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Abstract 
A novel approach to information retrieval is 
proposed and evaluated.  By representing an inverted 
index as a sparse matrix, matrix-vector multiplication 
algorithms can be used to query the index.  As many 
parallel sparse matrix multiplication algorithms 
exist, such an information retrieval approach lends 
itself to parallelism. This enables us to attack the 
problem of parallel information retrieval, which has 
resisted good scalability. We evaluate our proposed 
approach using several document collections from 
within the commonly used NIST TREC corpus. Our 
results indicate that our approach saves 
approximately 30% of the total storage requirements 
for the inverted index.  Additionally, to improve 
accuracy, we develop a novel matrix based, 
relevance feedback technique as well as a proximity 
search algorithm. 

 
1 Introduction 

With constantly growing text resources, 
efficiency improvements via parallel processing, 
storage space reduction and the improvement of 
search effectiveness are the main focus of 
information retrieval (IR) researchers.  The two 
measures used to evaluate IR algorithms are 
efficiency and effectiveness. There are many 
ways to improve accuracy, two of which are 
Proximity Search [Goldman et al, 1998] and 
Relevance Feedback [Rocchio, 1971, Mitra et al, 
1998, Chang et al, 1999].  Proximity search 
improves the result of the query processing by 
creating the capability to search for phrases, or 
terms in a specific window size. An example is 
the implementation of the Proximity Search on 
the King James Bible by the University of 
Michigan. The system searches for a text that 
includes the search terms specified to be Near, 
Not Near, Followed By, Not Followed By each 
other within 40, 80 or 120 characters [UMich, 

1997].  Relevance Feedback improves the 
accuracy of the query processing by using the 
initial search results as additions to the initial 
query. The Excite@Home search engine 
performs the Relevance Feedback. by giving the 
users the option to choose “Search for more 
documents like this one”, which searches for 
documents that have common words with the 
initial retrieved document by the initial query. 

We demonstrate that our approach, same 
as other IR approaches, takes advantage of 
relevance feedback and proximity search to 
increase the effectiveness of the search. Text 
searches often rely on inverted index to reduce 
unnecessary I/O from retrieval of non-relevant 
texts, hence improving the efficiency of the 
search.  

We present the inverted index as a 
compressed matrix. We demonstrate that our 
approach improves the efficiency by reducing 
the storage space compare to the conventional 
inverted index. The additional traditional 
compression techniques applied on inverted 
index are also applicable on our proposed 
storage structure. For a general review of the 
additional compression techniques applied on 
inverted index, the reader is referred to [Elias, 
1975, Zobel et al., 1992, Kent et al., 1992, 
Witten et al., 1994, Grossman, 1995, Moffat and 
Zobel, 1996].    

 
1.1 Prior Work 
1.1.1 Index Compression 

 
The use of an inverted index was shown to 

be the processing scheme of choice due to its 
reduced I/O demands for an ad-hoc query 
[Stone, 1987].  The storage space for inverted 
index structure, however, is not necessarily 
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Figure-1: Scalar ITPACK Sparse Matrix Multiplication Algorithm 

 
smaller than the original text. Thus, many 
different compression techniques are used to 
compress the inverted index. These include: 
fixed-length Byte-Aligned index compression 
[Grossman, 1995], variable-length compression 
[Witten et al., 1994, Moffat and Zobel, 1996, 
and Ellias, 1975], and run-length encoding 
techniques. Byte-aligned reduced the storage 
space to 15% of the size of Inverted Index. 
Moffat and Zobel achieved a ratio of less than 
10% of the indexed text to store the index. 

 
1.1.2 Parallel IR 

 
Another concern with the development 

of scalable information retrieval is the design of 
algorithms that yield acceptable processing 
speeds when faced with large data sets.  The 
traditional approach of parallel processing to 
support such functionality has yielded limited 
results in the information retrieval context. Prior 
parallel information retrieval efforts 
predominantly relied on special purpose 
techniques [Bailey, et al, 1996, Couvreur, et al, 
1994, Efraimidis et al., 1995, Harabagiu et al., 
1996, Lee, 1995, Lee et al., 1990, Ruocco et al., 
1997, Stanfill et al., 1986, Skillicorn, 1995]. 
Hence, they required significant development 
efforts. However, many parallel sparse matrix 
multiplication algorithms already exist.  
Capitalizing on this past research for the 
information retrieval domain, without requiring 
redesign, is clearly advantageous.  
 
1.1.3 Using Sparse Matrices for IR 
 

The motivation of our work is to utilize 
other techniques and codes to implement a 
scalable IR system. Thus, minimizing the need 
for the redevelopment of software.  In our recent 

paper [Goharian et al., 1999], we introduced a 
sparse-matrix information retrieval approach, 
which relies on the Vector Space Model to 
compute relevance. We showed the sparse 
matrix storage method as an alternative to store 
the inverted index and showed how to map the 
documents into a matrix. Two compression 
techniques to compress sparse matrices were 
utilized, namely, Horowitz [Horowitz, 1983 and 
Park, 1992], and Scalar ITPACK [Peters, 1991 
and Petition, 1993].  Recently, our experiments 
demonstrated that the Horowitz approach saves 
very minimal storage space in comparison to 
conventional inverted index storage structures.  
Thus, we now limit our experiments to the 
Scalar ITPACK storage structure. Furthermore, 
we described and demonstrated the query 
processing and relevance ranking using sparse 
matrix-vector multiplication algorithm. Figure-1 
is the algorithm for Scalar ITPACK 
multiplication, which is one of the commonly 
used sparse matrix multiplication algorithms. 

Briefly reviewing the algorithm, the 
following steps map the document vectors to a 
matrix and perform the query processing.  For 
additional details, see [Goharian, et al., 1999].   
 
Step 1: Parse the collection to identify the 
unique terms of each document along with their 
term frequency (tf). 
Step 2: Identify all n unique terms in the 
collection, along with documents having each 
term. The document frequency (df) and inverse 
document frequency (idf) are as well identified. 
The idf is commonly defined as log( dfd ) 
where d is the number of documents in the 
collection and df is the number of documents in 
the collection having the given term. 

for (count=0; count<M; count++) 
 temp=0; 
 for (row_ind=row_vector[count];row_ind<=(row_vector[count+1]-1); row_ind++) 
  col_ind = col_vector[ind]; 
  temp = temp + non_zero_vector[row_ind] * Q[col_ind];   
 endfor 

ScalarTPACK_output[count] = temp; 
 endfor 
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Step 3: Create document vectors and query 
vector with n dimension. The elements of the 
vector are either binary values of 0 or 1 for 
absence or presence of the term in the document 
or query, or a function of the tf and idf values 
corresponding to each term. In the vector space 
model, all documents and queries are 
represented as n-dimensional vectors [Salton, et 
al., 1975]. 
Step 4: Map the document vectors to a matrix.  
Each document is a row of the matrix.  The 
columns of the matrix correspond to the unique 
terms in the collection. Thus, the document 
matrix is MxN dimension, where M is the 
number of documents in the collection and N is 
the number of unique terms in the collection. 
The nature of the text collection results in a very 
sparse matrix with many elements of the matrix 
having the value of zero where the term is absent 
in the document. 
Step 5: Compress the sparse matrix using one of 
the sparse matrix compression methods.  
Step 6: Perform the query processing by using 
one of the matrix-vector multiplication 
algorithms, such as Scalar ITPACK to obtain the 
relevance ranking. 

As an aside, since every row of the 
matrix is independent of each other, one needs 
only to maintain the information associated with 
the current matrix row and the vector in memory 
at a given point in time.  Clearly to reduce I/O 
wait time, it is necessary to fetch the information 
related to successive rows prior to them being 
needed.  Note that the above description is only 
intended to provide a logical overview of the 
approach.  In practice, there is no need to create 
the original matrix. 
 
1.1.4 Example 
 

The sample collection in figure-2 with 
five documents D0, D1, D2, D3, D4 and query 
Q is given.     
 
 
 
 
 
 

 
Figure-2: Sample collection and query 

Table-1 shows the unique terms for each 
document along with the term frequency (tf). 
The unique terms in the collection with the 
document frequency (df) and inverse document 
frequency (idf) of terms are shown in table-2. 

 
Table-1: Term Frequency for Sample Collection  

DOCS Tf 
D0  
Security 2 
Social 2 
D1  
Social 2 
Security 2 
D2  
Social 1 
Welfare 1 
System 1 
D3  
Security 1 
System 1 
D4  
Information 1 
System 1 

 
 

Table-2: Df and Idf for Sample Collection  
Term_id Term Df Idf 

0 Security 3 0.22 
1 Social 3 0.22 
2 Welfare 1 0.70 
3 System 3 0.22 
4 Information 1 0.70 
 

The sparse matrix A, which represents 
the sample collection, is shown in figure-3. 
Figure-3 is the result of step 3 and step 4, 
described earlier. Each row corresponds to a 
document, i.e. document D0, D1, D2, D3 and 
D4.  The columns correspond to the unique 
terms, i.e. term id 0, 1, 2, 3, and 4 in the 
collection. The elements of the matrix are the 
tf*idf of each term. 

 
 
 
 
 
 
 

 
Figure-3:  Sparse Matrix A 

           Term id 0 1 2 3 4  
 
0.44 0.44 0 0 0  

M = 0.44 0.44 0 0 0 
 0 0.22 0.70 0.22 0 
 0.22 0 0 0.22 0 
 0 0 0 0.22 0.70 

D0 = security security social social  
D1 = social security social security 
D2 = social welfare system   
D3 = security system 
D4 = information system 
Q = social security 
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Figure-4: Compressed Matrix A for Sample Collection based on Modified Scalar ITPACK Compression 
 
 
 
                            Figure-5: Query Vector 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6: Result of the relevance ranking 
 
Using the Scalar ITPACK compression 

method, matrix A is compressed to three vectors, 
shown in figure-4. The first vector, 
non_zero_vector, indicates the non-zero 
elements of matrix A. The second vector, 
col_vector, is the column indices of non-zero 
elements in matrix A. The third vector, 
row_vector,  has M+1 elements, which identifies 
documents D0, D1, D2, D3 and D4.  The 
distance between every two adjacent elements in 
the row_vector determines the elements in the 
non_zero_vector and col_vector that belong to a 
document identified by the position of the 
element in the row_vector.  

For example, to find all the terms in 
document D2, the distance between the values 
stored in positions two and three in the 
row_vector, namely 4 and 7 is computed. The 
three elements in non_zero_vector and 
col_vector, starting with the position 4, i.e. 0.22, 
0.70 and 0.22 with column indices of 1, 2 and 3 
belong to the second document, D2. 

The query vector Q is shown in figure-5. 
The size of the query is for the number of 
distinct terms.  Figure-6 shows the result of the 
query processing described in step 6 by using 

Scalar ITPACK algorithm on query Q and the 
sample collection. Document D0 and D1 are 
ranked the highest with the relevance of 0.20. 
Documents D2 and D3 are ranked lower, 0.05. 
Document D4 with the rank 0 is non-relevant to 
the query. 

 
2 Efficiency  
 

The storage space for the conventional 
inverted index has two components.  The Index 
component stores the unique terms in the 
collection, each pointing to the Posting List. The 
Posting list is the list of all documents having a 
given term.  The storage space for the Posting 
List is computed by considering 10 bytes for 
each Posting List entry, from which 4 bytes is 
for the document identifier, 2 bytes for term 
frequency and another 4 bytes for pointer to the 
next element in list [Grossman and Frieder, 
1998].  

The storage space for the compressed 
sparse matrix using Scalar ITPACK is computed 
by allocating 2 bytes per non-zero element in the 
first vector, which stores the tf*idf of the term, 4 
bytes for each element of the second vector that 
is the column indices, and 4 bytes per number of 
documents + 1 for the third row, which is the 
row indices. In the case that no tf*idf weighting 
is used for computing the relevance ranking, the 
binary values of “1” do not need to be stored in 
the first row, which minimizes the storage space 
even further. 

Table-3 shows the storage space for the 
conventional Inverted Index and compressed 
Sparse Matrix using Scalar ITPACK method for 
TREC 6-8 collection on disk 4-5, LA (LA 
Times), FT (Financial Times), FR (Federal 
Registry) and FBIS sub-collections, which are 
news documents.                        .

non_zero_vector = <0.44   0.44   0.44   0.44   0.22   0.70   0.22   0.22   0.22   0.22   0.70> 

col_vector  =       < 0     1 0        1      1  2        3        0       3        3        4 > 

row_vector =      < 0     2    4        7        9        11> 

Q= < 0.22 0.22 0 0 0       > 

DOC[0] = 0+(0.44*0.22)=0.10 
DOC[0] = 0.10+(0.44*0.22)=0.20   
 
DOC[1] = 0+(0.44*0.22)=0.10   
DOC[1] = 0.10+(0.44*0.22)=0.20  
 
DOC[2] = 0+(0.22*0.22)=0.05  
DOC[2] = 0.05+(0.70*0)=0.05   
DOC[2] = 0.05+(0.22*0)=0.05 
 
DOC[3] = 0+(0.22*0.22)=0.05  
DOC[3] = 0.05+(0.22*0)=0.05  
 
DOC[4] = 0+(0.22*0)=0  
DOC[4] = 0+(0.70*0)=0 
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Table-3:  TREC Data Storage (Bytes) Using Inverted Index and Scalar ITPACK Structures 

 
Table-4: Contrived Document Storage Space(Bytes) Using Inverted Index and Scalar ITPACK Structures 

 
 

The number of documents in each sub-
collection along with the number of distinct 
terms in each sub-collection, excluding the stop 
terms, are listed under Total Docs and Distinct 
Terms columns of the table-3.  The Posting List 
Entries column of the table shows the number of 
total terms in each sub-collection. The columns 
Inverted Index and S. ITPACK show the number 
of bytes used to store the indexed sub-
collections. The storage space for each storage 
structure is calculated as described earlier. The 
average number of the occurrences of each 
unique term in each sub-collection is calculated 
by dividing the total number of terms by the 
number of distinct terms in each sub-collection. 
This information is listed under column Avr 
Ent/Term of table-3. 

The average number of the occurrences 
of a term in each of the sub-collections, Avr 
Ent/Term, of the TREC data indicates that the 
term occurrences are relatively low. 
Nevertheless, the ratio of the Scalar ITPACK 
storage space to the conventional Inverted Index 
storage space is about 40% for the TREC data. 

Table-4 presents the same information 
for the domain specific documents such as 
publications and email with some “believed 
characteristics”. The nature of the domain 
specific documents is such that the number of 
vocabularies is small. However, the terms occur 
more frequently in each document. For example 
each of the million emails in the collection, 
listed in table-4, has an average of 5 terms, 
excluding any stop term. As the result, the total 
number of terms, excluding the stop terms, is 5 
million with 500 distinct terms in the entire 

email collection. This implies that each of the 
500 unique terms in the Email collection occurs 
10000 times. The ratio of the Scalar ITPACK 
storage space to the conventional Inverted Index 
storage space is about 40% for publications and 
30% for email documents. 
 
3 Proximity Search using 
Sparse Matrix Multiplication  
 

Proximity searches are used in the 
Information Retrieval to increase the accuracy of 
the search by considering a particular query term 
sequence in the document.  The documents, in 
which the query terms appear within a specific 
window size, are retrieved and ranked higher 
than any document that simply contains the 
query term. For example, the query “information 
retrieval”, with query condition of window size 
1, does not rank as high the documents that have 
the terms “information” and “retrieval” in a 
sequence with a negative window size such as 
“Retrieval of Information”, or a window size 
bigger than 1 such as “Information System for 
Retrieval of Employee Data”. 

We modified the Sparse Matrix storage 
structure to implement the Proximity Search. 
The structure and the algorithm are described 
using the sample collection of figure-2 with 
documents D0, D1, D2, D3 and D4 and query Q. 
Table-5 is the information provided in table-1, 
along with the position of each term in each 
document (offset). 

We modified the compressed 
representation of matrix showed in figure-4 to 

Collection Total Docs Posting list Enteries Distinct Terms Inverted Index S. ITPACK Avr Ent/Term Ratio
TREC6-8 528023 120407310 1023542 1218402688 730697208 118 59.97%
LA 131896 30200001 321087 306495228 183654116 94 59.92%
FT 210158 44571084 382437 451064958 270561762 117 59.98%
FR 55630 13685852 302943 141099722 84155294 45 59.64%
FB 130471 27444674 318767 278909478 167102534 86 59.91%

Collection Total Docs Posting list Enteries Distinct Terms Inverted Index S. ITPACK Avr Ent/Term Ratio
Publications 528023 2640115000 382437 26406504118 15845096718 6903.4 60.00%
Email 1000000 5000000 500 50007000 34003004 10000 68.00%
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implement the proximity search.  We add a 
fourth and fifth vector, namely, offset_vector 
and offset_marker to the structure. Figure-7 
shows the modified structure. The offset_vector 
contains the offset of each term in each given 
document. The number of elements in 
offset_vector is total number of non-stop terms 
in the collection. The elements in the 
offset_marker vector indicate the number of the 
occurrences of each term in a document, hence it 
shows which offsets in the offset_vector belong 
to a given term in a document. The number of 
elements in the offset_marker is the number of 
non-zero elements+1. The position of each 
element in the offset_marker corresponds to the 
position of the term id of the term in col_vector, 
whose offsets are identified.  

For example, the difference between the 
values stored in the position 0 and 1 in the 
offset_marker vector, namely 0 and 2 shows that 
two elements of the offset_vector, starting in 
position 0, namely 0 and 1 are the offsets of 
term, stored in the position 0 of col_vector, i.e. 
term id 0. The difference between the values 
stored in the position 1 and 2 in the 
offset_marker vector, namely 2 and 4 shows that 
two elements of offset_vector, starting in 
position 2, namely 2 and 3 are the offsets of 
term, stored in the position 1 of col_vector, i.e. 
term id 1. The difference between the values 
stored in the position 2 and 3 in the 
offset_marker vector, namely 4 and 6 shows that 
two elements of offset_vector, starting in 
position 4, namely 1 and 3 are the offsets of 
term, stored in the position 2 of col_vector, i.e. 
term id 0. 
 

Table-5: tf and term offset for sample collection 
DOCS Tf Offset 
D0   
Security 2 0,1 
Social 2 2,3 
D1   
Social 2 0,2 
Security 2 1,3 
D2   
Social 1 0 
Welfare 1 1 
System 1 2 
D3   
Security 1 0 
System 1 1 
D4   
Information 1 0 
System 1 1 
 
The query vector is modified by adding 

a second vector to store the offset of the terms in 
the query, as shown in figure-8. 

We show in figure-9 the algorithm to 
implement the proximity search on Sparse 
Matrix application of Information Retrieval.  

As showed earlier in figure-6, both 
documents D0 and D1 are ranked the highest as 
the result of the query processing.  The 
algorithm of figure-9 is applied to documents D0 
and D1. From the element 0 of the row_vector 
both terms belonging to document D0 with term 
id 0 and 1 in the positions 0 and 1 of col_vector 
are identified. The position 0 in offset_marker 
introduces 2 elements of the offset_vector in 
positions 0 and 1, namely term offsets 0 and 1 
for the term id 0. The position 1 in offset_marker 
introduces 2 elements of the offset_vector in 
positions 2 and 3, namely term offsets 2 and 3 

 
 
 
 
 
 
 
 
 

Figure-7: Modified Compressed Matrix A for Proximity Search 
 
 
 
Figure-8: Modified Sample Query Q for Proximity Search 

Q:  v1=<0.22 0.22 0 0 0 > 
      v2=<1 0 0 0 0 > 

non_zero_vector = <0.44   0.44   0.44   0.44   0.22   0.70   0.22   0.22   0.22   0.22   0.70> 

col_vector  =       < 0     1       0        1      1  2        3       0        3       3        4 > 

row_vector =      < 0     2        4        7        9        11> 

offset _vector =     < 0  1  2  3  1  3  0  2  0  1  2  0  1  1  0> 

offset_marker=     < 0  2  4  6  8  9  10  11  12  13  14  15> 
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Figure-9: Proximity Search Algorithm 
 
D0: (2,0)  => 0-2 = -2 
       (2,1)  => 1-2 = -1 
       (3,0)  => 0-3 = -3 
       (3,1)  => 1-3 = -2 
 

D1: (0,1)  => 1-0 = 1 
       (0,3)  => 3-0 = 3 
       (2,1)  => 1-2 = -1 
       (2,3)  => 3-2 = 1 
 

Query w/window size of 1: 
(The difference must be 1) 
Result : none 

Query w/window size of 1: 
(The difference must be 1) 
Result:   - social w/offset 0 and security w/offset 1 
              - social w/offset 2 and security w/offset 3 

Query w/window size of 3: 
The difference must be >= 1 and <= 3 
Result : none 

Query w/window size of 3: 
(The difference must be >= 1 and <= 3)  
Result:   social w/offset 0 and security w/offset 1 

Social w/offset 2 and security w/offset 3 
Social w/offset 0 and security w/offset 3 

Figure-10:  Result of Query Processing using Proximity Search 
 

for the term id 1. The offset pairs across both 
terms are built based on the order of the query 
term, i.e., (term1, term0). The identified pairs 
are: (2,0) , (2,1), (3,0), (3,1). Document D1 is 
also processed similarly. The element in the 
position 1 of the row_vector identifies that two 
elements of col_vector, starting in the second 
position, 0 and 1 belong to document D1.  The 
corresponding positions in the offset_marker are 
elements in positions 2 and 3, i.e., values 4 and 
6. The value 4 in offset_marker identifies that 
two elements in offset_vector in the positions 4 
and 5, i.e., offsets 1 and 3 belong to term id 0. 
The value 6 in offset_marker identifies that two 
elements in offset_vector in the position 6 and 7, 

i.e., offsets 0 and 2 belong to term id 1. The 
identified pairs are: (0,1) , (0,3), (2,1), (2,3). The 
result of the proximity search for query Q on the 
sample collection, using the algorithm described 
in figure-9, is shown in figure-10. 

Although the initial relevance ranking 
ranked both documents D0 and D1 the same, the 
proximity search identifies that document D1 is 
more relevant. The window size of the query 
“social security” matches to the window size of 
the document terms in document D1 “social 
security social security” and not to “security 
security social social“ in document D0. Both 
query terms, “social” with term id 1 and 
“security” with term id 0 occur in both of the 

FOR each document ranked with the highest similarity score in the query processing using matrix-
vector multiplication DO 

Find from row_vector the elements (term id) and the number of elements in col_vector 
belonging to that document and the start position in col_vector. 
IF the element (term id) matches to any query term id Then DO  

FOR each found position in col_vector DO 
  Find the corresponding  element in offset_marker 

 Find the corresponding elements in offset_vector 
END 
Build pairs ( in the order of query terms) between the elements found in offset_vector 
across each col_vector 
FOR each pair DO 

Compute the difference between the elements of the pair 
If the difference >=1 and <= query window size 

  Then mark the pair for selection 
END 

 END 
END 



 8

documents D0 and D1. The window size of 
these terms are measured in both documents by 
considering all possible pairs of the offsets of 
the terms “social” and “security” in each 
document.  The pairs (0,1) and (2,3) in 
document D1 show that the window size for 
terms “social” with term id 0 and “security” with 
term id 1 is 1, which satisfies the query 
condition for window size of 1. In the case of 
query condition of window size 3, the pairs 
(0,1), (2,3) and (0,3) satisfy the condition of 
window size of smaller or equal to 3.  

 
4 Relevance Feedback using 
Sparse Matrix Multiplication 
 

Relevance Feedback is one of the 
common utilities in information retrieval that 
increases the accuracy of the retrieval. One of 
the earliest approaches is described in [Rocchio, 
1971]. The query is refined by the results of the 
initial query. The steps of Relevance Feedback 
process are as follows: 
Step 1: Issue the query. 
Step 2: Select top n documents. 
Step 3: Identify the higher idf terms in top 
documents.   
Step 4: Add those terms to the initial query. 
Step 5: Re-issue the query, and continue with 
step 2. 

In the vector space model, relevant 
document vectors are added to the query. 
Figure-11 describes this process. 
 
 
 
Figure-11: Relevance Feedback for 
Vector Space Model 

 
Q: original query vector 
R: set of relevant document vectors 
c: a constant to indicate the importance of R  
Q’: new query vector 
 

We modified the Relevance Feedback 
algorithm of figure-11 to implement the 
Relevance Feedback using Sparse Matrix 
Multiplication algorithm, as shown in figure-12. 
 
5 Conclusion 

 
Previously, we introduced a sparse 

matrix approach to information retrieval.  This 
approach represented the inverted index as a 
sparse matrix.  The motivation for the approach 
was the reuse of prior mathematical efforts for a 
novel application, namely information retrieval. 
However, the approach was not evaluated until 
now where an evaluation of this approach 
demonstrated up to a 30% reduction in storage 
space over a conventional approach.   

We also presented algorithms to 
improve retrieval accuracy when using the 
sparse matrix approach.  To improve accuracy, 
proximity search and relevance feedback 
algorithms were developed.  The proximity 
search technique relies on two additional vectors 
used to represent the offset of a term within the 
document.  The relevance feedback approach 
mapped a traditional relevance feedback 
algorithm to the matrix domain. 

In the future, we will evaluate the 
approach using traditional information retrieval 
measures such as precision and recall and will 
implement the approach on a parallel platform. 

 
 
 
 

 
 
 
 
 
 

Figure 12: Relevance Feedback Algorithm using Sparse Matrix Multiplication 
 

Step 1: Find top n relevant documents by using Matrix Multiplication algorithm.  
Step 2: Find the first k term_id of terms in n documents, which are more relevant documents, with    
            higher idf. 
Step 3: Add these terms to query by replacing existing value 0 in the corresponding column in the 
query vector with tf*idf of terms or with the binary value 1 for the existence of the term. 
Step 4: Re-calculate the relevance using the Matrix Multiplication algorithm. 
 

Q’ = Q + csum(R) 
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