324 | EEE JOURNAL ON SELECTED AREAS | N COWLN CATIONS, VAL. 7, NO 3, APRL 1989

Protocol Verification Using Database Technology

OPHIR FRIEDER, wemser,

| EEE,

Abstract-We describe a novel application of database technologies
in communications networks: protocol verification on a parallel database
machine. We introduce an approach to protocol verification that ex-
ploits database algorithms executing on a commercially available, par-
allel architecture called a hypercube multicomputer. With this ap-
proach, we seek to achieve the high degree of computational parallelism
necessary to explore rapidly the global-state space of even very com-
plex protocols, significantly reducing the time required to verify a pro-
tocol and allowing formal verification to be included as part of the pro-
cess of protocol design. Our approach is based on the relational
database algorithms for a hypercube system presented in [3], [4] and
the relational algebra approach to verification of finite-state protocols
presented in [17], {18].

| . INTRODUCTION

N A COMMUNICATIONS network, a protocol is a ligt

of rules/policies that controls and synchronizes the in-
teractions of entitiesin the network. A difficult practical
and theoreticdl issue in the design of protocols is protocol
verification, the validation of the logical correctness of
the rules governing the interactions of network entities.
When protocols ae modded a communicating finite tate
machines, reachability analysis can be used in the pro-
tocol desgn phase to explore the globd dates of the s
tem to detect undesirable behaviors, e.g., deadlocks and
unreachable states, exhibited by the protocol under de-
dgn. Once detected, these flaws can be corected and the
new verson of the protocol tested agan.

While reachability analysis has been used for formal
verification of protocols of low to moderate complexity
[81, [24], [26], the practical use of reachability analysis
for more complex interactions has been condraned by the
problem of date space exploson. That is, as the network
of communicating finite-state machines increases in com-
plexity, the total number of possible global states grows
very rapidly. Searching the global-state space to deter-
mine invalid states and detect design errors becomes so
time consuming asto be impractical asanintegral part of
the process of protocol desgn. One approach to this prob-
lem isto investigate design and analysis techniques for
protocols that effectively reduce the size of the global-
state space that must be actively explored. However, an
aternative approach, which forms the basis for our re-
seach, is to aply padld processng techniques to search
the global-state space more rapidly. As parallel process-
ing machines incorporating large numbers of processing
elements leave the research arena and become commer-
cially available, this latter approach has the potential for

Manuscript received December 10, 1987; revised September 15, 1988.
The authors are with Bellcore, Morristown, NJ 07960-1910.
IEEE Log Number 8826072.

ano GARY E. HERMAN,

MEMBER, | EEE

sgnificant, practical
lems.

Use of parallel processing techniques (e.g., [1]) toim-
prove the efficiency of protocol verification requires res-
oution of severd issues commonly encountered in devel-
oping efficient paralld agorithms. These include
bdancing the computationd load across many processors,
achieving an appropriate balance between communica-
tions and processing for the dgorithm, and synchronizing
dgorithm ~ execution across many processing nodes. In this
paper we show that, since the process of protocol verifi-
cdion can be dexribed in tems of relaiond dgebra [17],
[18], algorithms previously developed for efficient exe-
cution of database operations on a parallel machine [3]
can be applied directly to reduce dramatically the time
required for protocol verification. The algorithms sup-
porting the database operations resolve the issues of bal-
ancing and synchronization; further ‘algorithm devel op-
ment specific to parallel implementation of protocol
verification is not required. Thus, in this paper we de-
scribe a novel application of database technologies in
communications networks: protocol verification on a par-
allel database machine.

Specifically, we describe an efficient parallel imple-
mentation of reachability analysis for protocols described
as communicating finite-state machines, based on the
original algorithms described in[171,118] and, using da-
tabase operations, describe extensions of the basic ap-
proach to encompass protocols described in terms of the
extended finitestate atomata (EFSA) modd [9]. The ta-
get implementation environment of this goproach is a par-
alel processing machine called a hypercube multicom-
puter. We chow that describing the verification process in
terms of relational algebra and executing the relational
database operations on a hypercube make possible formal
verification of protocols with numbers of global states
several orders of magnitude larger than protocols consid-
ered “difficult” (e.g., the NBS Class IV transport pro-
tocol [22]) today. We dso show that this approach is scal-
able; that is, “larger” verification problems can be made
tractable by application of larger amounts of computa-
tional parallelism, using the same database algorithms.

In this approach, protocols are represented as a set of
tables, or relations, with each row, or tuple, in the rela-
tion describing a state and potential transition from that
dae in the finitedtale machine representation of the pro-
tocol. Using these relations, the reachable global states
can be determined by an iterative sequence of relational
join, projection, union, and difference operations that

impact on protocol verification prob-

0733-8716/89/0400-0324$01 .00 © 1989 |EEE

FRIEDER AND HERMAN: VERIFICATION USING DATABASE TECHNOLOGY

eventually generates a global-state transition relation for
the system. This final relation can be examined by spe-
cific database queries, again described in terms of rela-
tional algebra, to detect the presence of undesired behav-
ior. Although the expression of the protocol and the
verification process in relational algebra is relatively
straightforward, the large volume of data and number of
comparisons involved in verifying even a smple protocol
make formal verification using conventional database sys-
tems quite time consuming in practice. In this paper, we
show that general purpose database algorithms executing
on a parallel processing machine can significantly reduce
the time required to generate the global -state space and
examine it for design flaws.

In Section |1, we provide an overview of the relational
model of protocol verification introduced in [17],[18].
Extensions to this model are also described. Section I11
describes the hypercube multicomputer and the algo-
rithms for relational database operations designed to ex-
ecute in that environment. Estimates of the performance
improvements achievable by parallel execution of verifi-
caion dgorithms in the proposed sysem ae described in
Section IV. A summay of our results is presented in Sec-
tionV.

A RELATIONAL MODEL OF PROTOCOL
VERIFICATION

We provide only a brief overview of the relational al-
gebra approach to protocol verification originaly de-
scribed in[18]; the reader isreferred to the original paper
for a more complete and formal description. Asin [18],
we illutrate the approach using the example of the smple
connection establishment protocol presented in [26]. The
state transition diagrams for this protocol are illustrated
in Fig. 1.

The protocol verification process proceeds as a se-
guence of single-scan (selection, column substitution,
column renaming) and multiscan (join, projection, differ-

z = (HA TIMES R B (WHERE

(H.B TIMES R-A (WHERE

ence, and union) database operations. Multiscan opera-
tions ae so-cdled because they require tha vaues of a-
tributes in each row (representing a “state” or “state
transition” in the protocol sense) be compared to values
in every other row in the relation, effectively requiring
multiple scans of the data. Aswe describein Section 1V,
execution of the protocol verification algorithm on a par-
allel machine is heavily dominated by time required to
execute the multiscan relational operations. The other,
dnglescan, operations involved (sdlection, renaming, and
replacement) do not significantly affect the performance
of our achitecture for “large” protocol veification tasks.
Consequently, we emphasize the role of multiscan oper-
ations.

325

PROCESS A PROCESSB

ON‘ON ~ON . ON

Fig. 1. State transition diagrams for a simple connection-establishment
protocol.

Bascdly, the veification process proceeds in five seps

Step 1: Transform the digraph protocol specification
into tables, called transition relations; a transmission re-
laion (HHA ad H_B) and reception relaion (R-A and
R B) exig for processes A and B, respectively. As Table
| illugrates, the atributes of each relaion include the cur-
rent dae the event triggering a dae transtion from tha
state, and the state to be entered upon encountering the
triggering event (a message reception or transmission).

Sep 2 Cree the sydem transtion relation for a stead
system [18] -~ defined to be a system in which only one
message is dlowed to be transmitted a& a time In a Seady
system, no message may be sent until the previous mes-
sage is received, and processes do not receive messages
simultaneously. Stable states are global states with both
channels empty; transitions between stable global states
occur when the triggering event in the reception relation
of one process matches the event in the transmission re-
lation of the other process. Thus, the globd st Z of pos
sible steady transitionsisfound by thejoin of the trans-
misson relaion for process A with the reception relation
for process B union the join of the reception relaion for
process A with the transmisson relation for process B, in
both cases for the join condition TRIGGER-A =
-TRIGGER-B. In the notation of [11],

TRIGGER-A
TRIGGER-B

-TRIGGER-B)) UNION
-TRIGGER-A)).

The relation Z is a relation on the set of attributes
{ PRESENT-STATE-A PRESENT-STATE-B, TRIG-
GER-A, TRIGGER-B, FUTURE-STATE-A, FU-
TURE _STATE_B}. The relation Z is the set of global
transitions defined by the protocol state transition rules
when only one process may send a message a a time

All of thee posshle globd seady trangtions typicaly
are not reachable from the initia state pair (0, 0 in Fig.
1). We determine the st of reachable dates P by begin-
ning with the initial state P, ={ 0, 0} and searching for
reachable global states through an iterative sequence of
joins involving I. Essentially this process starts the sys-
tem at state (0, 0); the first join determines the states P,
that can be reached directly from (0, 0). The second join

326 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

TABLE |
PROCESS TRANSITION RELATIONS FOR THE SIMPLE CONNECTION
ESTABLISHMENT PRoTocOL. (@) PrRocess A TRANSMISSION RELATION,
H-A. (b) PROCESS A ReceprTion REeLATION, R-A. (c) Process B
TRANSMISSION RELATION, H-B. (d) PrRoOCEss B REcEPTION RELATION,

Present Future
State Trigger State
A A A
0 -ON 1

@)

Present Future
State Triggger | State
A A A
0 ON 1
1 OFF 0

(b)

Present Future
State Trigger State
B B B
0 -ON 1
1 -OFF 0
©
Present Future
State Triggger | State
B B B
0 ON -1

@

yields the global states P, that can be reached directly
from Py; the sequence continues until no new states re-
ault. The st of rechable globd dates P is then given hy
the union of the P; relations. With P determined, the set
of reschable deady ftranstions J is given by

J = PJOINZ.

The cardinality of J (the number of reachable transi-
tions) is less than or equal to the cardindity of Z (the num-
ber of possible legal transitions); as we show in Section
IV, typically J is much smaller than L. Table Il illustrates
the set of reachable steady transitions for our example
protocol.

Step 3: In this step, we begin the transformation of the
deady transtion relation J into the global-state transition
rdaion G. Reference [18] decribes this pat of the trans
formation as the result of the union of four separde joins
of arelation comprising a single tuple on projections of
restrictions of relation J; the joinsin this step can be re-
placed by an equivdent st of more essly computed Sn-
gle scan selection and attribute append operations. This
process separates the effects of message transmission by
A, message reception by B, message transmission by B,
and message reception by A, on global-state transitions
and introduces the concept of channels for messages sent
from A to B (A-TO-B) and from B to A (B-TO-A). The
introduction of the concept of channels and unreceived
messages in those channels increases the size of the re-
lations involved. For example, if the channel can contain
one unreceived message, the cardinality of G following
this step is exactly twice that of J. Each row inJ (atran-
sition resulting from a message transmission-reception
pair) generatestwo rowsin G, one for the transition that
occurs when the message is sent, and the second for the

TABLE 11
REACHABLE STEADY TRANSITION RELATION,]

Present | Present Future | Future
state State Trigger Trigger | State State
A B A B A B
0 0 -ON ON 1 1
0 0 ON -ON 1 1
1 1 OFF -OFF 0 il 0

transition resulting from the corresponding message re-
ception. G, for our example, is shown in Table |11 under
the assumption that a channel can contain only asingle
message. Fig. 2 interprets G as a finite-state automaton
(FSA).

Step 4: In this step, we remove the restriction that the
system is operated steadily (that is, both processes may
transmit messages simultaneously) and expand G to in-
clude new globd daes aising due to multiple messages
present in the transmission channels, up to the maximum
message capacity N of the channels. This process in-
volves an iterative sequence of at most N joins of the
global transition relation G with transmission (H) and
reception (R) relations of the two processes. The result-
ing Gisarelation on (4 N + 6) attributes where N isthe
maximum number of messages allowed to be outstanding
in the channel. At this point, the global-state transition
relation G includes a tuple for all alowable (under the
rules of the protocol) combinations of current states (at-
tributes PRESENT-STATE-A and PRESENT STATE
B), current states of the channel (PRESENT_
B TO A[1], . <. , PRESENT _B_TO A[N | and PRE-
SENT_A TO Bf1], ' '+ , PRESENT-A-TO B[N]), the
message(s) that will trigger the next transition (TRIG-
GER-A, TRIGGER-B), the states that A and B will reach
when the next message is transmitted or received (FU-
TURE-STATE-A, FUTURE-STATE- B) , and the
states the channels will reach when the next
message is received or transmitted [FUTURE_
B TO_A[1], .+, FUTURE B TO A} N 1and FU-
TURE_ A _TO_B[1],++. , FUTURE A_TO B[N]).
This process dso generates a second relation S, the global
process state relation, that includes all possible states of
the processss and channds. Relation § is used in teting
the protocol for design errors. Thefinal global transition
space G for our exampleis presented in Table IV and as
an FSA in Fig. 3.

Step 5: Once the global-state transition relation G has
been determined, the protocol can be tested for design
errors using relational algebra. Deadlock states are de-
tected by taking the difference of two projectionson G.
This operation finds those reachable state pairs (FU-
TURE-STATE-A, FUTURE-STATE-B) that do not
aso appear as (PRESENT-STATE-A, PRESENT_
STATE-B) pairs and, therefore, cannot be left once
reached. Similarly, projections on S can identify all com-
binations of process state and incoming messages (A,
PRESENT-B-TO-A) and { B, PRESENT-A-TO-B)
that the protocol dlows to occur. If the transtion rule for
any such pair cannot be found in the process reception

FRIEDER AND HERMAN: VERIFICATION USING DATABASE TECHNOLOGY

TABLE 111
STEADY Q.CBAL- STATE TRANSITION ReELATION (STEP 3)
[Present | Present Future | Future
State State |Present | Present | Triggger | Triggger | State State | Future | Future
A B BtoA |AtB A B A | B BtoA |AwB
0 0 0 0 0 -ON 0 1 ON 0
0 1] 0 0 -ON 0 1 0 0 ON
0 1 ON 0 ON 0 1 1 0 0
1 0 0 ON 0 ON 1 1 0 0
1 0 OFF 0 OFF 0 0 0 0 0
1 1 0 0 0 -OFF 1 0 QOFF 0
0, -OFF
Present Future ()
(OFF, 0)

Channel
contents

Fig. 2. Steady global-state transition diagram.

TABLE 1V
FiNaL QoBAL- STATE TRANSITION ReLATION, G
Present |Present Future [Future

State | State [Present |Present |Trigger [Trigger State | State | Future | Future
A B BioA {AtoB A B A B BioA |A0B
0 0 0 0 0 -ON 0 1 ON 0
0 0 0 0 -ON 0 1 0 0 ON
0 1 ON 0 -ON 0 1 1 ON ON
0 1 ON 0 ON 0 1 1 0 0
1 0 0 ON 0 -ON 1 1 ON ON
1 0 0 ON 0 ON 1 1 0 0
1 0 OFF 0 OFF 0 0 0 0 0
1 1 0 0 0 -OFF 1 0 OFF 0

Present Future .

Channel
Contents

Fig. 3. Final global-state transition diagram.

relations R-A and R-B, then the protocol is incompletely
specified. Nonexecutabl e interactions are determined by
taking the differences between each of the H and R rela-
tions and projections on G to detect those transition rules

327

in the H and R relations that are never exercised by the
protocol.

For our example protocol, Step 5 identifies the dead-
lock state (A: 1, B: 1, A-TO-B: ON, A-TO-B: ON), a
design flaw in the protocol that occurs when both pro-
cesses leave state 0 by simultaneously transmitting ON
messages.

1) Model Extensions: In addition to verifying proto-
cols that are represented as finite-state automatons
(FSA’s), the relational algebra verification model can be
extended to support the verification of protocols repre-
sented in the extended finite-state automaton model
(EFSA) [9]. In the EFSA model, each super-state for pro-
cess A consists of a set of internal state variables, A =
{al, M, a3 ', a, }, and corresponds to a set of states
in the FSA model. An instantiation of a superstate equates
a specific value to each internal state variable a;, 1 <i
< p. Since each superstate corresponds to a set of states
in the FSA model, protocols comprising many states in
the FSA model can be described in relatively few states
in the EFSA model. Hence, protocols that are too com-
plex to be described in the FSA model can be specified
using the EFSA model.

The verification of protocols represented using the
EFSA model proceeds in a similar manner to the approach
described above. However, instead of, for example, find-
ing the set of valid state transitions through a join with a
simple Boolean match operation on the join attribute, a
procedure(s) which evaluates the composite set of inter-
nal-state variables, a;, 1< i =< p for process A and bj, 1
< j =<t for process B is invoked. A tuple match (and
valid state transition) exists for any tuple (state) pair, one
tuple from each of the two joining relations, whose attri-
butes satisfy the transition constraints expressed in the
procedure. The individual transition procedure appropri-
ate for a given transition can also be stored as a tuple
attribute [23].

Invoking procedures, instead of computing simple
joins, significantly increases the computational burden per
tuple match. Whereas ajoin requires only afew CPU in-
structions per tuple, invoking a procedure may result in
the execution of hundreds of instructions per tuple match.
Although supporting procedure invocations as part of the
verification process complicates the implementation, it
also significantly increases the range of applications that
can benefit from the proposed verification tool and raises
the possibility that his approach may permit formal veri-
fication of programs written in languages that can be mod-
eled using an EFSA or other description (cf. [2]). The
verification of more complex constructs like programs is
beyond the scope of this paper and is left for future work.

To enhance the functionality of the protocol verification
system, we can incorporate error backtracking as part of
the implementation of the verification system. In verify-
ing complex protocols, it is not sufficient to know that a
faulty state can be reached; the faulty path should be iden-
tified. To obtain the faulty path, the verification system
initially obtains all the unsafe states (see Step 5). Once

328 | EEE JOURNAL ON SELECTED AREAS | N COWLN CATIONS, VOL. 7, NO 3, APRL 1989

these states are identified, a modification of the verifica-
tion algorithm can be applied iteratively to identify the
predecessor states to the known unsafe states. After each

dep, the newly generated predecessor date tables ae out-
put and checked, until, eventualy, all possible faulty
paths from the initial system state to a faulty state have

been identified. At this point, the appropriate corrective
modifications to the protocol can be attempted, and the
verification process begun once again.

|||. DATABASE MACHI NES AND

ARCHI TECTURES

Practical use of the approach to protocol verification
using algorithms described by relational algebra requires
a computing system that implements the multiscan rela-
tional operations, like join, very efficiently-much more
efficiently than do the general purpose database systems,
on which the approach was implemented initially [17].
Many different designs for database machines have been
proposed in the pest to solve the problem of efficient pro-
cessing of multiple-join queries. However, due to their
specialized nature, database machines have remained
mainly in the research arena and have achieved only lim-
ited commercid success. The falure of many such specid
database machines to become commercially viable has
stimulated research on the use of more general multipro-
cessor/computer systems to support database processing.

Severd issues must be addressed in designing a pardld
architecture and algorithms for efficient execution of da-
tabase operations. First, the communications overheads
and computational loads should be balanced across the
nodes in the system, and an appropriate balance should
be achieved between communications and computation for
the distributed algorithm. Second, means must be pro-
vided for synchronizing the actions of the many process-
ing nodes. Third, the architecture and algorithms should
be scalable; that is the architecture and agorithms should
dlov grester computationd pardldism to be usdfully g
plied to solving “larger” problems. Finaly, for the ap-
proach to be practicd, the padld machine chosen a the
execution environment must be available-it must exist.

In the context of protocol verification, a balanced sys-
tem is achieved through two types of daa didribution a-
gorithms. Load balancing agorithms evenly distribute the
the descriptions of global states (i.e., the tuples in the
global-state transition relation G so as to equalize the
computational burden across the processing nodes in the
system. Even distribution is required because, otherwise,
a snge node may become overloaded with computational
demands and become the system bottleneck. Compaction
dgorithms increase the portion of a relaion dored within
a given node when necessary to reduce communication
overheads for the multiscan operations, like join, that re-
quire each tuple in one relation to be evaluated against
every tuple in the other relation. Thus, in a parallel en-
vironment, one seeks an appropriate balance between the
cods of the data digribution agorithms and the resulting

PARALLEL COMPUTER

benefits in
selves.

Performing any task in parallel requires the ability to
synchronize the agents which concurrently compute the
abtasks. In the database context, prior to computing Suc-
cessor joins, the nodes computing the loca joins must be
synchronized. In aloosely coupled, distributed environ-
ment, operation level synchronization is not easily
achieved since there is little or no hardware support for
internode coupling. In a paralel machine environment
such a a hypercube, node synchronization is directly sup-
ported by the architecture of the sysem and can easly be
used by the algorithms implementing the database oper-
ations.

Finally, modem parallel architectures are designed to
be scalable to very high levels of computational parallel-
ism. In the past, when the cost of the individua hardware
components (computers) was relatively high, parallel sys-
tems comprising some tens of nodes were investigated.
As the individual processing elements became more eco-
nomical, research addressed systems with hundreds [161,
[15], thousands [15], [13], and even tens of thousands of
processors [13]. However, the large number of compo-
nents in a padld sysem generdes problems of configur-
ing and programming thee sysems. Our approach to the
protocol verification exploits existing software routines
executing on acommercially available line of parallel ma-
chinesthat can be configured with avery high degree of
paralelism, thus avoiding the need to readdress these
problems.

the execution of the dasbase operdions them-

A. The Hypercube Multicomputer

Our implementation environment for the database op-
erations required to perform protocol verification is a
message passing architecture called a hypercube. A hy-
percube is an ndimensond Boolean cube, @,, defined a
a cross product of the complete graph K, and the (n -
1)-dimensional Boolean cube @, .. {, with @; = K,. Each
node is connected (or adjacent) to each of itsn = log, N
neighbors where N is the number of nodes. For example,
in afour-dimensional cube, @4, node 0000 is adjacent to
nodes 0001, 0010, 0100, and 1000. Fig. 4(a)-(d) identify
one-dimensional (2 node), two-dimensional (4 node),
three-dimensional (8 node), and four-dimensional (16
node) cubes, respectively. Note that each system com-
prises N = 2" nodes, withn being the cubical dimension
of the system. Existing, research-based hypercube ma-
chinesinclude CALTECH's Cosmic Cube [21], Jet Pro-
pulsion Labs MARK Il [25], and MARK I11 [12],[191,
[6], while commercially available hypercube systemsin-
clude INTEL’s IPSC [16], NCUBE’s NCUBE/10 [15],
and Floating Point Systems’ T/1000 series [13],[20].

Internode communication occurs by sending messages
contained in packets. A packet has variable size, with a
maximum packet size restricted to, say, 64 Kbytes. A
packet can be sent between ay two nodes in the system,
possibly being routed through intermediate nodes, and is

FRIEDER AND HERMAN: VERIFICATION USING DATABASE TECHNOLOGY

(@
Fig. 4. Various hypercube systems.

used to transfer a “significant amount” of data, in our
case tuples, between two nodes. Overhead for packet
communications is of two types. Packet transfer overhead
isthe time required to transmit a packet between nodes;
thistimeis afunction of the size of the packet, the inter-
node link speed (ranging from 8 to 64 Mbits/s for existing
systems), and the number of links traversed. Packet for-
mation overhead is independent of packet size; typical
packet formation times range from 0.5 to 5 ms.

Synchronization among nodes can be achieved either
through hardware support or strictly through software.
Software synchronization is achieved by forcing a receiv-
ing node to “hang” until a message arrives. Thus, the
arrival of a message synchronizes the two nodes. This
blocking send/receive technique can be generalized so as
to enable all nodes within the system to be synchronized.
A single designated node globally collects a synchroni-
zation message from all nodes in the system which
“hang” until an acknowledgment. When the designated
node receives avalue from all the nodes, it broadcasts a
reset value to all the nodes in the system, and all nodes
can resume their previous computation. Other hypercube
systems synchronize the processors via the use of global
synchronization lines. The algorithms we employ assume
that hardware global synchronization is available.

B. Relational Database Algorithms on a Hypercube

This section reviews algorithms that implement the re-
lational database operations on a hypercube multicompu-
ter by partitioning the relations, and hence the computa-
tional load, across the multiple processors. These
algorithms are described in more detail in[3],[5] and are
analyzed and evaluated through simulation and actual
benchmarks in[4]. To improve computational efficiency,

329

the algorithms presented below have been slightly modi-
fied from those presented in[5].

Typicaly, in implementing parallel algorithms the
number of nodes required to achieve best performance in
computing the desired task depends on the tradeoff be-
tween the average computation expected at each node and
the internode communication needed to compute the op-
eration. The optimum system size is the size that provides
an approximate timing balance between the computational
load assigned to each node and the internode communi-
cation which results; that is, in the optimum configura-
tion, the CPU is seldom idle waiting for data to arrive,
and communication is seldom blocked waiting for the
CPU to complete its operations on local data. If more pro-
cessors are used, the overhead resulting from the inter-
node communication tends to dominate the computation
timing benefits obtained by decomposing the operation
into suboperations and computing the suboperationsin
parallel. In short, as the number of nodes used increas«;
beyond the optimal number, so does the overall operation
completion time. This optimum configuration is operation
dependent; further, the data must be carefully organized
to take full advantage of the multiple processors for a
given operation.

The hypercube database primitives are of two types:
those that are used to support dynamic data redistribution,
i.e., the “on-the-fly” reorganization of datato promote a
better balanced workload, and those that directly imple-
ment the relational operations, such as select, join, etc.
We initially provide a brief narrative as well as pseudo-
code description of the data redistribution primitives.
After the explanation of the base primitives, we describe
the actual relational database operations-select, project,
and join-based on these primitives. Additional details on
the redistribution primitives and the database algorithms
on the hypercube are available in[14].

1) Data Redistribution: The following redistribution
primitives are necessary for the implementation of the re-
lational database operations on a hypercube.

a) Tuple Balancing-redistributes the tuples to
achieve a roughly even distribution across all the nodes,
avoiding uneven processor execution time. In the tuple
balancing pseudocode below, two relations are balanced
simultaneously.

1) Thelocal tuple counts of the relationsR, and R, are
computed.

2) During each stage j (1 < j <n,n= log; N), the
nodes whose addresses differ in thejth bit exchange their
local Rtuple count viathe fast packet transfer primitive,
and the node with the greater number of tuples (if any)
sends the excess tuples to the other. Simultaneously, the
nodes whose addresses differ in the ((j + 1) mod 5)th
bit balance R,. Thus, after completion of this step, the
nodes whose address differs in thejth bit contain roughly
the same number of R, tuples, while the nodes whose ad-
dress differsin the ((j + 1) mod n)th bit contain roughly
the same number of R, tuples.

330 | EEE JOURNAL ON SELECTED AREAS | N COMN CATIONS, VAL. 7, NO 3, APRL 1989

3) Thelocal tuple counts for R; and for R, are updated
at each node.

4) Steps 1 to 3 are repeated n times.

b) Relation Compaction and Replication (RCR)—
replicates the smaller relation R, originaly sored in a
cube of dimenson n, in such a manner that it will be rep-
licated in each of the two, equal-sized, dimenson n = 1,
logical, cube partitions of the original cube. The goal of
this primtive is to increase the number of tuples from R,
dored a each node until one packet sze of R, is present
at each node or untl R; has been fully replicated at each
node. This primtive ensures that packets used in the join
phase will be as fill as possble and that the packet for-
mation overhead per tuple will be minimized for the cy-
cing primitive

1) The locd tuple count of the relation to compact and
replicate is computed.

2) During each stage j (1 < j < n), the nodes whose
addreses differ in the jth bit exchange their locd R, tuple
count. RCR is possibleif the sum of the R, tuple storage
volumes in anode pair is less than one full packet size.
If RCR is not possible then aglobal control lineis set. If
RCR is possible then all nodes transmit their tuples to
their paired neighbor.

3) The tuple count for the compacted and replicated re-
lation is updated.

4) Steps 1 to 3 are repeated until either n RCR steps
have occurred or aglobal line indicating the termination
of the RCR opeation has been .

c) Relation Compaction (RC)-same as RCR but only
one of the logical cube partitions contains the data. This
operation compacts the data from a relation into fewer
nodes, until a fill packet sze of data exists at every node.
Again, the goal is to minimze per-tuple packet formation
overheads for the cycling primitive.

d) Cycle-create a hamiltonean cycle/ring within
each logical cube partition generated by ether the RC or
the RCR primitives, and pipeline the data packets
throughout the cyclefring. A hamiltonean cyde can be dy-
namcaly generated via the use of refledve Gray codes

2) Selection: Each node performs local selection in
parallel. If the results are to be collected, then an output
collection step is incorporated; otherwise no global op-
edion is necessary. As with dl the operations, operaion
termination is signaled via the use of global synchroni-
zation lines.

3) Projection: Initially, a local projection (removing
nonrelevant columns from each tuple and eliminating lo-
cal duplicates) is pefformed. Since not al nodes will nec-
essarily remove the same number of tuples, i.e., have the
same number of duplicates, the tuple distribution across
nodes may become skewed as a result of the locd projec
tion. In this case, tuple balancing is performed. Thisis
followed by an RC step in which nodes eliminate dupli-
cates between the local tuples and the newly obtained
packet. When this step terminates, tuple badancing is per-
formed, and RC isretried. If RC is not possible, then the

dgorithm enters the cycling phase in which the globd du-
plicate elimination is performed.

4) Join: The join agorithm comprises three basic
primitives. First, tuple balancing is performed to ensure
even distribution of input tuples. Second, the RCR oper-
dion is peformed both to reduce the cube (subcube) Sze
if necessary, and to replicate the smaller relation to en-
hance parallel processing. Third, the cycling primitiveis
used to send the tuples of the smaler reation around in a
ring and perform local joinsin each node.

V.

In this section, we investigate the performance of our
proposed protocol verification system. Obviously, an ex-
act analysis of algorithm performance depends critically
on the details of the protocol to be verified, particularly
the cardinality of the Z, J, and G relations computed in
the veification process Because we wish to develop per
formance estimates that generalize beyond individual pro-
tocols we fird examine the growth in date space for sev-
eral example protocols that can be verified easily on a
conventional uniprocessor database system. To provide a
framework in which to examine the ability of paralld pro-
cessing techniques to improve performance in verifying
much larger protocols we then define a synthetic protocol
called the binary tree protocol. We use this protocol to
eval uate the performance of our approach on a protocol
with over five million globa-state transitions.

A. Examples of State Space Growth

Using a modified version of the REPROVER verifica-
tion software described in [17], we veified four relatively
andl protocols the smple connection establishment pro-
tocol described in Section |1, the example process inter-
action protocol from [18],[27], X.21[26], and the binary
synchronous (bisynch) protocol [10]. Table V illustrates
the cardinality of the Z, J, and G relations for each pro-
tocol; the largest, the binary synchronous protocol, has
354 states in its global-state transition relation G. Table
V shows a consistent pattern across the four protocols
dudied. In each, the number of posshle transtions Z s
large, but the number of transitions reachable from the
initial state is only a small subset of those in I. In each
case, the size of the global-state transition space |G | is
substantially larger than J|, roughly equivalent to|Z|.
Fig. 5 shows the size of the final global-state transition
relation G for each protocol plotted as afunction of the
size H + R|of the original process specification for
that protocol. In our sample of four protocols, |G grows
slightly worse than linearly with|H + RI.

B. The Binary Tree Protocol

Our interest in applying computational parallelism to
the problem of protocol verification is to alow the veri-
fication of very large protocols, much larger than the rel-
atively simple protocols that we verified using RE-
PROVER. To provide a concrete basis for exploring the
potentid peformance of our agpproach, we define a sSmple

PERFORMANCE EVALUATI ON

FRIEDER AND HERMAN: VERIFICATION USING DATABASE TECHNOLOGY

TABLE V
RELATION SIZES ForR FOUR EXAMPLE PROTOCOLS
Hl + [Rt | 1] L1l 1G]
Connection Establishment 3 3 3 8
Process Interaction 7 9 5 22
X.21 51 383 59 238
Bisynch 69 1600 58 354

10000

Binary tree \

Sample protocols

vvvvv UL | AR | R A

| 10 100 1000
iH| + IR|

Fig. 5. Size of global-state transition relation G versus number of initial
process trandtions H +

family of synthetic protocols caled hinay tree protocols.
AsFig. 6illustrates, the digraph for each member of this

family consists of a binary tree of depth d. A protocol

process of depthd comprises2¢ 1 states; each of the

first297! = 1 states has one parent state and two child

states. One child state is reached by transmission of the
messsge M(—M in our notation). The other child date is
reached when message M is received. The final 297!

states, those at level d in the tree, have only one child
state-the initial state of the protocol. At thislevel, either
transmission or reception of message M returns the pro-
cesstoitsinitial state. The entire message vocabulary of
the protocol condds of the sngle messge, M.

While the binary tree protocol islogicaly trivial, it al-
lows creation of protocols with predictable large state
spaces that are purely a function of depth d. The number
of tuplesin each of H-A, H_ B, R-A, and R_B relations
is29 - 1 Becase evay dae hes a transtion defined for
the only messge that can be sent, the Z reldion generated
in Step 2 has the maximum possible cardinality, 2 (294 =
1)%. However, the binay tree protocol has a very restic-
tive structure; the J relation has only 2 (2¢ 1) tuples.
The find g¢loba-date transtion relation G, with the chan-
nel capacity restricted to one message, ' includes G(d)
tuples where

Gd) = 3G(d - 1) + C(d = 1),
Cd) = c(d = 1) = 2¢
and C(1) = G(1) = 8.

‘In its simplest form, the binary tree protocol is unbounded in N, the
number of unreceived messages allowed in the channel.

331

Fig. 6. Binary tree protocol of depth d.

Fig. 5 also shows G versus H + R for the binary
tree protocol family for severd vaues of depth d; the dtate
sgae for the binary tree protocol gppears to expand some
what more rapidly than we observed in our four sample
protocols.

A binay tree protocol of depth 7 has 127 transmisson
and reception rules for each process that permit 32 258
posshle sysem trangtions, of which only 254 ae reach-
able. The system has 7540 reachable global -state transi-
tions. REPROVER required over 15 h of CPU time on a
SUN 3/160 to execute the verification algorithm for this
protocol. In comparison, REPROVER verified the bi-
synch protocol in 25 min.

C. Verification Performance on a Hypercube

A precise performance model for verification on a hy-
percube requires a detailed analysis of algorithm timing
for each step described in Section I, aswell as a model
of query compilation, query distribution, data loading,
etc., on the hypercube. Our goal in this sectionisto es-
timate the relative benefit we can expect in applying par-
alelism to the problem of protocol verification. To ad-
dress this question, it is sufficient to evaluate the
paformance of the hypercube dgorithms on the multiscan
join operation and neglect the times associated with the
remaining single-scan operations such as selection and
renaming. Ignoring the times correponding to the single-
scan operations simplifies the analysis and does not sig-
nificantly effect the results since the join times greatly
dominate the singlescan operation times [14].

Throughout this analysis, we assume that each hyper-
cube node consists of a conventional 2 MIPS CPU, in-
dependent communications processors with associated
buffers, 64 Mbit/s bidirectiond communication links, and
alarge local memory. Besides the link speed, factors af-
fecting internode communication overhead include the
delays incurred in packet setup and decompostion and the
maximum packet size allowed in the system. Based on
existing systems, we assume that the hypercube supports

332 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL.

a maximum packet size of 64 Kbytes and a packet pro-
cessng time of 3 ms We assume that each tuple requires
40 bytes of storage; in terms of CPU time, in our evalu-
dion, each tuple compaison in the join operaion requires
10 ingructions. To explore the vdue of padldism in ver-
ifying complex protocols, we demonstrate our approach
using the depth 10 and depth 13 synthetic protocols de-
scribed above.

Recall that in the binary tree protocol the number of
tuples in each of the H-A, H-B, R-A, and R-B relations
is2¢ — 1 whered is the depth of the tree. If d = 10, Step
1 of the dgorithm generates the above four relations, each
comprising 1023 tuples. We assume that the tables are
loaded into the hypercube system from a “user,” and the
four tebles ae dl reddent & a single node We begin our
analysis with the first stage of Step 2, the generation of
dl possble trandtions Z dlowed by the transmisson and
reception transition relations.

For the depth 10 synthetic protocol, the steady transi-
tion relation Z can be computed through a 2046 by 2046
tuple join, combining the H-A by R B and H-B by R-A
joinsinto a single operation. The time necessary to com-
pute thisjoinis shown in Fig. 7. As shown, the minimum
execution time of roughly 34 ms. occurs on a two node
system; depending on the number of nodes involved, ex-
ecution time varies from 34 to 70 ms Because the number
of tuplesis small and were assumed to exist initially ina
single node (the worst case distribution), the balancing
and RCR primitives dominate the total execution time,
representing 44 and 32 percent, respectively, of the total
time for N = 2. Note that when the number of processors
exceeds 2, the added padldism degrades the ovedl per
formance. The incresse in the join processng time results
from partitioning the computational load over too large a
set of nodes, so that the overhead of internode commu-
nication is greater than the computation time reduction
obtained via parallel execution.

The result of the 2046 by 2046 tuple join is an output
relation Z containing 2 093 058 tuples. We assume that Z
is patitioned across the nodes of the hypercube such tha
no node contans a portion of Z tha is more than 4 times
the portion contained in any of its neighbors. Determining
the the s of acdtud reachable deady trangtions relation
J requires a sequence of d joins, the most complex of
which consists of 2 093 058 by 2046 tuples. Upon com-
pletion of Step 2, we obtain a J relation comprising 2046
tuples. Transforming J into the globd-state transtion re-
lation G requires a sequence of single and multiscan op-
erations, the most complex of which requires a join of

Glby (H + R]) tuples, or 198 872 by 2046 tuples
for the depth 10 binary tree.

Fig. 8 illustrates the effect of increased parallelism on
join computation performance in creating the Z, J, and G
relations. Clearly, computing the largest join (for J)
dominates the other operations in tems of time required.
In forming relation J, parallelism is successfully ex-
ploited for all hypercube sizes investigated; near linear

7, NO. 3, APRIL 1989

0.08
4

007

0.06

0.05

Time (sec)

0.04

0.03 + T T T T T —
20 40 60 80 100 120 140

Number of Processors

o

Fig. 7. Join computation times for relation | for depth 10 binary tree pro-
tocol.

100
* Forml
10 4 -4+ Form J
% FormG
§
g]
=
13
P} A

10 100
Number of Processors

Fig. 8. Join computation times for relations I, J, G for depth 10 binary
tree protocol.

1000

speed-up is obtained for all hypercube sizes up to 64
nodes, and use of 128 nodes provides afactor of 100 re-
duction in processing time. In forming relation G, perfor-
mance fals to improve for sysdems greder than 32 nodes
insize.

Parallelism has even greater impact on more complex
protocols. For example, each process in a depth 13 hinay
tree protocol consists of 8191 initial states and 16 382
transtions. In computing the Z relation, two 8191 hy 8191
tuple joins are required. Relation J is formed via a se-
quence of 13 joins, the most complex of which requires
the join of two relations of 134 184 962 tuples and 16 382
tuples; the most complex join required to compute G con-
sists of 5330 788 by 16 382 tuples. The times required
to compute these joins are shown in Fig. 9. Linear speed
up is now achieved for both the J and G join computa-
tions. Executing these algorithms on a 128 node hyper-
cube instead of a uniprocessor can reduce computation
time from several hours to afew minutes.

Finally, we conclude our analysis by comparing the
gains due to parallelism as the depth of the binary tree
protocol varies from 2 to 13, or from 32 to 5 330 788

FRIEDER AND HERMAN: VERIFICATION USING DATABASE

100000

& Form|
-*Form J
-« FormG

10000

1000

100

10

Time (sec)

1 — T T 1

10 100 1000

Number of Processors

Fig. 9. Join computation times for relations 1, J, G for depth 13 binary
tree protocol.

103
- d.2
2 - d=3
107 3 - g-4
- d=5
10" 1 - 4.6
o -7
° 0 -+ d-8
g 10 i - d=9
s - d=10
-1 -+ d=11
E 103 - g-12
-+ d=13
1024
1673 {
104 T T
| 10 100 1000
Number of Processors

Fig. 10. Join computation times for the global-state transition relation G
for the binary tree protocol family.

global-state transitions. Fig. 10 shows the times required
to compute the largest join in the process of transforming
J into G for the family of binary tree protocols. As shown,
as the complexity of the join operation increases (the depth
of the protocol is increased), the benefits due to parallel-
ism also increase. For relatively small protocols, paral-
lelism is detrimental.

V. SummARY

The verification of complex protocols is an important
problem for both the research and the development com-
munities. This paper described an approach to verifying
complex communications protocols based on implement-
ing the relational database algorithms for protocol verifi-
cation from [17], [18] using database primitives designed
for the hypercube multicomputer [5]. Suggested exten-
sions to the basic approach included the verification of
protocols represented in the EFSA model and the use of
backtracking to determine faulty paths that generate un-
desirable global states. Using a synthetic protocol whose
state space growth characteristics resemble those of real

TECHNOLOGY

333

protocols, we showed that our approach can achieve near-
linear speedup of the verification process for up to 128
processors, or more, depending upon the complexity of
the particular protocol involved. Commercial systems
come with up to 16 384 nodes. Our results suggest that,
when implemented, this approach can reduce the verifi-
cation time for complex protocols from many hours to a
few minutes.

We are implementing the system described here and ex-
tending the verification model to a more general class of
communicating concurrent processes.

ACKNOWLEDGMENT

The authors would like to thank M. Lai and T. Lee for
assistance in this research, M. Agron for her investiga-
tions of the behavior of protocols using REPROVER, and
C. H. Chow and G. Gopal for their comments on earlier
drafts of this paper.

REFERENCES

{l] s. Aggarwal, R. Alonso, and C. Courcoubetis, “Distributed reach-
ability analysis for protocol verification environments,” in Discrete
Event Systems: Models and Applications,P. Varaiya and A. Kuzhan-
ski, Eds. New York: Springer-Verlag, 1987, Lect. Notes. Contr.
Inform. Sci., pp. 40-56.

[2] S. Aggarwal, D. Barbara, and K. Z. Meth, “A software environment
for the specification and analysis of problems of coordination and con-
currency,” |IEEE Trans. Software Eng.. vol. 14. pp. 280-290. Mar.
1988.

[3] C. K. Baru and 0. Frieder, “Implementing relational database op-
erations in a cube-connected multicomputer,” in Proc. JEEE Third
int. Conf. Data Eng., Feb. 1987, pp. 36-43.

[4] C. K. Baru, 0. Frieder, D. Kandlur, and M. Segal, “Join on a cube:
Analysis, simulation, and implementation,” in Proc. 5th Int. Work-
shop Database Mach., Japan, 1987, pp. 74-87.

[5] C. K. Baru and 0. Frieder, “Database operations in a cube-connected
multicomputer system,” IEEE Trans. Comput.,to be published.

[6] B. Beckman, *“Distributed simulation and the time warp ogerating
system,” Proc. ACM §.0.5.P., pp. 77-93, 1987.

[7] D. Bergmark, J. M. Francioni, B. K. Helminen, and D. A. Po-
plawski, “On the performance of the FPS T-series hypercube,” pre-
sented at Proc. 2nd Conf. Hypercube Multiprocess., Sept., 1986.

[8] D. Brand and P. Zafiropulo, “On communicating finite-state ma-
chines,” J. ACM, vol. 30, no. 2. pp. 323-342, 1983.

9] T. Y. Choi, “Formal techniques for the specification, verification.
and construction of communication protocols,” [EFE Commun. Mug..
vol. 23, pp. 46-52, Oct. 1985.

{10] C. Chow. M. G. Gouda, and S. S. Lam, “A discipline for construct-
ing multiphase communication protocols,” [EEE Trans. Software
Eng.,vol. 14. pp. 327-338. Mar. 1988.

I'1] C. J. Date, An Introduction to Database Systems, Volume /.
ing, MA: Addison-Wesley, 1986.

12] G. Fox, “Use of the Caltech hypercube,” IEEE Trans. $aftware Eng..
vol. SE-I 1, p. 73, July 1985.

13] K. A. Frenkel, “Evaluating two massively parallel machines,” Com-
miun. ACM, vol. 29, no. 8, pp. 752-758, 1986.

14] 0. Frieder. “Database processing on a cube-connected multicompu-
ter,” Ph.D. dissertation, Univ. of Michigan, Ann Arbor. 1987.

15] 3. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and J. Palmer,
“Architecture of a hypercube supercomputer,” in Proc. Int. Conf.
Parallel Process., Aug. 1986, pp. 653-660.

[16] Intel iPSC Data Sheet, Order 280101-001, 1985.

{17} M. Y. Lai and T. T. Lee, “Protocol verification using relational da
tabase systems,” in Proc.IEEE 3rd Int.Conf.Dutu Eng., Feb., 1987,
pp. 347-354.

[I8] T. T. Lee and M. Y. Lai, “A relational algebraic approach to pro-
tocol verification.” IEEE Trans. Software Eng.,vol., pp. [84-193,
Feb. 1988.

Read-

334 |IEEE

[19] J. C. Peterson, J. 0. Tuazon, D. Lieberman, and M. Pniel, “The
MARK 11l hypercube-ensemble concurrent computer,” in Proc. Int.
Conf. Parallel Process.,, Aug. 1985, pp. 71-73.

[20] A. P. Reeves and D. Bergmark, “Parallel Pascal and the FPS hyper-
cube supercomputer,” in Proc. Int. Conf. Parallel Process., Aug.,
1987, pp. 385-388.

[21] C. Seitz, “The Cosmic Cube,” Commun. ACM, vol.
22-33, Jan. 1985.

[22] D. P. Sidhu and T. P. Blumer, “Verification of NBS class 4 transport
protocol,” IEEE Trans. Commun., vol. COM-34, pp. 781-789, Aug.
1986.

[23] M. Stonebraker, J. Anton, and E. Hanson, “Extending a database
system with procedures,” ACM Trans. Database Syst.,vol. 12, no.
6, pp. 350-376, 1987.

[24] C. A. Sunshine, “Survey of protocol definition and verification tech-
niques, "' in Computer Networks. New York: North-Holland, 1978,
pp. 346-350.

[25] J. Tuazon, J. Peterson, M. Pniel, and D. Lieberman, ‘‘CALTECH/
JPL MARK Il hypercube concurrent computer,” in Proc. Int. Conf.
Parallel Process., pp. 666-673, Aug. 1985.

[26] C. W. West and P. Zafiropulo, “Automated validation of a commu-
nications protocol: The CCITT X.2 1 recommendations,” IBM J. Res.
Develop., vol. 22, no. 1, pp. 60-71, 1978.

[271 P. Zafiropulo, C. H. West, D. D. Cowan, and D. Brand, “Towards
analyzing and synthesizing protocols,” IEEE Trans. Commun., vol.
COM-28, Apr. 1980.

28, no. 1, pp.

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7. NO. 3, APRIL 1989

Ophir Frieder (M’'87) received the B.Sc. degree
(1984) in computer and communications science
and the M.Sc. (1985) and Ph.D. degrees (1987)
in computer science and engineering, all from the
University of Michigan.

He is currently a Member of Technical Staff at
Bell Communications Research. His research in-
terests include parallel and distributed architec-
tures, operating systems, fault-tolerant systems,
and database systems.

Gary E. Herman (M’87) received both the B.S.E.
(1971) and Ph.D. (1975) degrees in electrical en-
gineering from Duke University, Durham, NC.

From 1976 to 1983 he worked at Bell Tele-
phone Laboratories. In 1984 he was a founding
member of the Applied Research Area of Bell-
core. He currently is Division Manager of the
Network Systems Research Division at Bellcore,
where his research interests include several as-
pects of large scale distributed systems, including
scalable transaction system architectures, system
verification and testing, and software fault tolerance.

