object’s universal term subset are then reassigned prob-
abilities according to a Zipf distribution to diversify term us-
age, as described in [14]. For example, a term that is rarely
associated with one data object need not be so for another.
We call the set of probabilities that terms will be associ-
ated with a data object the data object’s natural (term)
distribution.

In our simulation, we also make the generally unrealistic
assumption that terms are independent. For example, the
occurrence of “Britney” in a descriptor is independent of the
occurrence of “Spears”. This is incorrect in general, but is
common practice, as it simplifies the model without making
it trivial. Note, however, that this term independence as-
sumption is not unique to our work. Such an assumption is
heavily relied upon in the probabilistic information retrieval

Duplicating a Server’s Descriptor

Randomly Selecting Terms

Terms

Hash Key

Terms Hash Key

Mozart Concerto A Major 12fed

Mozart Clarinet Concerto A 12fed

Figure 3: Two Ways of Selecting Metadata from a Group for a Replica.

model in IR.

Each data object is also associated with an access prob-
ability, according to a Zipf distribution. This conforms to
the access patterns observed for Web objects that were de-
scribed in [1]. Observations of data object frequency in a
P2P system also suggest a high access skew [13].

Initially, a random number of copies of each data object
are instantiated, each with a subset of its universal term
subset in its descriptor. These copies are assigned to random
clients.

There are a fixed number of peers and a fixed number of
data objects in the system. At each iteration of the simula-
tion, a random peer is chosen to download a random data
object based on the data object’ access probability distri-
bution. To do this, the peer generates a query of random
length containing a subset of the data object’s universal term
subset. We assume that query length distributions follow
those of Web search engines, and use the empirical distri-
bution presented in [11]. Personal observations of queries
in LimeWire’s query monitor window seems to corroborate
this assumption. Each term in the query is randomly chosen
based on the data object’s natural term distribution.

The query is routed to a random subset of peers. We do
not send the query to all peers because, in practice, only
a subset of them is reachable at any time [13]. The peers
return results that fulfill the matching criterion to the client
(see Section 3).

5.1.1 Client Behavior

If more than one group forms in response to a query, then
the client ranks the groups. The client searches through the
top-ranked N groups. If the desired result is in that set
of N, the will be able to identify and select it. If not, the
client will select the highest ranked group. For simplicity, we
assume that N = 1-the client always selects the single top-
ranked group. Although the N = 1 assumption is generally
a strong one, all else being equal (the client is ambivalent
and lets the ranking system make the decision), it is not an
unreasonable one. We say that the query is successful if
the desired data object is downloaded—equivalently, if it is
one of the top ranked N results.

Once the data object is downloaded, the user has a prob-
ability of manually annotating the data object with some
personally chosen terms. These terms are randomly chosen
from the data object’s universal term subset, based on the
natural term distribution. This is the only way that the
variety of terms that exists in the system for a data ob-
ject can increase beyond what exists at initialization. If the
user downloads the incorrect data object, then she may mis-
annotate it in this step, corrupting the body of metadata for
the data object.

After this is done, the client heuristically copies some of
the chosen group’s metadata into the replica’s descriptor,
with the constraint that only a limited number of terms
may be copied. The data object is then available for other
peers to find (and download) in subsequent iterations of the

simulation.

We do not model freeriders or malicious users. Freeriders
are users who download, but do not upload data objects.
Since they do not contribute any metadata to the system,
they do not affect the results. Malicious users are those
who may contribute misleading metadata for data objects
to the system. These users may affect the rankings, but only
marginally. Rankings are based on the aggregate metadata
of a group of users, not on the metadata of an individual.

The parameters we use in the experiments are shown in
Table 1. The size of the simulation is scaled down to reveal
any convergences in the results more quickly. More signifi-
cant than the scale of the simulation are the relative values of
each parameter, such as the total number of possible terms
for a data object, versus the number of terms with which
each data object is initially annotated. These numbers are
based on observations from other studies [12, 13], as well as
personal observations. For example, song data objects that
appear on Gnutella networks typically have about three or
more types of information associated with them from ID3
data: artist, song name, album name, track number, etc.
This is reflected in the Number of terms in initial descrip-
tors parameter.

We performed forty trials with each set of parameters and
report the average results. The 95% confidence intervals
generally were well within 4% of the reported mean—the re-
sults are statistically significant. However, to simplify the
presentation of the main results, we do not present them.

5.2 Goals of the Experiments

The goals of the experiments are three-fold:

1. We first attempt to show that IR can be applied to
P2P file sharing systems. In particular, we attempt to
show that ranking helps users.

2. Assuming IR is applicable, we attempt to discover a
good ranking function.

3. Finally, we then attempt to show the relationship be-
tween ranking and metadata distribution; we would
like to find a ranking and metadata distribution com-
bination that consistently yields good results.

To achieve these goals, we will test the effects of various
combinations of well-known ranking and metadata distribu-
tion techniques on our simulator.

5.3 The Effect of Various Metadata Distribu-
tion Techniques

In our first set of experiments, our goal is to determine
the effect of different metadata distribution techniques on
the rate of successful downloads. We consider the following
five metadata distribution techniques:

1. Single Server (server) - The client creates a descriptor
that is a duplicate of the descriptor of a single server.

Parameter Value or Range
Number of peers 1000

Number of data objects 1000

Number of terms in universal set 10000

Number of terms in the universal term subset of a data object | 100-150
Maximum descriptor size for a data object on a peer (terms) 20

Number of terms in initial descriptors 3-10

Number of replicas of each data object at initialization 3

Probability that a peer is reachable 0.5

Probability of client adding metadata 0.05

Number of Terms Added by client 1-5

Query length 1-8, dist from [11]
Number of queries 10000

Number of trials 40

Table 1: Parameters Used in the Simulation.

2. Random (rand) - The probability of each unique term
in the selected group’s descriptor of being replicated is
uniform. The goal of this technique is to maximize the
number of combinations of terms for each data object.

3. Weighted Random (wrand) - The probability of each
term in the selected group’s descriptor of being repli-
cated is proportional to its relative frequency. The goal
of this technique is to replicate the term distribution
represented by the group.

4. Most Frequent (mfreq) - The most frequent terms in
the group are replicated. The goal of this technique is
to replicate terms that are most likely to appear in a

query.

5. Least Frequent (lfreq) - The least frequent terms in
the group are replicated. The goal of this technique is
to replicate terms that are least likely to appear in a
general query. The assumption is that these terms help
distinguish a data object, and are therefore important.

The impact of a metadata distribution technique is intu-
itively dependent on the ranking function. This is because
ranking function use characteristics of the metadata that are
controlled, in this case, by the distribution technique. The
ranking functions we consider are:

1. Term frequency (tf) - The group whose descriptor con-
tains the most query terms is ranked highest.

2. Precision (prec) - The group whose descriptor con-
tains the highest ratio of query terms to total terms is
ranked highest.

3. Group size (gsize) - The group with the most results
is ranked highest.

4. Cosine similarity (cos) - The group whose descriptor
has the highest cosine similarity to the query is ranked
highest.

5. Arrival time (arrival) - The group that arrives first at
the client is ranked highest. This represents the non-
ranking of results. Arrival represents the low bound
for performance.

As shown in Figure 4A, gsize is outperforms other rank-
ing function, regardless of metadata distribution technique.

Predictably tf does poorly due to its tendency to overly
weight data objects with large descriptors. Prec does poorly
because of the small descriptors; a little noise can severely af-
fect a ranking. Cos does slightly better, but not significantly
better. It relies on unbiased samples of metadata to work
effectively, but the matching criterion does not return such
samples—query terms are disproportionately represented in
query results.

Gsize does best (by at least 20%, as shown in Figure
4A) because it disregards the term distribution of results,
as well as the size of the descriptor of an individual result.
Instead, gsize works by gathering support for a particular
data object in the form of many matching results. If a par-
ticular data object is strongly associated with certain terms,
the descriptors of its replicas will also contain them. The
matching criterion will therefore return the correct results.
Conversely, an incorrect download does little to affect the
effectiveness of gsize because it only adds at most one mis-
leading replica for an object. We will discuss gsize more
below.

We also consider how active ranking actually is in im-
proving query results. As shown in Figure 4B, a ranking
function can contribute from 20% to 45% of the correct re-
sults. Ranking is therefore a significant contributor to query
result quality.

5.3.1 Relationship between Ranking and Metadata
Distribution

The ranking function must be customized for the meta-
data distribution technique, and consider the matching cri-
terion to yield good query performance. In our experiments,
we found that the combination gsize/rand (short for gsize
ranking with rand metadata distribution) or gsize/lfreq
returned the best results.

The reason gsize/rand works well is because gsize does
not consider term distributions in descriptors as mentioned
above. It only considers how many results are returned for
a particular data object. The likelihood that a data object
is returned as a result is maximized if its descriptor contains
as great a variety of term as possible, due to the matching
criterion. Compared with the other metadata distribution
techniques, rand is good at maximizing the variety of terms
in a descriptor because it considers each unique term equally
for replication.

In the long run, lfreq also maximizes the number of unique
terms in a descriptor. This phenomenon is due to the fact

1400

1200

1000 -

Oserver
Orand
Swrand
M mfreq
Ifreq

Number of Successful Queries

arrival tf prec gsize cos
Ranking Function

Oserver
Erand
wrand
M mfreq
Ifreq

Prop. Succ. Queries / Ranking

arrival tf prec gsize cos
Ranking Function

A. Number of Successful Queries.

B. Proportion of Successful Queries Yielded.

Figure 4: Results with Various Ranking Functions / Metadata Distribution Technique Combinations After

10000 Queries.

that the action of 1freq constantly changes the set of terms
that qualify as infrequent. Furthermore, lfreq copies each
term into a descriptor only once. Lfreq works best when
there is little metadata (which is true in this case). Other-
wise, the descriptors that lfreq creates will match very few
queries.

Uniformly selecting metadata may create a lot of noise in
the result set. That is, if all results contain many terms,
it may become impossible to distinguish them. In practice,
however, a term that is strongly associated with one data
object may be only weakly associated with another. When
such terms appear in queries, they act as effective filters of
unwanted results, boosting the rank of wanted results:

ExaMpPLE 2. The term “pop” is very likely to be associ-
ated with music files in general. Howewver, its likelihood of
being associated with a particular artist is unique. Consider
the musicians Michael Jackson and Michael Bolton; in the
former case, the term “pop” is much more strongly associ-
ated. Therefore, the query “Michael pop” probably refers to
the former. The matching criterion will likely return more
Michael Jackson songs than Michael Bolton songs, as ex-
pected.

As shown in Figure 4A, when cos is the ranking function,
wrand is the best metadata distribution technique. This is
expected because, as shown in Table 2, wrand does a good
job of maintaining a body of metadata whose distribution
matches that of the natural term distribution. This is vital
to the performance of cos. Note that although server does
a good job at maintaining the natural term distribution (ac-
cording to its score in Table 2) unlike wrand, it does not
increase the variety of terms in the descriptors.

server | rand | wrand | mfreq | lfreq
0.69 | 0.66 | 0.69 0.64 | 0.63

Table 2: The Cosine Similarity of the Final Meta-
data Distribution in the System and the Natural
Term Distribution after 10000 Queries. Results are
averages over all ranking functions.

user who trusts the ranking function, and does not bother
inspecting the metadata. We also consider the case where
the user performs a search of the top N results. In this case,
we assume that the user can identify the desired correct data
object among the top N if it exists. If the correct data ob-
ject is not in the top N, the user just downloads the highest
ranked data object.

We define ranking efficiency as the ratio of the number
of times a group is correctly ranked and the number of times
ranking must be done. As shown in Figure 5A, the ranking
efficiencies of all ranking functions increases with N and are
always greater than the ranking efficiency of arrival. This
suggests that the ranking functions are generally effective
in ordering results based on their relevance to the query.
The knee in the cos graph indicates that it is reasonable at
ranking groups, but fails to consistently identify the most
relevant one.

5.5 Query Length

We now consider the effect of query length on the quality
of ranking. Increasing query length gives the ranking func-
tion more information, so we expect better ranking perfor-
mance. However, this comes at the tradeoff of fewer results.

Cos/rand does slightly better than does cos/server, cos/lfreqFor simplicity, assume that each term has a probability p < 1

and cos/mfreq because rand gives a slight preference to
more frequently occurring terms during metadata distribu-
tion. This effect is also suggested in Table 2. This happens
because query terms, which are strongly associated with a
data object, are more likely to be replicated using rand due
to its interaction with the matching constraint.

5.4 Searching the Top ~ Results

In our basic experiments, we assumed that the user auto-
matically selects the highest ranked group. This models a

of appearing in a data object, and that terms occur indepen-
dently and are uniformly distributed. Due to the matching
criterion, the proportion of results that are returned for a
query of length Lo is p=<.

We doubled and tripled our basic query lengths. When
we doubled the query length, we increased the ranking effi-
ciency for gsize/rand (for example) from 0.49 to 0.53, but
decreased the average number of results per query from 4.4
to 0.3. The net result is a decrease in the potential number
of successful queries by 75% as shown in Figure 5B. Tripling

0.9

0.8 il

0.7 I
& -
S 06 Oarrival
E 0.5 atf
L; prec
g 047 mgsize
< ¢}
S 03 B cos
o

0.2

0.1

0

top-1 top-2 top-5
Number of Top Results Searched

400

8 350
5]
3 300 -
3 04 Oserver
§ Hrand
g 200 | Swrand
>
BT M mfreq
° Ifreq
2 100 +
£
2 50+

0 l

arrival tf prec gsize cos
Ranking Function

A. Ranking Efficiency when Inspecting the Top N Re-

sults. Averages of each ranking function reported.

B. Number of Successful Queries with Doubled Query
Length.

Figure 5: Top N and Increased Query Length Results after 10000 Queries.

the query length showed a similar phenomenon, but to a
greater magnitude.

5.6 Summary of Results

We now revisit the questions concerning IR in a P2P file
sharing environment. The most fundamental question is
whether or not IR can work in such an environment. To
argue this point, we cite the ranking activity suggested in
the experiments, particularly in Figures 4A and 5A. From
the former it is clear that ranking contributes to quickly
finding desired data. From the latter, is it clear that the
rankings beyond the first object are consistent.

We now consider the design of a P2P IR system. The first
question is which ranking function to use. From our exper-
iments, gsize performed best, regardless of the metadata
distribution function, with a range of 1060 to 1213 success-
ful queries out of 10000 attempts. Cos ranking was second
best, but significantly worse than gsize, with 843-963 suc-
cessful queries. As a corollary, in the special case where
no metadata distribution takes place (i.e., server, which is
used in practice), the best ranking function to use is gsize.
See Figure 4A.

The second question is which metadata distribution tech-
nique to use. The best techniques maximize the variety
of terms in descriptors. This is done in distributed envi-
ronments by randomizing the metadata distribution. As
shown in Figure 4, rand, wrand, and lfreq, which ran-
domize descriptors, generally outperform both server and
mfreq, which do not. The particular metadata distribu-
tion technique, however, depends on the ranking function
used. With cos ranking, wrand metadata distribution is
best, and with gsize ranking, rand metadata distribution
is the best. At the same time, mfreq and server generally
perform poorly, regardless of the ranking function because
they create few or no new combinations of metadata terms
in descriptors.

6. CONCLUSION

Our goal was to reveal how the unique characteristics of
practical P2P file sharing systems (i.e., short queries, little
metadata, high churn rate) impact their ability to perform
information retrieval. The factors we considered most sig-

nificant in query performance are the query matching cri-
terion, metadata distribution technique, and ranking func-
tion. Based on our experiments, descriptors should contain
as many unique terms as possible. This is realized in our
experiments by the rand and lfreq metadata distribution
techniques. Given these metadata distribution techniques,
gsize ranking works best due to its lack of consideration for
term distributions in descriptors.

Cosine similarity (cos), a well known IR ranking tech-
nique, can best be implemented using wrand metadata
distribution. However, due to the characteristics of P2P
systems mentioned above, cos/wrand perform significantly
worse than does gsize/rand. Other IR techniques (e.g.,
TF-IDF, not discussed in this paper) also suffer from simi-
lar problems in this environment.

We are currently devising novel ranking and metadata dis-
tribution techniques that are customized for the P2P enivron-
ment. These algorithms will have to consider the instability
and paucity of metadata in the system.

We are also currently building a prototype of our P2P
file sharing system based on freely available Gnutella source
code. Once our prototype is stable, it will be published on
the author’s Web site. Releases will be in stages. The first
will contain simple ranking and metadata distribution func-
tionality, but subsequent versions will contain more sophis-
ticated IR techniques, as well as some statistics gathering
functions.

7. REFERENCES

[1] M. Crovella and A. Bestavros. Self-similarity in world
wide web traffic: evidence and possible causes.
IEEE/ACM Trans. Networking, 5(6):835-846, 1997.

[2] Free Peers, Inc. Bearshare technical faq. Web
document, 2004.
www.bearshare.com/help /faqtechnical.htm.

[3] P. G. Ipeirotis and L. Gravano. Distributed search
over the hidden web: Hierarchical database sampling
and selection. In Proc. VLDB, pages 394-405, 2002.

[4] jackie@audiograbber.com us.net. Audiograbber home
page. Web Document.

[5] D. E. Knuth. The Art Of Computer Programming,
volume 3:Sorting and Searching. Addison-Wesley

[6]

[7]

8]

[9]

(10]

(11]

(12]

(16]

(17]

Publishing Company, second edition, 1975.

LimeWire, LLC. Gnutella protocol 0.4. Web
Document, 2004.
www9.limewire.com/developer/gnutella_protocol_0.4.pdf.
B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker,
and I. Stoica. Enhancing p2p file-sharing with an
internet-scale query processor. In Proc. VLDB,
Toronto, 2004.

J. Lu and J. Callan. Content-based retrieval in hybrid
peer-to-peer networks. In Proc. ACM Conf. on
Information and Knowledge Mgt. (CIKM), pages
199-206, Nov. 2003.

W. Meng, C. Yu, and K.-L. Liu. Building efficient and
effective metasearch engines. ACM Comp. Surveys,
34(1):48-84, Mar. 2002.

N. L. of Standards and Technology. Shal version 1.0.
Web Document, 1995.

www.itl.nist.gov /fipspubs/fip180-1.htm.

P. Reynolds and A. Vahdat. Efficient peer-to-peer
keyword searching. In Proc. ACM Conf. Middleware,
2003.

M. Ripeanu and I. Foster. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems
and implications for system design. In Intl. Wkshp. on
P2P Sys. (IPTPS), number 2429 in LNCS, Mar. 2002.
S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proc. Multimedia Computing and
Networking (MMCN), Jan. 2002.

M. T. Schlosser, T. E. Condie, and S. D. Kamvar.
Simulating a file-sharing p2p network. In Proc.

Wkshp. Semantics in Peer-to-Peer and Grid Comp.,
May 2003.

A. Singla and C. Rohrs. Ultrapeers: Another step
towards gnutella scalability. Technical report,
Limewire, LLC, 2002.

rfe-gnutella.sourceforge.net /src/Ultrapeers_1.0.html.
K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient
content location using interest-based locality in
peer-to-peer systems. In Proc. IEEE INFOCOM, 2003.
C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer
information retrieval using self-organizing semantic
overlay networks. In Proc. ACM SIGCOMM, Aug.
2003.

