
 1

On the Enhancements of a Sparse Matrix Information
Retrieval Approach

Nazli Goharian

Illinois Institute of
Technology

Chicago, Illinois
nazli@ir.iit.edu

Tarek El-Ghazawi
George Mason University

Fairfax, Virginia
tarek@gmu.edu

David Grossman
Illinois Institute of

Technology
Chicago, Illinois
dagr@ir.iit.edu

Abdur Chowdhury
Illinois Institute of

Technology
Chicago, Illinois
abdur@ir.iit.edu

Abstract
A novel approach to information retrieval is
proposed and evaluated. By representing an inverted
index as a sparse matrix, matrix-vector multiplication
algorithms can be used to query the index. As many
parallel sparse matrix multiplication algorithms
exist, such an information retrieval approach lends
itself to parallelism. This enables us to attack the
problem of parallel information retrieval, which has
resisted good scalability. We evaluate our proposed
approach using several document collections from
within the commonly used NIST TREC corpus. Our
results indicate that our approach saves
approximately 30% of the total storage requirements
for the inverted index. Additionally, to improve
accuracy, we develop a novel matrix based,
relevance feedback technique as well as a proximity
search algorithm.

1 Introduction

With constantly growing text resources,
efficiency improvements via parallel processing,
storage space reduction and the improvement of
search effectiveness are the main focus of
information retrieval (IR) researchers. The two
measures used to evaluate IR algorithms are
efficiency and effectiveness. There are many
ways to improve accuracy, two of which are
Proximity Search [Goldman et al, 1998] and
Relevance Feedback [Rocchio, 1971, Mitra et al,
1998, Chang et al, 1999]. Proximity search
improves the result of the query processing by
creating the capability to search for phrases, or
terms in a specific window size. An example is
the implementation of the Proximity Search on
the King James Bible by the University of
Michigan. The system searches for a text that
includes the search terms specified to be Near,
Not Near, Followed By, Not Followed By each
other within 40, 80 or 120 characters [UMich,

1997]. Relevance Feedback improves the
accuracy of the query processing by using the
initial search results as additions to the initial
query. The Excite@Home search engine
performs the Relevance Feedback. by giving the
users the option to choose “Search for more
documents like this one”, which searches for
documents that have common words with the
initial retrieved document by the initial query.

We demonstrate that our approach, same
as other IR approaches, takes advantage of
relevance feedback and proximity search to
increase the effectiveness of the search. Text
searches often rely on inverted index to reduce
unnecessary I/O from retrieval of non-relevant
texts, hence improving the efficiency of the
search.

We present the inverted index as a
compressed matrix. We demonstrate that our
approach improves the efficiency by reducing
the storage space compare to the conventional
inverted index. The additional traditional
compression techniques applied on inverted
index are also applicable on our proposed
storage structure. For a general review of the
additional compression techniques applied on
inverted index, the reader is referred to [Elias,
1975, Zobel et al., 1992, Kent et al., 1992,
Witten et al., 1994, Grossman, 1995, Moffat and
Zobel, 1996].

1.1 Prior Work
1.1.1 Index Compression

The use of an inverted index was shown to

be the processing scheme of choice due to its
reduced I/O demands for an ad-hoc query
[Stone, 1987]. The storage space for inverted
index structure, however, is not necessarily

 2

Figure-1: Scalar ITPACK Sparse Matrix Multiplication Algorithm

smaller than the original text. Thus, many
different compression techniques are used to
compress the inverted index. These include:
fixed-length Byte-Aligned index compression
[Grossman, 1995], variable-length compression
[Witten et al., 1994, Moffat and Zobel, 1996,
and Ellias, 1975], and run-length encoding
techniques. Byte-aligned reduced the storage
space to 15% of the size of Inverted Index.
Moffat and Zobel achieved a ratio of less than
10% of the indexed text to store the index.

1.1.2 Parallel IR

Another concern with the development

of scalable information retrieval is the design of
algorithms that yield acceptable processing
speeds when faced with large data sets. The
traditional approach of parallel processing to
support such functionality has yielded limited
results in the information retrieval context. Prior
parallel information retrieval efforts
predominantly relied on special purpose
techniques [Bailey, et al, 1996, Couvreur, et al,
1994, Efraimidis et al., 1995, Harabagiu et al.,
1996, Lee, 1995, Lee et al., 1990, Ruocco et al.,
1997, Stanfill et al., 1986, Skillicorn, 1995].
Hence, they required significant development
efforts. However, many parallel sparse matrix
multiplication algorithms already exist.
Capitalizing on this past research for the
information retrieval domain, without requiring
redesign, is clearly advantageous.

1.1.3 Using Sparse Matrices for IR

The motivation of our work is to utilize
other techniques and codes to implement a
scalable IR system. Thus, minimizing the need
for the redevelopment of software. In our recent

paper [Goharian et al., 1999], we introduced a
sparse-matrix information retrieval approach,
which relies on the Vector Space Model to
compute relevance. We showed the sparse
matrix storage method as an alternative to store
the inverted index and showed how to map the
documents into a matrix. Two compression
techniques to compress sparse matrices were
utilized, namely, Horowitz [Horowitz, 1983 and
Park, 1992], and Scalar ITPACK [Peters, 1991
and Petition, 1993]. Recently, our experiments
demonstrated that the Horowitz approach saves
very minimal storage space in comparison to
conventional inverted index storage structures.
Thus, we now limit our experiments to the
Scalar ITPACK storage structure. Furthermore,
we described and demonstrated the query
processing and relevance ranking using sparse
matrix-vector multiplication algorithm. Figure-1
is the algorithm for Scalar ITPACK
multiplication, which is one of the commonly
used sparse matrix multiplication algorithms.

Briefly reviewing the algorithm, the
following steps map the document vectors to a
matrix and perform the query processing. For
additional details, see [Goharian, et al., 1999].

Step 1: Parse the collection to identify the
unique terms of each document along with their
term frequency (tf).
Step 2: Identify all n unique terms in the
collection, along with documents having each
term. The document frequency (df) and inverse
document frequency (idf) are as well identified.
The idf is commonly defined as log(dfd)
where d is the number of documents in the
collection and df is the number of documents in
the collection having the given term.

for (count=0; count<M; count++)
 temp=0;
 for (row_ind=row_vector[count];row_ind<=(row_vector[count+1]-1); row_ind++)
 col_ind = col_vector[ind];
 temp = temp + non_zero_vector[row_ind] * Q[col_ind];
 endfor

ScalarTPACK_output[count] = temp;
 endfor

 3

Step 3: Create document vectors and query
vector with n dimension. The elements of the
vector are either binary values of 0 or 1 for
absence or presence of the term in the document
or query, or a function of the tf and idf values
corresponding to each term. In the vector space
model, all documents and queries are
represented as n-dimensional vectors [Salton, et
al., 1975].
Step 4: Map the document vectors to a matrix.
Each document is a row of the matrix. The
columns of the matrix correspond to the unique
terms in the collection. Thus, the document
matrix is MxN dimension, where M is the
number of documents in the collection and N is
the number of unique terms in the collection.
The nature of the text collection results in a very
sparse matrix with many elements of the matrix
having the value of zero where the term is absent
in the document.
Step 5: Compress the sparse matrix using one of
the sparse matrix compression methods.
Step 6: Perform the query processing by using
one of the matrix-vector multiplication
algorithms, such as Scalar ITPACK to obtain the
relevance ranking.

As an aside, since every row of the
matrix is independent of each other, one needs
only to maintain the information associated with
the current matrix row and the vector in memory
at a given point in time. Clearly to reduce I/O
wait time, it is necessary to fetch the information
related to successive rows prior to them being
needed. Note that the above description is only
intended to provide a logical overview of the
approach. In practice, there is no need to create
the original matrix.

1.1.4 Example

The sample collection in figure-2 with
five documents D0, D1, D2, D3, D4 and query
Q is given.

Figure-2: Sample collection and query

Table-1 shows the unique terms for each
document along with the term frequency (tf).
The unique terms in the collection with the
document frequency (df) and inverse document
frequency (idf) of terms are shown in table-2.

Table-1: Term Frequency for Sample Collection

DOCS Tf
D0
Security 2
Social 2
D1
Social 2
Security 2
D2
Social 1
Welfare 1
System 1
D3
Security 1
System 1
D4
Information 1
System 1

Table-2: Df and Idf for Sample Collection
Term_id Term Df Idf

0 Security 3 0.22
1 Social 3 0.22
2 Welfare 1 0.70
3 System 3 0.22
4 Information 1 0.70

The sparse matrix A, which represents
the sample collection, is shown in figure-3.
Figure-3 is the result of step 3 and step 4,
described earlier. Each row corresponds to a
document, i.e. document D0, D1, D2, D3 and
D4. The columns correspond to the unique
terms, i.e. term id 0, 1, 2, 3, and 4 in the
collection. The elements of the matrix are the
tf*idf of each term.

Figure-3: Sparse Matrix A

 Term id 0 1 2 3 4

0.44 0.44 0 0 0

M = 0.44 0.44 0 0 0
 0 0.22 0.70 0.22 0
 0.22 0 0 0.22 0
 0 0 0 0.22 0.70

D0 = security security social social
D1 = social security social security
D2 = social welfare system
D3 = security system
D4 = information system
Q = social security

 4

Figure-4: Compressed Matrix A for Sample Collection based on Modified Scalar ITPACK Compression

 Figure-5: Query Vector

Figure-6: Result of the relevance ranking

Using the Scalar ITPACK compression

method, matrix A is compressed to three vectors,
shown in figure-4. The first vector,
non_zero_vector, indicates the non-zero
elements of matrix A. The second vector,
col_vector, is the column indices of non-zero
elements in matrix A. The third vector,
row_vector, has M+1 elements, which identifies
documents D0, D1, D2, D3 and D4. The
distance between every two adjacent elements in
the row_vector determines the elements in the
non_zero_vector and col_vector that belong to a
document identified by the position of the
element in the row_vector.

For example, to find all the terms in
document D2, the distance between the values
stored in positions two and three in the
row_vector, namely 4 and 7 is computed. The
three elements in non_zero_vector and
col_vector, starting with the position 4, i.e. 0.22,
0.70 and 0.22 with column indices of 1, 2 and 3
belong to the second document, D2.

The query vector Q is shown in figure-5.
The size of the query is for the number of
distinct terms. Figure-6 shows the result of the
query processing described in step 6 by using

Scalar ITPACK algorithm on query Q and the
sample collection. Document D0 and D1 are
ranked the highest with the relevance of 0.20.
Documents D2 and D3 are ranked lower, 0.05.
Document D4 with the rank 0 is non-relevant to
the query.

2 Efficiency

The storage space for the conventional
inverted index has two components. The Index
component stores the unique terms in the
collection, each pointing to the Posting List. The
Posting list is the list of all documents having a
given term. The storage space for the Posting
List is computed by considering 10 bytes for
each Posting List entry, from which 4 bytes is
for the document identifier, 2 bytes for term
frequency and another 4 bytes for pointer to the
next element in list [Grossman and Frieder,
1998].

The storage space for the compressed
sparse matrix using Scalar ITPACK is computed
by allocating 2 bytes per non-zero element in the
first vector, which stores the tf*idf of the term, 4
bytes for each element of the second vector that
is the column indices, and 4 bytes per number of
documents + 1 for the third row, which is the
row indices. In the case that no tf*idf weighting
is used for computing the relevance ranking, the
binary values of “1” do not need to be stored in
the first row, which minimizes the storage space
even further.

Table-3 shows the storage space for the
conventional Inverted Index and compressed
Sparse Matrix using Scalar ITPACK method for
TREC 6-8 collection on disk 4-5, LA (LA
Times), FT (Financial Times), FR (Federal
Registry) and FBIS sub-collections, which are
news documents. .

non_zero_vector = <0.44 0.44 0.44 0.44 0.22 0.70 0.22 0.22 0.22 0.22 0.70>

col_vector = < 0 1 0 1 1 2 3 0 3 3 4 >

row_vector = < 0 2 4 7 9 11>

Q= < 0.22 0.22 0 0 0 >

DOC[0] = 0+(0.44*0.22)=0.10
DOC[0] = 0.10+(0.44*0.22)=0.20

DOC[1] = 0+(0.44*0.22)=0.10
DOC[1] = 0.10+(0.44*0.22)=0.20

DOC[2] = 0+(0.22*0.22)=0.05
DOC[2] = 0.05+(0.70*0)=0.05
DOC[2] = 0.05+(0.22*0)=0.05

DOC[3] = 0+(0.22*0.22)=0.05
DOC[3] = 0.05+(0.22*0)=0.05

DOC[4] = 0+(0.22*0)=0
DOC[4] = 0+(0.70*0)=0

 5

Table-3: TREC Data Storage (Bytes) Using Inverted Index and Scalar ITPACK Structures

Table-4: Contrived Document Storage Space(Bytes) Using Inverted Index and Scalar ITPACK Structures

The number of documents in each sub-
collection along with the number of distinct
terms in each sub-collection, excluding the stop
terms, are listed under Total Docs and Distinct
Terms columns of the table-3. The Posting List
Entries column of the table shows the number of
total terms in each sub-collection. The columns
Inverted Index and S. ITPACK show the number
of bytes used to store the indexed sub-
collections. The storage space for each storage
structure is calculated as described earlier. The
average number of the occurrences of each
unique term in each sub-collection is calculated
by dividing the total number of terms by the
number of distinct terms in each sub-collection.
This information is listed under column Avr
Ent/Term of table-3.

The average number of the occurrences
of a term in each of the sub-collections, Avr
Ent/Term, of the TREC data indicates that the
term occurrences are relatively low.
Nevertheless, the ratio of the Scalar ITPACK
storage space to the conventional Inverted Index
storage space is about 40% for the TREC data.

Table-4 presents the same information
for the domain specific documents such as
publications and email with some “believed
characteristics”. The nature of the domain
specific documents is such that the number of
vocabularies is small. However, the terms occur
more frequently in each document. For example
each of the million emails in the collection,
listed in table-4, has an average of 5 terms,
excluding any stop term. As the result, the total
number of terms, excluding the stop terms, is 5
million with 500 distinct terms in the entire

email collection. This implies that each of the
500 unique terms in the Email collection occurs
10000 times. The ratio of the Scalar ITPACK
storage space to the conventional Inverted Index
storage space is about 40% for publications and
30% for email documents.

3 Proximity Search using
Sparse Matrix Multiplication

Proximity searches are used in the
Information Retrieval to increase the accuracy of
the search by considering a particular query term
sequence in the document. The documents, in
which the query terms appear within a specific
window size, are retrieved and ranked higher
than any document that simply contains the
query term. For example, the query “information
retrieval”, with query condition of window size
1, does not rank as high the documents that have
the terms “information” and “retrieval” in a
sequence with a negative window size such as
“Retrieval of Information”, or a window size
bigger than 1 such as “Information System for
Retrieval of Employee Data”.

We modified the Sparse Matrix storage
structure to implement the Proximity Search.
The structure and the algorithm are described
using the sample collection of figure-2 with
documents D0, D1, D2, D3 and D4 and query Q.
Table-5 is the information provided in table-1,
along with the position of each term in each
document (offset).

We modified the compressed
representation of matrix showed in figure-4 to

Collection Total Docs Posting list Enteries Distinct Terms Inverted Index S. ITPACK Avr Ent/Term Ratio
TREC6-8 528023 120407310 1023542 1218402688 730697208 118 59.97%
LA 131896 30200001 321087 306495228 183654116 94 59.92%
FT 210158 44571084 382437 451064958 270561762 117 59.98%
FR 55630 13685852 302943 141099722 84155294 45 59.64%
FB 130471 27444674 318767 278909478 167102534 86 59.91%

Collection Total Docs Posting list Enteries Distinct Terms Inverted Index S. ITPACK Avr Ent/Term Ratio
Publications 528023 2640115000 382437 26406504118 15845096718 6903.4 60.00%
Email 1000000 5000000 500 50007000 34003004 10000 68.00%

 6

implement the proximity search. We add a
fourth and fifth vector, namely, offset_vector
and offset_marker to the structure. Figure-7
shows the modified structure. The offset_vector
contains the offset of each term in each given
document. The number of elements in
offset_vector is total number of non-stop terms
in the collection. The elements in the
offset_marker vector indicate the number of the
occurrences of each term in a document, hence it
shows which offsets in the offset_vector belong
to a given term in a document. The number of
elements in the offset_marker is the number of
non-zero elements+1. The position of each
element in the offset_marker corresponds to the
position of the term id of the term in col_vector,
whose offsets are identified.

For example, the difference between the
values stored in the position 0 and 1 in the
offset_marker vector, namely 0 and 2 shows that
two elements of the offset_vector, starting in
position 0, namely 0 and 1 are the offsets of
term, stored in the position 0 of col_vector, i.e.
term id 0. The difference between the values
stored in the position 1 and 2 in the
offset_marker vector, namely 2 and 4 shows that
two elements of offset_vector, starting in
position 2, namely 2 and 3 are the offsets of
term, stored in the position 1 of col_vector, i.e.
term id 1. The difference between the values
stored in the position 2 and 3 in the
offset_marker vector, namely 4 and 6 shows that
two elements of offset_vector, starting in
position 4, namely 1 and 3 are the offsets of
term, stored in the position 2 of col_vector, i.e.
term id 0.

Table-5: tf and term offset for sample collection
DOCS Tf Offset
D0
Security 2 0,1
Social 2 2,3
D1
Social 2 0,2
Security 2 1,3
D2
Social 1 0
Welfare 1 1
System 1 2
D3
Security 1 0
System 1 1
D4
Information 1 0
System 1 1

The query vector is modified by adding

a second vector to store the offset of the terms in
the query, as shown in figure-8.

We show in figure-9 the algorithm to
implement the proximity search on Sparse
Matrix application of Information Retrieval.

As showed earlier in figure-6, both
documents D0 and D1 are ranked the highest as
the result of the query processing. The
algorithm of figure-9 is applied to documents D0
and D1. From the element 0 of the row_vector
both terms belonging to document D0 with term
id 0 and 1 in the positions 0 and 1 of col_vector
are identified. The position 0 in offset_marker
introduces 2 elements of the offset_vector in
positions 0 and 1, namely term offsets 0 and 1
for the term id 0. The position 1 in offset_marker
introduces 2 elements of the offset_vector in
positions 2 and 3, namely term offsets 2 and 3

Figure-7: Modified Compressed Matrix A for Proximity Search

Figure-8: Modified Sample Query Q for Proximity Search

Q: v1=<0.22 0.22 0 0 0 >
 v2=<1 0 0 0 0 >

non_zero_vector = <0.44 0.44 0.44 0.44 0.22 0.70 0.22 0.22 0.22 0.22 0.70>

col_vector = < 0 1 0 1 1 2 3 0 3 3 4 >

row_vector = < 0 2 4 7 9 11>

offset _vector = < 0 1 2 3 1 3 0 2 0 1 2 0 1 1 0>

offset_marker= < 0 2 4 6 8 9 10 11 12 13 14 15>

 7

Figure-9: Proximity Search Algorithm

D0: (2,0) => 0-2 = -2
 (2,1) => 1-2 = -1
 (3,0) => 0-3 = -3
 (3,1) => 1-3 = -2

D1: (0,1) => 1-0 = 1
 (0,3) => 3-0 = 3
 (2,1) => 1-2 = -1
 (2,3) => 3-2 = 1

Query w/window size of 1:
(The difference must be 1)
Result : none

Query w/window size of 1:
(The difference must be 1)
Result: - social w/offset 0 and security w/offset 1
 - social w/offset 2 and security w/offset 3

Query w/window size of 3:
The difference must be >= 1 and <= 3
Result : none

Query w/window size of 3:
(The difference must be >= 1 and <= 3)
Result: social w/offset 0 and security w/offset 1

Social w/offset 2 and security w/offset 3
Social w/offset 0 and security w/offset 3

Figure-10: Result of Query Processing using Proximity Search

for the term id 1. The offset pairs across both
terms are built based on the order of the query
term, i.e., (term1, term0). The identified pairs
are: (2,0) , (2,1), (3,0), (3,1). Document D1 is
also processed similarly. The element in the
position 1 of the row_vector identifies that two
elements of col_vector, starting in the second
position, 0 and 1 belong to document D1. The
corresponding positions in the offset_marker are
elements in positions 2 and 3, i.e., values 4 and
6. The value 4 in offset_marker identifies that
two elements in offset_vector in the positions 4
and 5, i.e., offsets 1 and 3 belong to term id 0.
The value 6 in offset_marker identifies that two
elements in offset_vector in the position 6 and 7,

i.e., offsets 0 and 2 belong to term id 1. The
identified pairs are: (0,1) , (0,3), (2,1), (2,3). The
result of the proximity search for query Q on the
sample collection, using the algorithm described
in figure-9, is shown in figure-10.

Although the initial relevance ranking
ranked both documents D0 and D1 the same, the
proximity search identifies that document D1 is
more relevant. The window size of the query
“social security” matches to the window size of
the document terms in document D1 “social
security social security” and not to “security
security social social“ in document D0. Both
query terms, “social” with term id 1 and
“security” with term id 0 occur in both of the

FOR each document ranked with the highest similarity score in the query processing using matrix-
vector multiplication DO

Find from row_vector the elements (term id) and the number of elements in col_vector
belonging to that document and the start position in col_vector.
IF the element (term id) matches to any query term id Then DO

FOR each found position in col_vector DO
 Find the corresponding element in offset_marker

 Find the corresponding elements in offset_vector
END
Build pairs (in the order of query terms) between the elements found in offset_vector
across each col_vector
FOR each pair DO

Compute the difference between the elements of the pair
If the difference >=1 and <= query window size

 Then mark the pair for selection
END

 END
END

 8

documents D0 and D1. The window size of
these terms are measured in both documents by
considering all possible pairs of the offsets of
the terms “social” and “security” in each
document. The pairs (0,1) and (2,3) in
document D1 show that the window size for
terms “social” with term id 0 and “security” with
term id 1 is 1, which satisfies the query
condition for window size of 1. In the case of
query condition of window size 3, the pairs
(0,1), (2,3) and (0,3) satisfy the condition of
window size of smaller or equal to 3.

4 Relevance Feedback using
Sparse Matrix Multiplication

Relevance Feedback is one of the
common utilities in information retrieval that
increases the accuracy of the retrieval. One of
the earliest approaches is described in [Rocchio,
1971]. The query is refined by the results of the
initial query. The steps of Relevance Feedback
process are as follows:
Step 1: Issue the query.
Step 2: Select top n documents.
Step 3: Identify the higher idf terms in top
documents.
Step 4: Add those terms to the initial query.
Step 5: Re-issue the query, and continue with
step 2.

In the vector space model, relevant
document vectors are added to the query.
Figure-11 describes this process.

Figure-11: Relevance Feedback for
Vector Space Model

Q: original query vector
R: set of relevant document vectors
c: a constant to indicate the importance of R
Q’: new query vector

We modified the Relevance Feedback
algorithm of figure-11 to implement the
Relevance Feedback using Sparse Matrix
Multiplication algorithm, as shown in figure-12.

5 Conclusion

Previously, we introduced a sparse

matrix approach to information retrieval. This
approach represented the inverted index as a
sparse matrix. The motivation for the approach
was the reuse of prior mathematical efforts for a
novel application, namely information retrieval.
However, the approach was not evaluated until
now where an evaluation of this approach
demonstrated up to a 30% reduction in storage
space over a conventional approach.

We also presented algorithms to
improve retrieval accuracy when using the
sparse matrix approach. To improve accuracy,
proximity search and relevance feedback
algorithms were developed. The proximity
search technique relies on two additional vectors
used to represent the offset of a term within the
document. The relevance feedback approach
mapped a traditional relevance feedback
algorithm to the matrix domain.

In the future, we will evaluate the
approach using traditional information retrieval
measures such as precision and recall and will
implement the approach on a parallel platform.

Figure 12: Relevance Feedback Algorithm using Sparse Matrix Multiplication

Step 1: Find top n relevant documents by using Matrix Multiplication algorithm.
Step 2: Find the first k term_id of terms in n documents, which are more relevant documents, with
 higher idf.
Step 3: Add these terms to query by replacing existing value 0 in the corresponding column in the
query vector with tf*idf of terms or with the binary value 1 for the existence of the term.
Step 4: Re-calculate the relevance using the Matrix Multiplication algorithm.

Q’ = Q + csum(R)

 9

References
[Bailey et al., 1996] P. Bailey, and D. Hawking,
A Parallel Architecture for Query Processing
over A Terabyte of Text, CS Tech Report, The
Australian National University, June.
[Chang et al., 1999] C. Chang, C. Hsu,
Enabling Concept-Based Relevance Feedback
for Information Retrieval on the WWW, IEEE
Trans. on Knowledge and Data Eng., 11(4).
[Couvreur et al., 1994] T. Couvreur, R. Benzel,
S. Miller, D. Zeitler, D. lee, M. Singhal, N.
Shivarati, W. Wong, An Analysis of
Performance and Cost Factors in Searching
Large Text Databases Using Parallel Search
Systems, JASIS.
[Elias, 1975] P. Elias, Universal Code word sets
and representations of the integers, IEEE Trans.
IT-21, 2(Mar).
[Efraimidis et al., 1995] P. Efraimidis., C.
Glymidakis, B. Mamalis, P. Spairakis, and B.
Tampakas, Parallel Text Retrieval on a High
Performance Supercomputer Using the Vector
Space Model, ACM SIGIR’95.
[Goharian et al., 1999] N. Goharian, T. El-
Ghazawi, D. Grossman, On the Implementation
of Information Retrieval as Sparse Matrix
Application, PDPTA’99, vol. 3, pg 1551-1557.
[Goldman et al., 1998] R. Goldman, N.
Shivakumar, S. Venkatasubramanian, H. Garcia-
Molina, Proximity Search in Databases,
VLDB’98, 26-37.
[Grossman and Frieder, 1998] D. Grossman &
O. Frieder, Information Retrieval: Algorithm
and Heuristics, Kluwer Academic Publishers.
[Grossman, 1995] D. Grossman, Integrating
Structured Data and Text: A Relational
Approach. PhD Thesis, GMU.
[Harabagiu et al., 1996] S. Harabagiu, and D.
Moldovan, A Parallel Algorithm for Text
Inference, IEEE IPPS’96.
[Horowitz, 1983] E. Horowitz & S. Sahni,
Fundamentals of Data Structures, CS Press.
[Kent et al., 1992] A. Kent, A. Moffat, R.
Sacks-Davis, R. Wilkinson & J. Zobel,
Compression, Fast Indexing, and Structure
Queries on a Gigabyte of Text, TREC-2.
[Lee et al., 1990] D. Lee, and F. Lochovsky,
HYTERM – A Hybrid Text-Retrieval Machine
for Large Databases, IEEE TC 39(1), Jan..

[Lee, 1995] D. Lee, Massive Parallelism on the
Hybrid Text-Retrieval Machine, IP&M, Vol.
31(6).
[Mitra et al., 1998] M. Mitra, A. Singhal and C.
Buckley, Improving Automatic Query
Expansion, ACM SIGIR’98.
[Moffat and Zobel, 1996] A. Moffat and J.
Zobel, Self-Indexing Inverted Files for Fast Text
Retrieval, ACM TOIS. 14 (4):349-379.
[Park et al., 1992] S. Park, J. Draayer, and S.
Zheng, Fast sparse matrix multiplication, Comp.
Phys. Comm., Vol. 70.
[Peters, 1991] A. Peters, Sparse matrix vector
multiplication technique on the IBM 3090 VP,
Parallel Computing 17.
[Petition et al., 1993] S. Petition, Y. Sood, K.
Wu, W. Ferng, Basic sparse matrix
computations on the CM-5, J. Mod. Phys., C(1).
[Ruocco et al., 1997] A. Ruocco, and O.
Frieder, Clustering and Classification of Large
Document Bases in a Parallel Environment,
JASIS.
[Rocchio, 1971] J.Rocchio, The SAMR
Retrieval System Experiments in Automatic
Document Processing, Prentice Hall.
[Salton et al., 1975] G. Salton,, C. Yang, and A.
Wong, A Vector Space Model for Automatic
Indexing, CACM, 18(11).
[Skillicorn, 1995] D. Skillicorn, A
Generalization of Indexing for Parallel
Document Search, Structured Parallel
Computation in Structured Documents, Queen’s
University, Kingston, Ontario.
[Stanfill et al., 1986] C. Stanfill, B. Kahle,
Parallel Free-Text Search on the Connection
Machine System, CACM, 1200-1229
[Stone, 1987] H. Stone, Parallel querying of
large databases: A case study, IEEE Computer,
20(10).
[UMich,1997]
www.hti.umich.edu/relig/kjv/prox.html.
[Witten et al., 1994] I. Witten, A. Moffat, and
T. Bell, Managing Gigabytes. Van Nostrand
Reinhold.
[Zobel et al., 1992] J. Zobel, A. Moffat and R.
Sacks-Davis, An Efficient Indexing Technique
for Full Text Database Systems, 18th VLDB pg.
352-362.

