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Abstract
A radio coloring of agraph G is an assgnment of nonnegative
integers to its nodes so that each pair of adjacent nodes have
color numbersthat differ by at least two, and any pair of nodes at
distance 2 have different colors. Every graph has aradio coloring
by smply assgning the odd integers 1, 3,5, ...... , but thereis
then a big difference between the smallest and largest colors. We
define the span of aradio coloring of G as one plus the difference
between the smallest and largest colors. We study radio colorings
of a hypercube with the objective of finding such a coloring with
minimum span. We develop aformulation for what we believeis
the complete solution to this question in the form of a conjecture.

1 Introduction

Let V,, denote the n-dimensiond vector space over GH(2), the Galois Field of order 2.
Note that each vector in V,, corresponds to a binary representation of some integer
between 0 and 2 n 1, and vice versa. Let x, [0 [1 [Ix 1 x O be the binary representation of
k for 00 k O 2 n 1. Thenwe define

Bn (K) =(%n-1; ... X1 ; X0) :

For any u; v& V,,, asusud in graph theory, we write d (u; v) to denote the distance
between u and v in the hypercube Q, : Thisisthe samdlest length of a path between u and
v, and so it is the number of positions where u and v differ; see the book [2].
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The n-dimensiond hypercube Q. is agraph over V,, in which two nodes are adjacent if
they agreein dl but one postion. A vertex coloring of agraph by nonnegative integersis
cdled aradio coloring [3] if any pair of adjacent nodes have color numbersthat differ by
at least two, and any pair of nodes at distance 2 have different colors. The span of any
radio coloring is defined as one plus the difference between the largest color number and
the smallest color number. Our objective isto investigate a radio coloring of a hypercube
with minimal span. Without loss of generdity, we redirict the smallest color number to be
zero.

2 Coloring versus Coding
Congder any radio coloring of Q, given by afunctionc:V, 0 Z +. L&t
r=y logz(l+max{c(v):v&2Vu})p:

Then each color can be represented by ar-bit binary number. So the vertex coloring ¢
givesrise to abinary code in which each code-word is a concatenation of somev 2 V,,
and B; (c (v)). On the other hand, any linear binary code aso induces aradio coloring of
ahypercube. Let C be any [n + r; n]-code in which the leftmost n bits are the data bits and
the remaining r bits are the check bits. Then for each vertex v 2 V,,, we assign the color
whose binary representation is the check bits of v in the code C.

Of paticular interest isthe sngle-error correcting linear code. One wdl-known single-
error correcting linear code is the Hamming code [1]. The Hamming code is optimal in
the sense that it uses the smalest number of check bits. If the number of data bitsisn, the
Hamming code usesf (n) check bits where

fM=min{r:n+r+102"}:

For example,
f()=2,
fQ=f(3) =14 =3,
f(5)=..=f(11) =4,
f(12)=...=1(26) =5,

f27)=...=f(57) =6.



A dngle-error correcting linear code has distance at least three. Thus the coloring induced
by such a code has the following property:

1. for any pair of nodes at distance 2, their colors are different.

2. for any pair of adjacent nodes, the binary representations of their colors differ in
at least two pogitions.

In generd, however, the Single-error correcting code may not yield aradio coloring. Note
that the second property does not necessarily imply that the difference between the vaues
of the colors assigned to adjacent nodesis greater than one. For example, in Q 4 the color
numbers 7 (0111) and 8 (1000) vary in dl four bits but have a color number difference of
only one. The following lemma shows that the binary representations of two consecutive
numbers can differ in many postions.

Lemma 1 For any 0 Ok < 2" leti bethe position (counting from right
to left) of the rightmost O in By(k). Then

Bi(k +1) B(k) =B,(2' - 1):
Therefore, the Sngle-error correcting code cannot give rise directly to a
radio coloring. Neverthdess, it provides us with indgght into the design of

anode coloring approach. We now provide a coloring whaose corresponding
code also usesf (n) check hitsfor n data bits.

3 A Radio Coloring of Q,

Let Shethe st of dl positiveintegersexcluding{ 2 - 1:i0 1}, i.e,
S={2,4,5,6,8,9 10,11, 12, 13, 14, 16, ...}

Foreachi [ 1, let 5; denote the i-th amdlest number in S Thenfordl i O 1,

2010 g <201,
s -i=2.



For any n[J 1, we define A(n) to bethe n x f (n) matrix in which the i-th row from
the bottom is By (9), the f (n)-dimensiona vector corresponding to the i-th number in S,

For example,
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Now we are ready to describe our node coloring. For each (row) vector v & V,,, itscolor

isgiven by

c(v) = By (VA()),

i.e., the number whose binary representation corresponds to the vector

VA(n). For example, whenn =3,

When n =4,

¢(000) =0, ¢(001) = 2, c(010) =4, c(011) =6;
c(100) =5, ¢(101) =7, ¢(110) = 1, c(111) = 3:

¢(0000) = 0; c(0001) = 2; c(0010) = 4; c(0011) = 6;
¢(0100) = 5; ¢(0101) = 7; c(0110) = 1; c(0111) = 3;
¢(1000) = 6; c(1001) = 4; ¢(1010) = 2; c(1011) =0;
c(1100) = 3; ¢(1101) = 1; c(1110) = 7; c(1111) = 5:

The next lemma proves that the above node coloring isindeed aradio coloring.



Lemma 2 Let u and v be any two nodes of Q.

(D). If d (u, v) =1, then |c(u) - c(v)| O 2.
(2. If d (u, v) =2, then c(u) O c(v).

Proof. Wefirg prove (1). Suppose that nodes u and v differ only at the postioni
(counting from right to left) for some 1 [0 i O f(n). Then

Br(n (€ (U)) Br(n) (c (v)) = UA(n) VA(n)
=(u-v)A(M)
= Bi(n) (9) :

As B (9) U 0, we have c(u) U c(v). Furthermore, as Br(n (3) U 2~ 1 for any k >0, we
have |c(u) - c(v)| O 2from Lemma 1. Therefore |c(u) - c(v)| O 2.

Now we prove (2). Suppose that u and v differ only at the positionsi and j (counting from
right to left) for some 1 0 i < f (n). Then
Br(n) (W) - Br(n) (c(v)) = (U - v) A(n)
= Bi(n) () + Br(n) (S)

= Bi(n) (9) - Bi(n) (9)
ao:

Thisimpliesthat ¢ (u) O ¢ (v).
As each color isaf (n)-hit binary number, at most 2" colors are used by the above node
coloring. Now we show that exactly 2'™ colors are used when n >2. The proof is

completed in two steps. In the rst step, we show that for any 0 0 i O f(n) - 1 the color 2'is
assigned to some node. We consider two cases.

Casel: 10i0f(n)- 1. Since B, (2% ') have zerosin dl
positions except position 2' - i (counting from right),

Bn (277') A() = Br(n) (Si-i ) = Br(ny (2) :

Thisimpliesthat thenode B, (2% ~' ) is assigned color 2.



Case 2:i = 0. Since By, (6) has zerosin dl positions except pogition 2 and 3
(counting from right),

Bn(6) A(N) = Br(n) (s2) +Bi(n) (S3) .
= Bi(n) (4) +B+(n) (5) = Br(n) (2°).

Thisimpliesthat the node B, (6) is assigned color 2°.

In the second step, we show that for any k with 0 0 k O 2"™ - 1, the color number k is
assigned to some node. Define H(n) to be the f(n) x n matrix in which the bottom row is
Bn (6), and for any 2 O i O f(n), thei-th row from the bottom is By, (22" 7-?). For example,

0010
Hid)=| 0 0 0 1
01 10

Then for any 1 O i O f(n) thei-th row from the bottom of H(n) times A(n) is equa to By(n)
(2"1) . So the matrix H(n) A(n) isaf(n) x f(n) identity matrix, which meansthat H(n) isa
left inverse of A(n). Thus, for any 0 0 k 0 2™ - 1, the color assigned to vertex By (K)
H(n) is

B™Y(m) B(n (K) H(N) A()) = B™ () (Brmy (K)) = k.

Then for any color 0 0 k O 2™ - 1, it is assigned to node By(ny (k) H(n). The above node
coloring is dso node-balanced in the sense that each color is shared by the same number
of nodes. In fact, thisis true when n = 2. Assume that n >2. We show that the matrix A(n)
adways has afull rank of f(n). It iseasy to verify that f(n) LI n. The matrix A(n) contains

the row vectors Br(y) (2') for 1 0 i O f(n) - 1. Notice that the sum of the second row from
the bottom and the third row from the bottom givesrise to another row vector Brn) (2.
Asthef(n) row vectors By (2') U for @i O f(n) - 1 are independent, the rank of the
matrix A(n) isf(n) when n >2. Therefore, the dimension of the null space of A(n) isequa
ton - f(n). Since for any 00 k O 2™ - 1 the equation

VA(N) =Bx(n) (K)

has at least a solution, the number of solutions is thus exactly 2", This
implies that each color is assigned to 2" nodes,



4 Discussion

An obvious lower bound on the minimum span of any radio coloring of the n-cubeisn +
2. Infact, consgder the node which is assigned color 0. Then none of its n neighbors can
be assigned color O or 1. In addition, these n neighbors must dl have didtinct colors. Thus
the largest color used by any of these n neighbors must be at least n + 1.

The radio coloring given in the previous section is not optima when n [ 3. In fact, when
n = 2, thefollowing coloring is better (see Figure 1(a)):

c(00) =0, ¢(01) = 3, c(10) =4, c¢(11) = 1,
When n = 3, the following coloring is better (see Figure 1(b)):

¢(000) = ¢(111) = 0, c(001) = c(110) = 2,
¢(010) = ¢(101) =4, c(011) = c(100) = 6.
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Figure 1. The optima radio colorings when n = 2, 3. They differ from those in Section 3.
When n O 4, we make the following statement.

Conjecture Theradio coloring of a hypercube given in Section 3 isoptimd
for minimizing the span whenn [ 4.
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