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Abstract 
A radio coloring of a graph G is an assignment of nonnegative 
integers to its nodes so that each pair of adjacent nodes have 
color numbers that differ by at least two, and any pair of nodes at 
distance 2 have different colors. Every graph has a radio coloring 
by simply assigning the odd integers 1, 3, 5, ……, but there is 
then a big difference between the smallest and largest colors. We 
define the span of a radio coloring of G as one plus the difference 
between the smallest and largest colors. We study radio colorings 
of a hypercube with the objective of finding such a coloring with 
minimum span. We develop a formulation for what we believe is 
the complete solution to this question in the form of a conjecture. 

 
 

1 Introduction  
 
Let Vn denote the n-dimensional vector space over GF(2), the Galois Field of order 2. 
Note that each vector in Vn corresponds to a binary representation of some integer 
between 0 and 2 n 1, and vice versa. Let xn � � �x 1 x 0 be the binary representation of 
k for 0 � k � 2 n 1. Then we define  
 

Bn (k) =(xn-1 ; …. ; x1 ; x0) : 
 

For any u; v ª Vn, as usual in graph theory, we write d (u; v) to denote the distance 
between u and v in the hypercube Qn : This is the smallest length of a path between u and 
v, and so it is the number of positions where u and v differ; see the book [2].  
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The n-dimensional hypercube Qn is a graph over Vn in which two nodes are adjacent if 
they agree in all but one position. A vertex coloring of a graph by nonnegative integers is 
called a radio coloring [3] if any pair of adjacent nodes have color numbers that differ by 
at least two, and any pair of nodes at distance 2 have different colors. The span of any 
radio coloring is defined as one plus the difference between the largest color number and 
the smallest color number. Our objective is to investigate a radio coloring of a hypercube 
with minimal span. Without loss of generality, we restrict the smallest color number to be 
zero.  
 
 
2 Coloring versus Coding  
 
Consider any radio coloring of Qn given by a function c : Vn � Z + . Let  
 

r = ý  log 2 (1 + max {c (v) : v ª Vn}) þ  :  
 

Then each color can be represented by a r-bit binary number. So the vertex coloring c 
gives rise to a binary code in which each code-word is a concatenation of some v ª Vn 
and Br (c (v)).  On the other hand, any linear binary code also induces a radio coloring of 
a hypercube. Let C be any [n + r; n]-code in which the leftmost n bits are the data bits and 
the remaining r bits are the check bits. Then for each vertex v 2 Vn, we assign the color 
whose binary representation is the check bits of v in the code C.  
 
Of particular interest is the single-error correcting linear code. One well-known single-
error correcting linear code is the Hamming code [1]. The Hamming code is optimal in 
the sense that it uses the smallest number of check bits. If the number of data bits is n, the 
Hamming code uses f (n) check bits where 
 

f (n) = min {r : n + r + 1 � 2r } : 
For example,  

f (1) = 2, 
f (2) = f (3) = f (4) = 3, 
f (5) = … = f (11) = 4, 
f (12) = … = f (26) = 5, 
f (27) = … = f (57) = 6. 

 
 
 
 
 



 
A single-error correcting linear code has distance at least three. Thus the coloring induced 
by such a code has the following property: 
 

1. for any pair of nodes at distance 2, their colors are different.  
 
2. for any pair of adjacent nodes, the binary representations of their colors differ in 

at least two positions.  
 
In general, however, the single-error correcting code may not yield a radio coloring. Note 
that the second property does not necessarily imply that the difference between the values 
of the colors assigned to adjacent nodes is greater than one. For example, in Q 4 the color 
numbers 7 (0111) and 8 (1000) vary in all four bits but have a color number difference of 
only one. The following lemma shows that the binary representations of two consecutive 
numbers can differ in many positions.  
 
Lemma 1 For any 0 � k < 2r let i be the position (counting from right  
to left) of the rightmost 0 in Br(k). Then  
 

Br(k +1) Br(k) =Br(2i - 1): 
 

Therefore, the single-error correcting code cannot give rise directly to a  
radio coloring. Nevertheless, it provides us with insight into the design of  
a node coloring approach. We now provide a coloring whose corresponding  
code also uses f (n) check bits for n data bits.  
 
 
3 A Radio Coloring of Qn  
 
Let S be the set of all positive integers excluding { 2i - 1 : i � 1 }, i.e., 
 

S = {2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, …}: 
 

For each i � 1, let si denote the i-th smallest number in S. Then for all i � 1,  
 

2f(i) -1 � si < 2f(i) - 1;  
s2

i
 - i = 2i. 

 
 
 
 
 
 
 
 
 



 
For any n � 1, we define A(n) to be the n x f (n) matrix in which the i-th row from 

the bottom is Bf(n) (si), the f (n)-dimensional vector corresponding to the i-th number in S.  
 
For example,  
 

 
Now we are ready to describe our node coloring. For each (row) vector v ª Vn, its color 
is given by 
 

c(v) = B-1
f(n) (vA(n)), 
 

i.e., the number whose binary representation corresponds to the vector  
vA(n). For example, when n = 3, 
 

c(000) = 0, c(001) = 2, c(010) = 4, c(011) = 6;  
c(100) = 5, c(101) = 7, c(110) = 1, c(111) = 3: 

 
When n = 4,  
 

c(0000) = 0; c(0001) = 2; c(0010) = 4; c(0011) = 6;  
c(0100) = 5; c(0101) = 7; c(0110) = 1; c(0111) = 3;  
c(1000) = 6; c(1001) = 4; c(1010) = 2; c(1011) = 0;  
c(1100) = 3; c(1101) = 1; c(1110) = 7; c(1111) = 5: 

 
The next lemma proves that the above node coloring is indeed a radio coloring.  
 
 
 
 
 
 
 
 
 



 
Lemma 2 Let u and v be any two nodes of Qn.  
 
(1). If d (u, v) =1, then |c(u) - c(v)| � 2.  
(2). If d (u, v) =2, then c(u) � c(v).  
 
Proof. We first prove (1). Suppose that nodes u and v differ only at the position i 
(counting from right to left) for some 1 � i � f(n). Then  
    

Bf(n) (c (u)) Bf(n) (c (v)) = uA(n) vA(n) 
        = (u - v) A(n) 
        = Bf(n) (si) : 

 
As Bf(n) (si) � 0, we have c(u) � c(v). Furthermore, as Bf(n) (si) � 2k - 1 for any k >0, we 
have |c(u) - c(v)| � 1from Lemma 1. Therefore |c(u) - c(v)| � 2.  
 
Now we prove (2). Suppose that u and v differ only at the positions i and j (counting from 
right to left) for some 1 � i < j� f (n). Then  

Bf(n) (c(u)) - Bf(n) (c(v)) = (u - v) A(n) 
= Bf(n) (si) + Bf(n) (sj)  
= Bf(n) (si) - Bf(n) (sj)  
� 0:  
 

This implies that c (u) � c (v).  
 
As each color is a f (n)-bit binary number, at most 2f(n) colors are used by the above node 
coloring. Now we show that exactly 2f(n) colors are used when n >2. The proof is 
completed in two steps. In the rst step, we show that for any 0 � i � f(n) - 1 the color 2i is 
assigned to some node. We consider two cases.  
 

• Case 1: 1 � i � f(n) - 1. Since Bn ( 2 2i – i -1 ) have zeros in all  
positions except position 2i - i (counting from right), 

 
Bn ( 2 2i – i -1 ) A(n) = Bf(n) (s2i -i ) = Bf(n) (2i) : 

 
This implies that the node Bn ( 2 2i – i -1 ) is assigned color 2i. 

 
 
 
 
 
 
 
 
 
 



 
• Case 2: i = 0. Since Bn (6) has zeros in all positions except position 2 and 3 

(counting from right), 
 

Bn(6) A(n) = Bf(n) (s2) +Bf(n) (s3)  
      = Bf(n) (4) +B f(n) (5) = Bf(n) (20). 

 
This implies that the node Bn (6) is assigned color 20. 

 
In the second step, we show that for any k with 0 � k � 2f(n) - 1, the color number k is 
assigned to some node. Define H(n) to be the f(n) x n matrix in which the bottom row is 
Bn (6), and for any 2 � i � f(n), the i-th row from the bottom is Bn (22-i  -i-2). For example,  
 
 

 
  
Then for any 1 � i � f(n) the i-th row from the bottom of H(n) times A(n) is equal to Bf(n) 
(2i-1) . So the matrix H(n) A(n) is a f(n) x f(n) identity matrix, which means that H(n) is a 
left inverse of A(n). Thus, for any 0 � k � 2f(n) - 1, the color assigned to vertex Bf(n) (k) 
H(n) is  
 

B-1
f(n) (B f(n) (k) H(n) A(n)) = B-1

f(n) (Bf(n) (k)) = k. 
 
Then for any color 0 � k � 2f(n) - 1, it is assigned to node Bf(n) (k) H(n). The above node 
coloring is also node-balanced in the sense that each color is shared by the same number 
of nodes. In fact, this is true when n = 2. Assume that n >2. We show that the matrix A(n) 
always has a full rank of f(n). It is easy to verify that f(n) � n. The matrix A(n) contains 
the row vectors Bf(n) (2i) for 1 � i � f(n) - 1. Notice that the sum of the second row from 
the bottom and the third row from the bottom gives rise to another row vector Bf(n) (20). 
As the f(n) row vectors Bf(n) (2i) � for 0 � i � f(n) - 1 are independent, the rank of the 
matrix A(n) is f(n) when n >2. Therefore, the dimension of the null space of A(n) is equal 
to n - f(n). Since for any 0� k � 2f(n) - 1 the equation  
 

vA(n) =Bf(n) (k) 
 
has at least a solution, the number of solutions is thus exactly 2n-f(n) . This  
implies that each color is assigned to 2 n-f(n) nodes.  
 
 
 
 
 
 



 
4 Discussion  
 
An obvious lower bound on the minimum span of any radio coloring of the n-cube is n + 
2. In fact, consider the node which is assigned color 0. Then none of its n neighbors can 
be assigned color 0 or 1. In addition, these n neighbors must all have distinct colors. Thus 
the largest color used by any of these n neighbors must be at least n + 1.  
 
The radio coloring given in the previous section is not optimal when n � 3. In fact, when 
n = 2, the following coloring is better (see Figure 1(a)):  

 
c(00) = 0, c(01) = 3, c(10) = 4, c(11) = 1, 

 
When n = 3, the following coloring is better (see Figure 1(b)):  
 

c(000) = c(111) = 0, c(001) = c(110) = 2,  
c(010) = c(101) = 4, c(011) = c(100) = 6. 

 

 
 
Figure 1: The optimal radio colorings when n = 2, 3. They differ from those in Section 3.  
 
When n � 4, we make the following statement.  
 
Conjecture  The radio coloring of a hypercube given in Section 3 is optimal  
for minimizing the span when n � 4.  
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