
324 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

Protocol Verification Using Database Technology
OPHIR FRIEDER, MEMBER, IEEE, AND GARY E. HERMAN, MEMBER, IEEE

Abstract-We describe a novel application of database technologies
in communications networks: protocol verification on a parallel database
machine. We introduce an approach to protocol verification that ex-

ploits database algorithms executing on a commercially available, par-
allel architecture called a hypercube multicomputer. With this ap-
proach, we seek to achieve the high degree of computational parallelism
necessary to explore rapidly the global-state space of even very com-
plex protocols, significantly reducing the time required to verify a pro-
tocol and allowing formal verification to be included as part of the pro-
cess of protocol design. Our approach is based on the relational
database algorithms for a hypercube system presented in [3], [4] and
the relational algebra approach to verification of finite-state protocols
presented in [17], [HI.

I . INTRODUCTION

I N A COMMUNICATIONS network, a protocol is a list
of rules/policies that controls and synchronizes the in-

teractions of entities in the network. A difficult practical
and theoretical issue in the design of protocols is protocol
veri$cation, the validation of the logical correctness of
the rules governing the interactions of network entities.
When protocols are modeled as communicating finite-state
machines, reachability analysis can be used in the pro-
tocol design phase to explore the global states of the sys-
tem to detect undesirable behaviors, e.g., deadlocks and
unreachable states, exhibited by the protocol under de-
sign. Once detected, these flaws can be corrected and the
new version of the protocol tested again.

While reachability analysis has been used for formal
verification of protocols of low to moderate complexity
[8], [24], [26], the practical use of reachability analysis
for more complex interactions has been constrained by the
problem of state space explosion. That is, as the network
of communicating finite-state machines increases in com-
plexity, the total number of possible global states grows
very rapidly. Searching the global-state space to deter-
mine invalid states and detect design errors becomes so
time consuming as to be impractical as an integral part of
the process of protocol design. One approach to this prob-
lem is to investigate design and analysis techniques for
protocols that effectively reduce the size of the global-
state space that must be actively explored. However, an
alternative approach, which forms the basis for our re-
search, is to apply parallel processing techniques to search
the global-state space more rapidly. As parallel process-
ing machines incorporating large numbers of processing
elements leave the research arena and become commer-
cially available, this latter approach has the potential for

Manuscript received December 10, 1987; revised September 15, 1988.
The authors are with Bellcore, Morristown, NJ 07960-1910.
IEEE Log Number 8826072.

significant, practical impact on protocol verification prob-
lems.

Use of parallel processing techniques (e.g., El]) to im-
prove the efficiency of protocol verification requires res-
olution of several issues commonly encountered in devel-
oping efficient parallel algorithms. These include
balancing the computational load across many processors,
achieving an appropriate balance between communica-
tions and processing for the algorithm, and synchronizing
algorithm execution across many processing nodes. In this
paper we show that, since the process of protocol verifi-
cation can be described in terms of relational algebra [171,
[181, algorithms previously developed for efficient exe-
cution of database operations on a parallel machine [3]
can be applied directly to reduce dramatically the time
required for protocol verification. The algorithms sup-
porting the database operations resolve the issues of bal-
ancing and synchronization; further ‘algorithm develop-
ment specific to parallel implementation of protocol
verification is not required. Thus, in this paper we de-
scribe a novel application of database technologies in
communications networks: protocol verijication on a par-
allel database machine.

Specifically, we describe an efficient parallel imple-
mentation of reachability analysis for protocols described
as communicating finite-state machines, based on the
original algorithms described in [171, [181 and, using da-
tabase operations, describe extensions of the basic ap-
proach to encompass protocols described in terms of the
extended finite-state automata (EFSA) model [9]. The tar-
get implementation environment of this approach is a par-
allel processing machine called a hypercube multicom-
puter. We show that describing the verification process in
terms of relational algebra and executing the relational
database operations on a hypercube make possible formal
verification of protocols with numbers of global states
several orders of magnitude larger than protocols consid-
ered “difficult” (e.g., the NBS Class IV transport pro-
tocol [22)) today. We also show that this approach is scal-
able; that is, “larger” verification problems can be made
tractable by application of larger amounts of computa-
tional parallelism, using the same database algorithms.

In this approach, protocols are represented as a set of
tables, or relations, with each row, or tuple, in the rela-
tion describing a state and potential transition from that
state in the finite-state machine representation of the pro-
tocol. Using these relations, the reachable global states
can be determined by an iterative sequence of relational
join, projection, union, and difference operations that

0733-8716/89/0400-0324$01 .OO 0 1989 IEEE

FRIEDER AND HERMAN: VERIFICATION USING DATABASE TECHNOLOGY 3 2 5

eventually generates a global-state transition relation for
the system. This final relation can be examined by spe-
cific database queries, again described in terms of rela-
tional algebra, to detect the presence of undesired behav-
ior. Although the expression of the protocol and the
verification process in relational algebra is relatively
straightforward, the large volume of data and number of
comparisons involved in verifying even a simple protocol
make formal verification using conventional database sys-
tems quite time consuming in practice. In this paper, we
show that general purpose database algorithms executing
on a parallel processing machine can significantly reduce
the time required to generate the global-state space and
examine it for design flaws.

In Section II, we provide an overview of the relational
model of protocol verification introduced in [171, [181.
Extensions to this model are also described. Section III
describes the hypercube multicomputer and the algo-
rithms for relational database operations designed to ex-
ecute in that environment. Estimates of the performance
improvements achievable by parallel execution of verifi-
cation algorithms in the proposed system are described in
Section IV. A summary of our results is presented in Sec-
tion V.

II. A RELATIONAL M ODEL OF PROTOCOL

VERIFICATION

We provide only a brief overview of the relational al-
gebra approach to protocol verification originally de-
scribed in [18]; the reader is referred to the original paper
for a more complete and formal description. As in [181,
we illustrate the approach using the example of the simple
connection establishment protocol presented in [26]. The
state transition diagrams for this protocol are illustrated
in Fig. 1.

The protocol verification process proceeds as a se-
quence of single-scan (selection, column substitution,
column renaming) and multiscan (join, projection, differ-

O N

Fig. 1. State t r a n s i t i o n

PROCESS A

IN .

PROCESS B

,ON O N

diagrams for a simple
p r o t o c o l .

connection-establishment

Basically, the verification process proceeds in five steps.
Step 1: Transform the digraph protocol specification

into tables, called transition relations; a transmission re-
lation (H-A and H-B) and reception relation (R-A and
R B) exist for processes A and B, respectively. As Table
I illustrates, the attributes of each relation include the cur-
rent state, the event triggering a state transition from that
state, and the state to be entered upon encountering the
triggering event (a message reception or transmission).

Step 2: Create the system transition relation for a sreadq
system [18] - defined to be a system in which only one
message is allowed to be transmitted at a time. In a steady
system, no message may be sent until the previous mes-
sage is received, and processes do not receive messages
simultaneously. Stable states are global states with both
channels empty; transitions between stable global states
occur when the triggering event in the reception relation
of one process matches the event in the transmission re-
lation of the other process. Thus, the global set Z of pos-
sible steady transitions is found by the join of the trans-
mission relation for process A with the reception relation
for process B union the join of the reception relation for
process A with the transmission relation for process B, in
both cases for the join condition TRIGGER-A =
-TRIGGER-B. In the notation of [111,

z = (H-A TIMES B-B (WHERE TRIGGER-A = -TRIGGER-B)) UNION

(B-B TIMES R-A (WHERE TRIGGER-B = -TRIGGER-A)).

ence, and union) database operations. Multiscan opera-
tions are so-called because they require that values of at-
tributes in each row (representing a “state” or “state
transition” in the protocol sense) be compared to values
in every other row in the relation, effectively requiring
multiple scans of the data. As we describe in Section IV,
execution of the protocol verification algorithm on a par-
allel machine is heavily dominated by time required to
execute the multiscan relational operations. The other,
single-scan, operations involved (selection, renaming, and
replacement) do not significantly affect the performance
of our architecture for “large” protocol verification tasks.
Consequently, we emphasize the role of multiscan oper-
ations.

The relation Z is a relation on the set of attributes
{ PRESENT-STATE-A PRESENT-STATE-B, TRIG-
GER-A, TRIGGER-B, FUTURE-STATE-A, FU-
TURE-STATE-B}. The relation Z is the set of global
transitions defined by the protocol state transition rules
when only one process may send a message at a time.

All of these possible global steady transitions typically
are not reachable from the initial state pair (0, 0 in Fig.
1). We determine the set of reachable states P by begin-
ning with the initial state PO = (0, 0 > and searching for
reachable global states through an iterative sequence of
joins involving I. Essentially this process starts the sys-
tem at state (0, 0); the first join determines the states P,
that can be reached directly from (0, 0). The second join

326 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

T A B L E I
PROCESS TRANSITION RELATIONS FOR THE SIMPLE CONNECTION

ESTABLISHMENT PROTOCOL. (a) PROCESS A TRANSMISSION RELATION,
H-A. (b) PR~KESS A RECEPTION RELATION, R-A. (c) PROCESS B

TRANSMISSION RELATION, H-B. (d) PROCESS B RECEPTION RELATION,

yfFf&yq

yields the global states Pz that can be reached directly
from P,; the sequence continues until no new states re-
sult. The set of reachable global states P is then given by
the union of the Pi relations. With P determined, the set
of reachable steady transitions J is given by

J = PJOINZ.

The cardinality of J (the number of reachable transi-
tions) is less than or equal to the cardinality of Z (the num-
ber of possible legal transitions); as we show in Section
IV, typically J is much smaller than 1. Table II illustrates
the set of reachable steady transitions for our example
protocol.

Step 3: In this step, we begin the transformation of the
steady transition relation J into the global-state transition
relation G. Reference [18] describes this part of the trans-
formation as the result of the union of four separate joins
of a relation comprising a single tuple on projections of
restrictions of relation J; the joins in this step can be re-
placed by an equivalent set of more easily computed sin-
gle scan selection and attribute append operations. This
process separates the effects of message transmission by
A, message reception by B, message transmission by B,
and message reception by A, on global-state transitions
and introduces the concept of channels for messages sent
from A to B (A-TO-B) and from B to A (B-TO-A). The
introduction of the concept of channels and unreceived
messages in those channels increases the size of the re-
lations involved. For example, if the channel can contain
one unreceived message, the cardinality of G following
this step is exactly twice that of J. Each row in J (a tran-
sition resulting from a message transmission-reception
pair) generates two rows in G, one for the transition that
occurs when the message is sent, and the second for the

TABLE I1
REACHABLE STEADY TRANSITION RELATION, J

Present Present -
state Srate Trigger Trigger State State

A B A B A B

:
0 -ON ON
0 O N - O N ; :

1 1 -nFF n n

transition resulting from the corresponding message re-
ception. G, for our example, is shown in Table III under
the assumption that a channel can contain only a single
message. Fig. 2 interprets G as a finite-state automaton
(FSA).

Step 4: In this step, we remove the restriction that the
system is operated steadily (that is, both processes may
transmit messages simultaneously) and expand G to in-
clude new global states arising due to multiple messages
present in the transmission channels, up to the maximum
message capacity N of the channels. This process in-
volves an iterative sequence of at most N joins of the
global transition relation G with transmission (H) and
reception (R) relations of the two processes. The result-
ing G is a relation on (4 N + 6) attributes where N is the
maximum number of messages allowed to be outstanding
in the channel. At this point, the global-state transition
relation G includes a tuple for all allowable (under the
rules of the protocol) combinations of current states (at-
tributes PRESENT-STATE-A and PRESENT-STATE-
B), current states of the channel (PRESENT-
B-TO-A[l], . * . , PRESENT B- -TO-A[N] and PRE-
SENT-A-TO-B[l], * * * , PRESENT-A-TO B[N]), the
message(s) that will trigger the next transition (TRIG-
GER-A, TRIGGER-B), the states that A and B will reach
when the next message is transmitted or received (FU-
TURE-STATE-A, FUTURE-STATE- B) , and the
states the channels will reach when the next
message is received or transmitted [FUTURE-
B-TO-At 11, * . * , FUTURE-B-TO-A[N] and FU-
TURE-A-TO-B[l], * * . , F U T U R E A-TO-B[iV]).
This process also generates a second relation S, the global
process state relation, that includes all possible states of
the processes and channels. Relation S is used in testing
the protocol for design errors. The final global transition
space G for our example is presented in Table IV and as
an FSA in Fig. 3.

Step 5: Once the global-state transition relation G has
been determined, the protocol can be tested for design
errors using relational algebra. Deadlock states are de-
tected by taking the difference of two projections on G.
This operation finds those reachable state pairs (FU-
TURE-STATE-A, FUTURE-STATE-B > that do not
also appear as (PRESENT-STATE-A, PRESENT-
STATE-B > pairs and, therefore, cannot be left once
reached. Similarly, projections on S can identify all com-
binations of process state and incoming messages (A,
PRESENT-B-TO-A > and (B, PRESENT-A-TO-B >
that the protocol allows to occur. If the transition rule for
any such pair cannot be found in the process reception

FRIEDER AND HERMAN: VERIFICATION USING DATABASE TECHNOLOGY 3 2 7

TABLE 111
STEADY GLOBAL-STATE TRANSITION RELATION (STEP 3)

P r e s e n t sent
state state
A B

t

: :
0

t
:,
0

1 I

Present
state,

F
1

1
-

i

Future Y
(0, -OFF)

Channel
contents

Fig. 2. Steady global-state transition diagram.

T A B L E I V
FINAL GLOBAL-STATE TRANSITION RELATION, G

Present Future

~hannei

Fig. 3. Final global-state transition diagram.

re la t ions R-A and R-B, t hen the p ro toco l i s incompletely
specijied. Nonexecutable interactions are determined by
taking the differences between each of the H and R rela-
t ions and p ro jec t ions on G to de tec t those t r ans i t ion ru les

in the H and R relations that are never exercised by the
pro toco l .

For our example protocol, Step 5 identifies the dead-
lock state (A: 1, B: 1, A-TO-B: ON, A-TO-B: ON >, a
design flaw in the protocol that occurs when both pro-
cesses leave state 0 by simultaneously transmitting ON
messages.

1) Model Extensions: In addition to verifying proto-
cols that are represented as finite-state automatons
(FSA’s), the relational algebra verification model can be
extended to support the verification of protocols repre-
sented in the extended finite-state automaton model
(EFSA) [9]. In the EFSA model, each super-state for pro-
cess A consists of a set of internal state variables, A =
{al, a29 Q3, * * * , up } , and corresponds to a se t of s ta tes
in the FSA model . An instantiation of a superstate equates
a specific value to each internal state variable a;, 1 I i
I p. Since each supers ta te corresponds to a se t of s ta tes
in the FSA model, protocols comprising many states in
the FSA model can be described in relatively few states
in the EFSA model. Hence, protocols that are too com-
plex to be described in the FSA model can be specified
using the EFSA model.

The verification of protocols represented using the
EFSA model proceeds in a s imilar manner to the approach
described above. However, instead of, for example, find-
ing the s e t o f va l id s t a t e t r ans i t i ons t h rough a j o in w i th a
simple Boolean match operation on the join attribute, a
procedure(s) which evaluates the composite set of inter-
nal-state variables, ui, 1 I i I p for process A and bj, 1
I j I t for process B is invoked. A tuple match (and
val id s ta te t rans i t ion) ex is t s for any tuple (s ta te) pa i r , one
tuple from each of the two joining relations, whose attri-
butes satisfy the transition constraints expressed in the
procedure . The ind iv idua l t rans i t ion procedure appropr i -
ate for a given transition can also be stored as a tuple
attribute [23].

Invoking procedures, instead of computing simple
joins , s igni f icant ly increases the computa t ional burden per
tuple match. Whereas a join requires only a few CPU in-
structions per tuple, invoking a procedure may result in
the execut ion of hundreds of ins t ruct ions per tuple match.
Al though suppor t ing procedure invoca t ions as par t o f the
verification process complicates the implementation, it
a lso s igni f icant ly increases the range of appl ica t ions tha t
can benefi t f rom the proposed verif icat ion tool and raises
the possibility that his approach may permit formal veri-
f icat ion of programs wri t ten in languages that can be mod-
eled using an EFSA or other description (cf. [2]). The
verification of more complex constructs like programs is
beyond the scope of th is paper and is lef t for fu ture work.

To enhance the funct ional i ty of the protocol ver i f ica t ion
system, we can incorporate error backtracking as part of
the implementation of the verification system. In verify-
ing complex protocols, it is not sufficient to know that a
faul ty s ta te can be reached; the faul ty pa th should be iden-
tified. To obtain the faulty path, the verification system
initially obtains all the unsafe states (see Step 5). Once

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

these states are identified, a modification of the verifica-
tion algorithm can be applied iteratively to identify the
predecessor states to the known unsafe states. After each
step, the newly generated predecessor state tables are out-
put and checked, until, eventually, all possible faulty
paths from the initial system state to a faulty state have
been identified. At this point, the appropriate corrective
modifications to the protocol can be attempted, and the
verification process begun once again.

I I I . D A T A B A S E M A C H I N E S A N D P A R A L L E L C O M P U T E R

A R C H I T E C T U R E S

Practical use of the approach to protocol verification
using algorithms described by relational algebra requires
a computing system that implements the multiscan rela-
tional operations, like join, very efficiently-much more
efficiently than do the general purpose database systems,
on which the approach was implemented initially [171.
Many different designs for database machines have been
proposed in the past to solve the problem of efficient pro-
cessing of multiple-join queries. However, due to their
specialized nature, database machines have remained
mainly in the research arena and have achieved only lim-
ited commercial success. The failure of many such special
database machines to become commercially viable has
stimulated research on the use of more general multipro-
cessor/computer systems to support database processing.

Several issues must be addressed in designing a parallel
architecture and algorithms for efficient execution of da-
tabase operations. First, the communications overheads
and computational loads should be balanced across the
nodes in the system, and an appropriate balance should
be achieved between communications and computation for
the distributed algorithm. Second, means must be pro-
vided for synchronizing the actions of the many process-
ing nodes. Third, the architecture and algorithms should
be scalable; that is, the architecture and algorithms should
allow greater computational parallelism to be usefully ap-
plied to solving “larger” problems. Finally, for the ap-
proach to be practical, the parallel machine chosen as the
execution environment must be available-it must exist.

In the context of protocol verification, a balanced sys-
tem is achieved through two types of data distribution al-
gorithms. Load balancing algorithms evenly distribute the
the descriptions of global states (i.e., the tuples in the
global-state transition relation G so as to equalize the
computational burden across the processing nodes in the
system. Even distribution is required because, otherwise,
a single node may become overloaded with computational
demands and become the system bottleneck. Compaction
algorithms increase the portion of a relation stored within
a given node when necessary to reduce communication
overheads for the multiscan operations, like join, that re-
quire each tuple in one relation to be evaluated against
every tuple in the other relation. Thus, in a parallel en-
vironment, one seeks an appropriate balance between the
costs of the data distribution algorithms and the resulting

benefits in the execution of the database operations them-
selves.

Performing any task in parallel requires the ability to
synchronize the agents which concurrently compute the
subtasks. In the database context, prior to computing suc-
cessor joins, the nodes computing the local joins must be
synchronized. In a loosely coupled, distributed environ-
ment, operation level synchronization is not easily
achieved since there is little or no hardware support for
internode coupling. In a parallel machine environment
such as a hypercube, node synchronization is directly sup-
ported by the architecture of the system and can easily be
used by the algorithms implementing the database oper-
ations.

Finally, modem parallel architectures are designed to
be scalable to very high levels of computational parallel-
ism. In the past, when the cost of the individual hardware
components (computers) was relatively high, parallel sys-
tems comprising some tens of nodes were investigated.
As the individual processing elements became more eco-
nomical, research addressed systems with hundreds [161,
[15], thousands [151, [131, and even tens of thousands of
processors [13]. However, the large number of compo-
nents in a parallel system generates problems of configur-
ing and programming these systems. Our approach to the
protocol verification exploits existing software routines
executing on a commercially available line of parallel ma-
chines that can be configured with a very high degree of
parallelism, thus avoiding the need to readdress these
problems.

A. The Hypercube Multicomputer
Our implementation environment for the database op-

erations required to perform protocol verification is a
message passing architecture called a hypercube. A hy-
percube is an n-dimensional Boolean cube, Qn, defined as
a cross product of the complete graph K2 and the (n -
1)-dimensional Boolean cube Q,, _ t, with Qi = K2. Each
node is connected (or adjacent) to each of its n = log2 N
neighbors where N is the number of nodes. For example,
in a four-dimensional cube, a, node 0000 is adjacent to
nodes 0001, 0010, 0100, and 1000. Fig. 4(a)-(d) identify
one-dimensional (2 node), two-dimensional (4 node),
three-dimensional (8 node), and four-dimensional (16
node) cubes, respectively. Note that each system com-
prises N = 2” nodes, with IZ being the cubical dimension
of the system. Existing, research-based hypercube ma-
chines include CALTECH’s Cosmic Cube [21], Jet Pro-
pulsion Labs’ MARK II [25], and MARK III [121, [191,
[6], while commercially available hypercube systems in-
clude INTEL’s IPSC 1161, NCUBE’s NCUBEIlO [15],
and Floating Point Systems’ T/1000 series [131,]20].

Internode communication occurs by sending messages
contained in packets. A packet has variable size, with a
maximum packet size restricted to, say, 64 Kbytes. A
packet can be sent between any two nodes in the system,
possibly being routed through intermediate nodes, and is

F R I E D E R A N D H E R M A N : V E R I F I C A T I O N U S I N G D A T A B A S E T E C H N O L O G Y 729

b-- Q
00

(a) (b)

Cd)
Fig. 4. Various hypercube systems.

used to transfer a “significant amount” of data, in our
case tuples, between two nodes. Overhead for packet
communicat ions is of two types. Packet t ransfer overhead
is the time required to transmit a packet between nodes;
this time is a function of the size of the packet, the inter-
node l ink speed (ranging f rom 8 to 64 Mbi ts /s for exis t ing
systems), and the number of links traversed. Packet for-
mation overhead is independent of packet size; typical
packet formation times range from 0.5 to 5 ms.

Synchronization among nodes can be achieved either
through hardware support or strictly through software.
Software synchronizat ion is achieved by forcing a receiv-
ing node to “hang” until a message arrives. Thus, the
arrival of a message synchronizes the two nodes. This
blocking send/receive technique can be genera l ized so as
to enab le a l l nodes wi th in the sys tem to be synchron ized .
A single designated node globally collects a synchroni-
zation message from all nodes in the system which
“hang” until an acknowledgment. When the designated
node receives a value from all the nodes, it broadcasts a
reset value to all the nodes in the system, and all nodes
can resume their previous computat ion. Other hypercube
sys tems synchronize the processors v ia the use of g lobal
synchronizat ion l ines . The algori thms we employ assume
tha t hardware g loba l synchroniza t ion i s ava i lab le .

B. Re la t iona l Da tabase A lgor i thms on a Hypercube

This section reviews algorithms that implement the re-
la t iona l da tabase opera t ions on a hypercube multicompu-
ter by partitioning the relations, and hence the computa-
tional load, across the multiple processors. These
algorithms are described in more detail in [3], [5] and are
analyzed and evaluated through simulation and actual
benchmarks in [4]. To improve computational efficiency,

the algorithms presented below have been slightly modi-
fied from those presented in [5].

Typically, in implementing parallel algorithms the
number of nodes required to achieve best performance in
computing the desired task depends on the tradeoff be-
tween the average computat ion expected at each node and
the internode communicat ion needed to compute the op-
erat ion. The opt imum system size is the s ize that provides
an approximate t iming balance between the computat ional
load assigned to each node and the internode communi-
cation which results; that is, in the optimum configura-
tion, the CPU is seldom idle waiting for data to arrive,
and communication is seldom blocked waiting for the
CPU to complete i ts operat ions on local data . I f more pro-
cessors are used, the overhead resulting from the inter-
node communicat ion tends to dominate the computat ion
timing benefits obtained by decomposing the operation
into suboperations and computing the suboperations in
parallel. In short, as the number of nodes used increasr ;
beyond the opt imal number , so does the overa l l opera t ion
complet ion t ime. This opt imum configurat ion is operat ion
dependent; further, the data must be carefully organized
to take full advantage of the multiple processors for a
g iven opera t ion .

The hypercube database primitives are of two types:
those tha t a re used to suppor t dynamic da ta r ed i s t r ibu t ion ,
i.e., the “on-the-fly” reorganization of data to promote a
better balanced workload, and those that directly imple-
ment the relational operations, such as select, join, etc.
We initially provide a brief narrative as well as pseudo-
code description of the data redistribution primitives.
After the explanation of the base primitives, we describe
the actual relational database operations-select, project,
and jo in -based on these p r imi t ives . Addi t iona l de ta i l s on
the redistribution primitives and the database algorithms
on the hypercube are available in [141.

1) Data Redistribution: The following redistribution
primit ives are necessary for the implementat ion of the re-
la t iona l da tabase opera t ions on a hypercube .

a) Tuple Balancing-redistributes the tuples to
ach ieve a rough ly even d i s t r ibu t ion across a l l t he nodes ,
avoiding uneven processor execution time. In the tuple
balanc ing pseudocode be low, two re la t ions are ba lanced
s imul taneous ly .

1) The local tuple counts of the relations RI and R2 are
computed.

2) During each stage j (1 I j I II, n = log,N), the
nodes whose addresses d i f fer in the j th b i t exchange the i r
local RI tuple count via the fast packet transfer primitive,
and the node with the greater number of tuples (if any)
sends the excess tuples to the o ther . S imul taneous ly , the
nodes whose addresses differ in the ((j + 1) mod n)th
bit balance R,. Thus, after completion of this step, the
nodes whose address d i f fe rs in the j th b i t con ta in roughly
the same number of R, tup les , whi le the nodes whose ad-
dress differs in the ((j + 1) mod n)th bit contain roughly
the same number of R2 tuples.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

3) The local tuple counts for RI and for R2 are updated
at each node.

4) Steps 1 to 3 are repeated n times.
6) Relation Compaction and Replication (RCR)-

replicates the smaller relation RI, originally stored in a
cube of dimension n, in such a manner that it will be rep-
licated in each of the two, equal-sized, dimension n - 1,
logical, cube partitions of the original cube. The goal of
this primitive is to increase the number of tuples from R,
stored at each node until one packet size of R, is present
at each node, or until RI has been fully replicated at each
node. This primitive ensures that packets used in the join
phase will be as fill as possible, and that the packet for-
mation overhead per tuple will be minimized for the cy-
cling primitive.

1) The local tuple count of the relation to compact and
replicate is computed.

2) During each stage j (1 5 j I n), the nodes whose
addresses differ in thejth bit exchange their local R, tuple
count. RCR is possible if the sum of the R, tuple storage
volumes in a node pair is less than one full packet size.
If RCR is not possible then a global control line is set. If
RCR is possible then all nodes transmit their tuples to
their paired neighbor.

3) The tuple count for the compacted and replicated re-
lation is updated.

4) Steps 1 to 3 are repeated until either n RCR steps
have occurred or a global line indicating the termination
of the RCR operation has been set.

c) Relation Compaction (RC)-same as RCR but only
one of the logical cube partitions contains the data. This
operation compacts the data from a relation into fewer
nodes, until a fill packet size of data exists at every node.
Again, the goal is to minimize per-tuple packet formation
overheads for the cycling primitive.

d) Cycle-create a hamiltonean cycle/ring within
each logical cube partition generated by either the RC or
the RCR primitives, and pipeline the data packets
throughout the cycle/ring. A hamiltonean cycle can be dy-
namically generated via the use of reflexive Gray codes.

2) Selection: Each node performs local selection in
parallel. If the results are to be collected, then an output
collection step is incorporated; otherwise no global op-
eration is necessary. As with all the operations, operation
termination is signaled via the use of global synchroni-
zation lines.

3) Projection: Initially, a local projection (removing
nonrelevant columns from each tuple and eliminating lo-
cal duplicates) is performed. Since not all nodes will nec-
essarily remove the same number of tuples, i.e., have the
same number of duplicates, the tuple distribution across
nodes may become skewed as a result of the local projec-
tion. In this case, tuple balancing is performed. This is
followed by an RC step in which nodes eliminate dupli-
cates between the local tuples and the newly obtained
packet. When this step terminates, tuple balancing is per-
formed, and RC is retried. If RC is not possible, then the

algorithm enters the cycling phase in which the global du-
plicate elimination is performed.

4) Join: The join algorithm comprises three basic
primitives. First, tuple balancing is performed to ensure
even distribution of input tuples. Second, the RCR oper-
ation is performed both to reduce the cube (subcube) size,
if necessary, and to replicate the smaller relation to en-
hance parallel processing. Third, the cycling primitive is
used to send the tuples of the smaller relation around in a
ring and perform local joins in each node.

IV. P E R F O R M A N C E E V A L U A T I O N

In this section, we investigate the performance of our
proposed protocol verification system. Obviously, an ex-
act analysis of algorithm performance depends critically
on the details of the protocol to be verified, particularly
the cardinality of the Z, J, and G relations computed in
the verification process. Because we wish to develop per-
formance estimates that generalize beyond individual pro-
tocols, we first examine the growth in state space for sev-
eral example protocols that can be verified easily on a
conventional uniprocessor database system. To provide a
framework in which to examine the ability of parallel pro-
cessing techniques to improve performance in verifying
much larger protocols, we then define a synthetic protocol
called the binary tree protocol. We use this protocol to
evaluate the performance of our approach on a protocol
with over five million global-state transitions.

A. Examples of State Space Growth
Using a modified version of the REPROVER verifica-

tion software described in [171, we verified four relatively
small protocols: the simple connection establishment pro-
tocol described in Section II, the example process inter-
action protocol from [18], [27], X.21 [26], and the binary
synchronous (bisynch) protocol [lo]. Table V illustrates
the cardinality of the Z, J, and G relations for each pro-
tocol; the largest, the binary synchronous protocol, has
354 states in its global-state transition relation G. Table
V shows a consistent pattern across the four protocols
studied. In each, the number of possible transitions (Z 1 is
large, but the number of transitions reachable from the
initial state is only a small subset of those in I. In each
case, the size of the global-state transition space 1 G 1 is
substantially larger than 1 J 1, roughly equivalent to I Z (.
Fig. 5 shows the size of the final global-state transition
relation I G I for each protocol plotted as a function of the
size I H (+ I RI of the original process specification for
that protocol. In our sample of four protocols, I G I grows
slightly worse than linearly with (H I + I RI.

B. The Binary Tree Protocol
Our interest in applying computational parallelism to

the problem of protocol verification is to allow the veri-
fication of very large protocols, much larger than the rel-
atively simple protocols that we verified using RE-
PROVER. To provide a concrete basis for exploring the
potential performance of our approach, we define a simple

FRIEDER AND HERMAN: VERIFICATION USING DATABASE TECHNOLOGY

T A B L E V
RELATION SIZES FOR FOUR EXAMPLE PROTOCOLS

1 0 0 0

1 0 0
E

IO

1 , . , , , ,, ‘, , , , , , ,,,, . . . , , ,,lj

1 IO 1 0 0 1 0 0 0
IW + IRI

Fig. 5. Size of global-state transition relation G versus number of initial
process transitions) H) +) R),

family of synthetic protocols called binary tree protocols.
As Fig. 6 illustrates, the digraph for each member of this
family consists of a binary tree of depth d. A protocol
process of depth d comprises 2d - 1 states; each of the
first 2d-’ - 1 states has one parent state and two child
states. One child state is reached by transmission of the
message M(-M in our notation). The other child state is
reached when message M is received. The final 2d-’
states, those at level d in the tree, have only one child
state-the initial state of the protocol. At this level, either
transmission or reception of message M returns the pro-
cess to its initial state. The entire message vocabulary of
the protocol consists of the single message, M.

While the binary tree protocol is logically trivial, it al-
lows creation of protocols with predictable large state
spaces that are purely a function of depth d. The number
of tuples in each of H-A, H-B, R-A, and R-B relations
is2d - 1. Because every state has a transition defined for
the only message that can be sent, the Z relation generated
in Step 2 has the maximum possible cardinality, 2(2d -
1)2. However, the binary tree protocol has a very restric-
tive structure; the J relation has only 2 (2d - 1) tuples.
The final global-state transition relation G, with the chan-
nel capacity restricted to one message, ’ includes G(d)
tuples where

G(d) = 3G(d - 1) + C(d - l),

C(d) = C(d - 1) - 2d

and C(1) = G(1) = 8.

‘In its simplest form, the binary tree protocol is unbounded in N, the
number of unreceived messages allowed in the channel.

. . .

Fig . 6 . B ina ry t r ee p ro toco l o f dep th d.

Fig. 5 also shows] G 1 versus] H 1 +) R I for the binary
tree protocol family for several values of depth d; the state
space for the binary tree protocol appears to expand some-
what more rapidly than we observed in our four sample
protocols.

A binary tree protocol of depth 7 has 127 transmission
and reception rules for each process that permit 32 258
possible system transitions, of which only 254 are reach-
able. The system has 7540 reachable global-state transi-
tions. REPROVER required over 15 h of CPU time on a
SUN 3/160 to execute the verification algorithm for this
protocol. In comparison, REPROVER verified the bi-
synch protocol in 25 min.

C. VeriJication Performance on a Hypercube

A precise performance model for verification on a hy-
percube requires a detailed analysis of algorithm timing
for each step described in Section II, as well as a model
of query compilation, query distribution, data loading,
etc., on the hypercube. Our goal in this section is to es-
timate the relative benefit we can expect in applying par-
allelism to the problem of protocol verification. To ad-
dress this question, it is sufficient to evaluate the
performance of the hypercube algorithms on the multiscan
join operation and neglect the times associated with the
remaining single-scan operations such as selection and
renaming. Ignoring the times corresponding to the single-
scan operations simplifies the analysis and does not sig-
nificantly effect the results since the join times greatly
dominate the single-scan operation times [141.

Throughout this analysis, we assume that each hyper-
cube node consists of a conventional 2 MIPS CPU, in-
dependent communications processors with associated
buffers, 64 Mbit/s bidirectional communication links, and
a large local memory. Besides the link speed, factors af-
fecting internode communication overhead include the
delays incurred in packet setup and decomposition and the
maximum packet size allowed in the system. Based on
existing systems, we assume that the hypercube supports

3 3 2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

a maximum packet size of 64 Kbytes and a packet pro-
cessing time of 3 ms. We assume that each tuple requires
40 bytes of storage; in terms of CPU time, in our evalu-
ation, each tuple comparison in the join operation requires
10 instructions. To explore the value of parallelism in ver-
ifying complex protocols, we demonstrate our approach
using the depth 10 and depth 13 synthetic protocols de-
scribed above.

Recall that in the binary tree protocol the number of
tuples in each of the H-A, H-B, R-A, and R-B relations
is 2d - 1 where d is the depth of the tree. If d = 10, Step
1 of the algorithm generates the above four relations, each
comprising 1023 tuples. We assume that the tables are
loaded into the hypercube system from a “user,” and the
four tables are all resident at a single node. We begin our
analysis with the first stage of Step 2, the generation of
all possible transitions Z allowed by the transmission and
reception transition relations.

For the depth 10 synthetic protocol, the steady transi-
tion relation Z can be computed through a 2046 by 2046
tuple join, combining the H-A by R-B and H-B by R-A
joins into a single operation. The time necessary to com-
pute this join is shown in Fig. 7. As shown, the minimum
execution time of roughly 34 ms. occurs on a two node
system; depending on the number of nodes involved, ex-
ecution time varies from 34 to 70 ms. Because the number
of tuples is small and were assumed to exist initially in a
single node (the worst case distribution), the balancing
and RCR primitives dominate the total execution time,
representing 44 and 32 percent, respectively, of the total
time for N = 2. Note that when the number of processors
exceeds 2, the added parallelism degrades the overall per-
formance. The increase in the join processing time results
from partitioning the computational load over too large a
set of nodes, so that the overhead of internode commu-
nication is greater than the computation time reduction
obtained via parallel execution.

The result of the 2046 by 2046 tuple join is an output
relation Z containing 2 093 058 tuples. We assume that Z
is partitioned across the nodes of the hypercube such that
no node contains a portion of Z that is more than 4 times
the portion contained in any of its neighbors. Determining
the the set of actual reachable steady transitions, relation
J requires a sequence of d joins, the most complex of
which consists of 2 093 058 by 2046 tuples. Upon com-
pletion of Step 2, we obtain a J relation comprising 2046
tuples. Transforming J into the global-state transition re-
lation G requires a sequence of single and multiscan op-
erations, the most complex of which requires a join of
) G 1 by (1 H 1 +) R () tuples, or 198 872 by 2046 tuples
for the depth 10 binary tree.

Fig. 8 illustrates the effect of increased parallelism on
join computation performance in creating the Z, J, and G
relations. Clearly, computing the largest join (for J)
dominates the other operations in terms of time required.
In forming relation J, parallelism is successfully ex-
ploited for all hypercube sizes investigated; near linear

0 2 0 40 60 00 100 120 1 4 0

Number of Processors

Fig. 7. Join computation times for relation I for depth 10 binary tree pro-

* Form1
* Form J
+ FormG

,011
1 0 1 0 0

Number of Processors

Fig. 8. Join computation times for relations Z, J, G for depth 10 binary
tree protocol.

speed-up is obtained for all hypercube sizes up to 64
nodes, and use of 128 nodes provides a factor of 100 re-
duction in processing time. In forming relation G, perfor-
mance fails to improve for systems greater than 32 nodes
in size.

Parallelism has even greater impact on more complex
protocols. For example, each process in a depth 13 binary
tree protocol consists of 8191 initial states and 16 382
transitions. In computing the Z relation, two 8191 by 8191
tuple joins are required. Relation J is formed via a se-
quence of 13 joins, the most complex of which requires
the join of two relations of 134 184 962 tuples and 16 382
tuples; the most complex join required to compute G con-
sists of 5 330 788 by 16 382 tuples. The times required
to compute these joins are shown in Fig. 9. Linear speed
up is now achieved for both the J and G join computa-
tions. Executing these algorithms on a 128 node hyper-
cube instead of a uniprocessor can reduce computation
time from several hours to a few minutes.

Finally, we conclude our analysis by comparing the
gains due to parallelism as the depth of the binary tree
protocol varies from 2 to 13, or from 32 to 5 330 788

FRIEDER AND HERMAN: VERIFICATION USING DATABASE TECHNOLOGY 3 3 3

* Form1
* F o r m J
* FormG

.1 -I . . .‘.“I . ““‘1 . . ” .J
1 1 0 1 0 0 1 0 0 0

Number of Processors

Fig. 9. Join computation times for relations 1, J, G for depth 13 binary
tree protocol.

G
t
E
F

Fig. 10.

10-3

1 o-4
1 1 0 1 0 0 1 0 0 0

Number of Processors

Join computation times for the global-state transition relation G
for the binary tree protocol family.

global-state transitions. Fig. 10 shows the times required
to compute the largest jo in in the process of t ransforming
J in to G for the family of b inary t ree protocols . As shown,
as the complexi ty of the jo in opera t ion increases (the depth
of the pro tocol i s increased) , the benef i t s due to para l le l -
ism also increase. For relatively small protocols, paral-
lelism is detrimental.

V . S U M M A R Y

The verification of complex protocols is an important
problem for both the research and the development com-
munities. This paper described an approach to verifying
complex communicat ions protocols based on implement-
ing the relational database algorithms for protocol verifi-
cation from [171, [181 us ing da tabase pr imi t ives des igned
for the hypercube multicomputer [5]. Suggested exten-
sions to the basic approach included the verification of
protocols represented in the EFSA model and the use of
backtracking to determine faulty paths that generate un-
des i rab le g loba l s t a t e s . Us ing a syn the t i c p ro toco l whose
state space growth character is t ics resemble those of real

protocols , we showed tha t our approach can achieve near-
linear speedup of the verification process for up to 128
processors, or more, depending upon the complexity of
the particular protocol involved. Commercial systems
come with up to 16 384 nodes. Our results suggest that,
when implemented, this approach can reduce the verifi-
cation time for complex protocols from many hours to a
few minutes.

We are implementing the system described here and ex-
tending the verification model to a more general class of
communicat ing concurrent processes .

A C K N O W L E D G M E N T

The authors would like to thank M. Lai and T. Lee for
assistance in this research, M. Agron for her investiga-
t ions of the behavior of protocols us ing REPROVER, and
C. H. Chow and G. Gopal for their comments on earlier
drafts of this paper.

REFERENCES

]l] S. Aggarwal, R. Alonso, and C. Courcoubetis, “Distributed reach-
ability analysis for protocol verification environments,” in Discrete
Event Systems: Models and Applicatiom. P. Varaiya and A. Kuzhan-
ski , Eds. New York: Springer-Verlag, 1987, Lect. Notes. Contr.
Inform. Sci., pp. 40-56.

121 S. Aggarwal, D. Barbara, and K. 2. Meth, “A software environment
for the specification and analysis of problems of coordination and con-
currency,” IEEE Trans. Sojiware Eng.. vol. 14. pp. 2X0-290. Mar.
1988.

[3] C. K. Baru and 0. Frieder, “Implementing relational database op-
erations in a cube-connected multicomputer,” in Proc. /EEE Third
Int. Conf: Data Eng., Feb. 1987, pp. 36-43.

[4] C. K. Barn, 0. Frieder, D. Kandlur, and M. Segal. “Join on a cube:
Analysis, simulation, and implementation,” in Proc. 5th Int. Work-
shop Database Mach., Japan, 1987, pp. 74-87.

[5] C. K. Batu and 0. Frieder, “Database operations in a cube-connected
mul t icomputer system,” IEEE Trans. &nput.. to be published.

16) B. Beckman, “Distributed simulation and the time warn ooeratine
’ ’ -sys tem, ” Proc. ACM S.O.S.P., pp. 77-93, 1987.

[7] D. Bergmark, J. M. Francioni, B. K. Helminen, and D. A. Po-
plawski, “On the performance of the FPS T-series hypercube,” pre-
sented at Proc. 2nd Co@ Hypercube Multiprocess., Sept., 1986.

[8] D. Brand and P. Zafiropulo, “On communicating finite-state ma-
chines,” J. ACM, vol. 30, no. 2. pp. 323-342, 1983.

191 T. Y. Choi, “Formal techniques for the specification, verification.
and construction of communication protocols,” IEEE Commun. Mug . .
vol. 23, pp. 46-52, Oct. 1985.

[IO] C. Chow. M. G. Gouda, and S. S. Lam, “A discipline for construct-
ing multiphase communication protocols,” fEEE Trrrr~s. Sofr~~urr
Eng., vol. 14. pp. 327-338. Mar. 1988.

I I] C. J. Date, An Introduction to Database Systems, Volume I. Read-
ing, MA: Addison-Wesley, 1986.

121 G. Fox, “Use of the Caltech hypercube,” IEEE Truns. St@nre Eng..
vol . SE-I 1, p. 73, July 1985.

131 K. A. Frenkel, “Evaluating two massively parallel machines,” Co,rr-
mm. ACM, vol. 29, no. 8, pp. 752-758, 1986.

141 0. Frieder. “Database processing on a cube-connected multicompu-
ter,” Ph.D. dissertation, Univ. of Michigan, Ann Arbor. 1987.

151 J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and J. Palmer,
“Architecture of a hypercube supercomputer,” in Proc. Int. Conf.
Parallel Process., Aug. 1986, pp. 653-660.

1161 Intel iPSC Data Sheet, Order 280101-001. 1985.
1171 M. Y. Lai and T. T. Lee, “Protocol verification using relational da

tabase systems,” in Proc. IEEEErdInt. Conf: Dutu Eng.. Feb., 1987,
pp. 347-354.

[18] T. T. Lee and M. Y. Lai, “A relational algebraic approach to pro-
tocol verification.” IEEE Trans. Software Eng., vol., pp. 184-193,
Feb. 1988.

3 3 4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. I, NO. 3, APRIL 1989

[19] J. C. Peterson, J. 0. Tuazon, D. Lieberman, and M. Pniel, “The
MARK III hypercube-ensemble concurrent computer,” in Proc. ht.
Conf. Parallel Process., Aug. 1985, pp. 11-73.

[20] A. P. Reeves and D. Bergmark, “Parallel Pascal and the FPS hyper-
cube supercomputer,” in Proc. Int. Conf: Parallel Process., Aug.,
1987, pp. 385-388.

[21] C. Seitz, “The Cosmic Cube,” Commun. ACM, vol . 28 , no . 1 , pp .
22-33, Jan. 1985.

[22] D. P . S idhu and T . P . Blumer , “Verification of NBS class 4 transport
protocol,” IEEE Trans. Comrmm., vol. COM-34, pp. 781-789, Aug.
1986.

[23] M. Stonebraker, J. Anton, and E. Hanson, “Extending a database
system with procedures,” ACM Trans. Database Syst., vol. 12, no.
6, pp. 350-376, 1987.

[24] C. A. Sunshine, “Survey of protocol definition and verification tech-
niques, ” in Computer Networks. New York: North-Holland, 1978,
pp. 346-350.

[25] J. Tuazon, J. Peterson, M. Pniel, and D. Lieberman, “CALTECH/
JPL MARK II hypercube concurrent computer,” in Proc. Int. Con$
Parallel Process., pp. 666-673, Aug. 1985.

[26] C. W. West and P. Zafiropulo, “Automated validation of a commu-
nica t ions p ro toco l : The CCITT X.2 1 r ecommenda t ions , ” IBM J. Res.
Develop., vol. 22, no. 1, pp. 60-71, 1978.

[27] P. Zafiropulo, C. H. West, D. D. Cowan, and D. Brand, “Towards
analyzing and synthesizing protocols,” IEEE Trans. Commun., vol.
COM-28, Apr. 1980.

Ophir Frieder (M’87) received the B.Sc. degree
(1984) in computer and communications science
and the M.Sc. (1985) and Ph.D. degrees (1987)
in computer science and engineering, all from the
University of Michigan.

He is currently a Member of Technical Staff at
Bell Communications Research. His research in-
terests include parallel and distributed architec-
tures, operating systems, fault-tolerant systems,
and database systems.

Gary E. Herman (M’SI) r e c e i v e d b o t h t h e B . S . E .
(1971) and Ph.D. (1975) degrees in electrical en-
gineering from Duke University, Durham, NC.

From 1976 to 1983 he worked at Bell Tele-
phone Laboratories. In 1984 he was a founding
member of the Applied Research Area of Bell-
core. He currently is Division Manager of the
Network Systems Research Division at Bellcore,
where his research interests include several as-
pects of large scale distributed systems, including
scalable transaction system architectures, system

verification and testing, and software fault tolerance.

