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Abstract

Peers in peer-to-peer file-sharing systems cannot ef-
fectively share their files if they are poorly described.  
Terms one user employs to describe an instance of a file 
may not be those that are commonly associated with the 
file, making this instance difficult to locate. To alleviate 
this problem, a server can ask its peers for help in im-
proving the description of files they have in common.  We 
consider the design of a fully distributed, automatic sys-
tem for the exchange of descriptive metadata. Experimen-
tal results show that the proposed techniques are effective 
in improving search accuracy with reasonable cost.

1. Introduction
Peer-to-peer (P2P) file-sharing systems such as 

Limewire’s Gnutella [1] and eMule’s eDonkey client [2]
are popular with millions of users sharing several 
petabytes of data daily [3]. Because of the scale of these 
systems, it is imperative that their search functionalities 
are accurate and efficient.  Accurate search functionality, 
furthermore, relies on accurate data descriptions.

In these systems, each peer maintains its own reposi-
tory of files identified by user-tuned descriptors.  A de-
scriptor is a metadata set which is composed of descrip-
tive terms.  Arriving queries are compared with these de-
scriptors and if any descriptor contains all of the query 
terms, then a match occurs, and the descriptor and server 
identifier are returned to the client [4].  This query proc-
essing technique works well if the descriptors contain the 
terms necessary for relevant queries to match them.

Poorly described files, however, match few queries 
with several consequences: users are unable to share their 
content; some peers unintentionally develop a poorer 
“reputation” for sharing in the network; load among peers 
is unbalanced; query volume increases due to the high rate 
of failed queries; and fewer files overall are available to 
the participants.

This is a significant problem.  Recent traffic analyses 
indicate that 91% of Gnutella messages are query mes-
sages and only 1% of them are query hit messages [5].  
This indicates that almost no queries return results.  For 
example, Figure 1 shows some of the results for the query 

“Mozart clarinet”, issued during an arbitrary summer 
2006 day using eMule.  From the results, we see that the 
query, “Infantil Mozart for Babies clarinet,” would not 
return the third result (i.e., the one with File ID 21295…) 
even though it likely refers to it.  

Figure 1. Results for “mozart clarinet” on eMule.

To address this problem, we propose a peer subsystem 
that automatically detects if a peer has a lower than de-
sired level of system participation.  In this event, the peer 
probes other peers’ repositories for information that may 
be useful in improving local file descriptions, thereby im-
proving its ability to match relevant queries.

We consider the design of the probing system and ad-
dress the following issues:
 When to probe – how to determine the peer’s partici-

pation level and use it to trigger a probe;
 What file to probe – how a peer selects a local file for 

which to conduct the probe;
 What should be done with probe results – how to use 

probe results to tune the probed file’s descriptor.

2. Related Work
Query accuracy in P2P systems improves by increasing 

the number of relevant results (higher recall) or by de-
creasing the number of irrelevant results (higher precision) 
in a result set.  These goals are typically accomplished by 
either query routing or query transformation techniques.

Query routing techniques take the form of either creat-
ing distributed indices that help locate shared data or by 
creating network topologies where peers with common 
interests are logically linked closely to each other in an 



overlay network [6][7][8][9][10].  In the former case, the 
client must combine one or several indices that could be 
located on several peers for the locations of relevant con-
tent.  In the latter case, queries are routed first to peers 
that are most likely to share relevant content.

Limewire’s Gnutella attempts to improve the recall of 
hard-to-find files by increasing the time-to-live of queries 
that yield few results [1].

Index- and topology-building techniques assume that 
the desired data are accurately described.  In P2P file-
sharing systems, however, user-tuned data descriptions 
could be sparse or distributed over several peers, and only 
the aggregate description can appropriately match queries.  
Our proposed work can be viewed as an attempt to aggre-
gate these descriptions as needed.  Another problem with 
index- and topology-building techniques is that they often 
require reliable, DHT-based networks or centralized serv-
ers to function appropriately.

There is also a class of work that strives to improve 
search in P2P environments that share text documents 
[7][8].  Such systems generally do not suffer from poor 
data description because query matching is based on com-
parisons with a file’s textual content (data are self-
describing), not on its small, user-defined descriptors.

Our approach bears some resemblance to work that ei-
ther adds or replaces query terms to improve query accu-
racy [11].  However, in practice, there exists no standard 
mechanism (e.g., standard ontologies) for implementing 
these techniques, and it is unclear what impact this would 
have on query performance or cost.  Moreover, because 
data descriptions are sparse in the first place, term trans-
formation may result in unacceptable “semantic drift” –
clearly incorrect transformations in descriptions.  Another 
recent work improves query performance by removing 
terms from queries [12], but the resultant smaller query 
still needs to match with the terms in relevant descriptors.

We improve automatically query accuracy by tuning 
the description of shared data in a P2P environment.  This 
transformation is possible and necessary due to the fact 
that, in P2P file-sharing systems, the data are not self-
describing; so locating a file is wholly dependent on a 
user’s ability to accurately describe it.  Our system aims to 
supplement user descriptions.

Note that this work can also be more widely applied to 
the description of binary files in centralized environments, 
such as photo- or video- sharing Web sites, whose search 
capabilities also rely on user descriptions.

3. Query Processing Specification
In typical P2P file-sharing systems (e.g., Gnutella) 

peers collectively share a set of (binary) files by maintain-
ing local replicas of them.  Each replica is represented by 
a user-tuned descriptor, which also contains an identifying 
key (e.g., an MD5 of SHA-1 hash on the file’s bits).  All 

replicas of the same file naturally share the same key.  A 
client’s query is routed to all reachable servers until its 
time-to-live expires.  A server compares each query to its 
local descriptors; a query matches a replica if the replica’s 
descriptor contains all of the query’s terms.  On a match, 
the server returns its system identifier and the matching 
replica’s descriptor.  This information allows the client to 
distinguish and, if desired, download the associated file.

Formally, let O be the set of files, M be the set of all 
terms, and P be the set of peers.  Each file oi  O has a 
key associated with it, denoted ki, such that ki = kj if and 
only if oi = oj.

Associated with each file oi is a set of terms, Ti  M, 
that validly describe it.  Each term t  Ti has a strength of 
association with oi, denoted soa(t, oi), where 0 ≤ soa(t, oi) 
≤ 1 and tTisoa(t, oi) = 1.  The strength of association t
has with oi describes the relative likelihood that it is used 
to describe oi, assuming that all terms are independent.   
The distribution of soa values for a file oi is called the 
natural term distribution of oi.  Intuitively, an average 
person will describe oi with terms from Ti with a distribu-
tion described by oi’s natural term distribution.

A peer pj  P is defined as a pair, (Rj, g
j), where Rj is 

the peer’s set of replicas (i.e., its local repository) and gj is 
its unique identifier (e.g., its IP address).  Each replica ri

j 

 Rj is pj’s copy of file oi  O and has an associated lo-
cally maintained descriptor, d(ri

j)  M, which is a multiset 
of terms.  Each descriptor d(ri

j) also contains kj, the key of 
file oi.  The maximum number of terms that a descriptor 
can contain is fixed.

A query Qi  Ti for file oi is also a multiset of terms.  
The terms in Qi follow oj’s natural term distribution. 
When Qi arrives at a server pj, the server returns result set
Ui

j = {(d(ri
j), gj) | ri

j  Rj and Qi  d(ri
j) and Qi ≠ Ø}: 

membership in the result set requires that a result’s de-
scriptor contain all query terms, in accordance with the 
matching criterion.

The client that issues Qi receives result set Ui = 
pjPUi

j, and groups individual results by key, forming G
= {G1, G2, …}, where Gi = (d(Gi), ki, li).  d(Gi)={d(ri

j) | 
(d(ri

j), g
j)  Ui} is the group’s descriptor and is the mul-

tiset sum of all of the descriptors of the results contained 
in Gi.  ki is the key of oi and uniquely identifies Gi.  li = {gj

| (d(ri
j), gj)  Ui} is the list of servers that returned the 

results in Gi.  In this definition,  denotes the multiset 
sum operation.

The client assigns a rank score to each group with 
function Fi  F, defined as F: 2M2MZZ  R+.  If 
Fi(d(Gj), Q, |Gj|, timej) > Fi(d(Gk), Q, |Gk|, timek), where 
Gj, Gk are groups, then we say that Gj is ranked higher 
than Gk with respect to query Q.  In these definitions, |Gj| 
is the number of results contained in Gj and timej is the 
creation time of the Gj (i.e., the time when the first result 
in Gj arrived at the client).



In commercial P2P file-sharing systems, such as vari-
ous implementations of the Gnutella protocol, ranking is 
performed by group size, as a large group suggests rele-
vance to a query and multiple sources can better ensure a 
quick, successful download:

FG(d(Gj), Q, |Gj|, timej) = |Gj|.

Descriptors in these systems are generally implemented 
via filenames, but a small amount of descriptive informa-
tion may be embedded in the actual binary of the replica 
(e.g., ID3 data embedded in mp3 files [13]).  Furthermore, 
when a file is downloaded, the descriptor of this new rep-
lica is initialized as a duplicate of one of the servers’ in 
the result set, but can be tuned by the user as well.

The screenshot in Figure 1 exhibits the conjunctive 
matching criterion, result grouping by key (“File ID”), and 
ranking by group size (“Avail”).

4. Probing
The goal of probing is to increase automatically a 

peer’s participation level in the system, defined as the rate 
at which its shared files match incoming queries, to a level 
commensurate to both the user’s desire and the perceived 
activity level in the network.  Furthermore, this should be 
done in a way that is functional in a dynamic, unreliable 
P2P environment – specifically, the information needs of 
the system need to be minimal.

4.1. Implementation of probe queries
In the probing system, there are file queries and probe 

queries.  A file query for a file oi is issued by a user and is 
composed of terms that s/he associates with oi.  A probe 
query for file oi is issued by the probing system and is a 
request to other peers for descriptor information on oi.  To 
unambiguously identify oi, the probe query need only con-
tain ki, the key of oi.

4.2. Steps in probing
There are three steps to probing:  1) First, some mecha-

nism must trigger a peer’s probe.  2) The peer must then 
select a local file to probe.  3) Probe results are then used 
to improve the description of the probed file.
4.2.1. Probe triggering.  A peer should trigger probes at 
a rate commensurate to the user’s desire and system activ-
ity levels.  A peer’s desire to share is modeled by Nf, the 
number of files in its share repository.  A peer’s matching 
level is modeled by Nr, its number of results that match 
incoming queries.  System activity is modeled by Nq, the 
number of queries the peer has received. We integrate 
these factors in the following triggering condition: given 
a user-defined desired participation level T, if the follow-
ing triggering condition holds, the peer performs a probe:

T > Nr / (NfNq) + NpT, Nf, Nq > 0 (1)

where Np in the second term on the right hand side is the 
number of probes the peer has already issued.  The first 
term on the right hand side of the triggering condition 
models a peer’s actual participation level and can be un-
derstood as the number of responses per shared file per 
incoming query.  When this value is 0, then the peer re-
turns no responses, and when it is 1, the peer returns re-
sponses for every query and every file.  Therefore, setting 
T to 0 indicates that the client should never probe and 
setting T to 1 indicates that a client should virtually always 
probe.  Note that if Nf = 0 (i.e., the peer is a freeloader) or 
Nq = 0 (i.e., there is no activity in the system), then the 
triggering condition should naturally not be evaluated.  
Updates to the “N” counters and evaluation of the trigger-
ing condition are performed after each incoming query is 
processed.

The actual participation level models several sensible 
criteria.  If the peer is busy (i.e., Nr is high), then it is more 
difficult to trigger a probe as the peer does not wish to 
take on more work.  If the system is busy (i.e., Nq is high), 
then the rate of probing should increase commensurate 
with the perceived demand of other peers.  If the peer 
does not have many files to share (i.e., Nf is low), then it 
should not probe much as its rate of responses should be 
proportionately low.

The second term on the right hand side of the trigger-
ing condition is used to “reset” the condition after each 
probe.  This ensures that a peer does not continually issue 
probes if one does not have an immediate impact.  Alter-
native resetting techniques are possible, of course.  For 
example, a peer could increase the threshold T after all 
local files have been probed.  The one in the triggering 
condition is designed for simplicity.

Note that the triggering condition requires only local 
variables and no global information.  This is consistent 
with the design goal of the probing system being func-
tional in a fully distributed P2P environment.
4.2.2. Selecting a file to probe.  The choice of file for 
probing is made to increase a peer’s participation level.  
The probing system must identify a file to probe that most 
furthers this goal.  Below are possible file selection crite-
ria, which we use in our experiments in Section 5:

 Select the file ri that has been probed the least (min 
Np

i, where Np
i is the number of times ri has been

probed).  With this selection criterion, we ensure that 
all files are selected in a round-robin way.  This pre-
vents a file from being probed repeatedly.

 Select the file ri that has been in the most/least 
query responses (“hits”) (min/max Nr

i, where Nr
i is

the number of times ri has been returned as a re-
sponse).  If we assume that Nr

i is an indication of ri’s 
popularity, then probing it further increases its match 
rate for peers who have yet to find it.  If we assume 



that Nr
i is low due to poor description, then probing 

remedies the situation and increases ri’s match rate.
 Select the file ri with the smallest descriptor (min 

|d(ri)|, where |d(ri)| is the descriptor size of ri).  The 
smaller a file’s descriptor, the more likely a query 
will not retrieve it due to over-specification (i.e., a 
relevant query contains terms not in the descriptor).  
Probing this file alleviates this problem.

These criteria can be combined in various ways, as we 
demonstrate in Section 5.3.  Combining the criteria is use-
ful in breaking ties and in avoiding wasteful situations, 
such as having a particular file probed repeatedly.
4.2.3. Applying probe results to the local descriptor.  
Once the probe results for file oi are returned to the client, 
they are grouped into a multiset.  The client then selects 
terms from this multiset to add to d(ri).  We consider four 
possibilities in term selection, each of which takes a dif-
ferent approach to increasing participation level:

 random – randomly select terms from the multiset.  
The goal of random term selection is to create new 
combinations of terms in descriptors that may allow a 
greater variety of queries to be matched.  The selec-
tion process continues until d(ri) is full.

 weighted random – randomly select terms from the
multiset based their relative frequencies.  Weighted 
random is similar to random, but prioritizes more fre-
quent terms.

 most/least frequent – select instances of terms in 
order of their frequencies (or inverse frequencies) in 
the multiset.  Only terms that are not already in d(ri) 
are considered to maximize term variety.  The selec-
tion process continues until d(ri) is full or there are no 
more terms to select.  Most-frequent term selection’s 
goal is to increase the likelihood of matching based 
on a consensus of what terms are strongly associated 
with a file.  Least-frequent term selection’s goal is to 
match queries that may contain “outlier” terms.

We do not replace terms already in the descriptor as 
this may interfere with the local user’s naming conven-
tions.  Many other term selection possibilities exist, but 
our current goal is to demonstrate the general impact of 
term selection with these canonical alternatives.

5. Experimental Results
We simulate the performance of a P2P file-sharing sys-

tem to test the large-scale performance of our methods.  In 
accordance with the accepted model described in [14] and 
observations presented in [15], we include in our experi-
mental model interest categories C, a partitioning of O
into sets Ci  C, where Ci  O, and iCi = O.  Interest 
categories are used to model constraints on user interests.

Each category Ci has popularity, bi, with a Zipf-skewed 
distribution.  At initialization, each peer pj is assigned 
some interests Ij  C, based on bi.

Each file o within each instance of an interest category 
varies in popularity, which is also skewed using a Zipf 
distribution.  This re-skewing of popularities models indi-
vidual user interests and governs the likelihood that a peer 
who has interest in the category that contains om is initial-
ized with a replica of om.  Each replica, rj

m, allocated at 
initialization has a randomly initialized descriptor subject 
to om’s natural term distribution.  Peer pj’s interest catego-
ries also constrain its searches; pj only searches files from 
nLn, where Ln  Ij.

We use Web data to simulate our language model (i.e., 
term distributions and interest categories).  Web data are a 
convenient choice because they constitute a grouping of 
terms into documents (we use terms’ relative frequencies 
within a document to simulate the natural term distribution 
for a file) and a grouping of documents into domains (we 
use domains to simulate interest categories).

Our data consist of an arbitrary set of 1,000 Web 
documents from the TREC 2GB Web track (WT2G).  
These documents come from 37 Web domains.  Terms are 
stemmed, and markup and stop words are removed.  The 
final data set contains approximately 800,000 terms, some 
37,000 of which are unique.  We also conducted experi-
ments using other data sets with other data distributions, 
but, due to space constraints, we only present a represen-
tative subset of our results.   The data used for all experi-
ments are found on our Web site [16].  The other experi-
mental results are available on request.

Table 1. Query length distribution.

Length 1 2 3 4 5 6 7 8
Prob. .28 .30 .18 .13 .05 .03 .02 .01

Table 2. Parameters used in the simulation.

Parameter Value(s)

Num. Peers 1,000

Num. Queries 10,000

Max. descriptor size (terms) 20

Num. terms in initial descriptors 3-10

Num. categories of interest per peer 2-5

Num. files per peer at initialization 10-30

Num. trials per experiment 10

Terms for a query are picked randomly based on the 
desired file’s natural term distribution, similar to a tech-
nique described in [17]. The query length distribution 
shown in Table 1 was derived from observations of query 
logs we collected over several days on the Gnutella net-
work in the Spring and Summer of 2006 using our 
Gnutella network crawling tool [18].  Without loss of gen-
erality, queries are flooded to all peers.  The simulation 
parameters listed in Table 2 are based on observations of 



real-world P2P file-sharing systems and are comparable to 
the parameters used in the literature.

Although other behavior is possible, we assume that 
the user identifies and downloads the desired result group 
with a probability 1/r, where r  1 is its position in the 
ranked set of results.  If the desired result is not in the 
result set, r = ∞ and the top-ranked result is selected.  We 
use the group size ranking function described in Section 3.  
We have also tried other ranking functions (e.g., cosine 
similarity), but group size ranking results are representa-
tive.

Performance is measured using a metric known as 
mean reciprocal rank score (MRR) [19].  MRR is appro-
priate for known-item search, which P2P file-sharing que-
ries are accepted as being.  (See evidence of this in [20].)  
MRR assumes that there is a single, identifiable desired 
result, and uses the ranking of this result in the result set to 
compute an accuracy score.  The score for an individual 
query is the reciprocal of the rank at which the desired 
result is returned.   MRR is defined as

q

N

i
i

N

rank
MRR

q 


1

1

(2)

where Nq is the number of queries issued by the client and 
ranki is the rank of the desired file in query i's result set.

For reference, we also present precision and recall, 
which have slightly different definitions than they do in 
traditional Information Retrieval (IR) since file replicas 
exist in P2P and not in IR.  Let SA be the set of replicas of 
the desired file, and SR be the result set of the query.  Pre-
cision and recall are defined as:

||

||

R

RA
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A
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SS
recall


 (3)

These more traditional IR metrics are useful in roughly 
diagnosing the performance of query processing and in 
generalizing the presented performance to other domains.

5.1. Applying probe results to the local descriptor
We consider how a client applies probe results to the local 
descriptor first to streamline our presentation: once a pre-
ferred probe result handling technique is established, we 
will use it in the rest of our experiments.  Further, the 
probe result handling technique is intuitively independent 
of probe file selection and triggering, so we can handle it 
separately.

In Figure 2, we present MRR where probes are trig-
gered randomly for randomly selected files at an aggre-
gate rate of 5,000 probes for 10,000 file queries.  
Weighted random (wrand) outperforms the alternatives by 
two to seven percent.  Random (rand) and least frequent 

(lfreq) term selection suffer from selecting too many 
weakly associated terms.  Resultant descriptors are inef-
fective in matching queries.  It could be even worse in the 
case that a few fake or incorrect descriptors exist along 
with correct ones, as their chance of selecting bad descrip-
tive terms is definitely higher compared with that of 
wrand.  Most frequent term selection (mfreq) creates ho-
mogenous descriptors, decreasing the variety of queries 
that can be matched.  By avoiding these problems, 
weighted random term selection performs best.

The statistical significance of these results was con-
firmed via t-tests at the 95% significance level.  Because 
weighted random outperforms the alternatives, we use it 
as the default probe result term selection technique in the 
rest of the discussion.  
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Figure 2. MRR with various term selection tech-
niques.

5.2. Probe triggering techniques
We now consider the impact of various alternative trig-

gering conditions.  The three alternatives we consider are:
1. No probing (base case).

2. Random probing at a uniform rate.

3. Using the triggering condition from Section 4.2.1.

With random probing, we perform 5,000 probe queries
over 10,000 file queries by assigning to all peers an ap-
propriate random probability of probing right after each 
query.  To trigger 5,000 probe queries using the triggering 
condition, we manually tune T.

Experimental results shown in Figure 3 clearly indicate 
that probing improves query accuracy.  Random probing, 
denoted “random”, increases MRR by 20% over the non-
probing base case, denoted “noprobe”.  Probing using the 
triggering condition increases MRR by 30% (denoted 
“T5K”) over the base case.  That the triggering condition 
results in an improvement in accuracy indicates that probe 
activity should be directed at peers that are underutilized 
and not wasted on appropriately participating peers.

Much of this accuracy improvement is due to the im-
proved ability for longer queries to retrieve desired re-
sults.  Longer descriptors alleviate the problem that longer 



queries have of result over-specification as shown in 
Figure 4: MRR increases by about 20% for two-term and 
by about 1000% for eight-term queries.  Probing slightly 
reduces the performance of single-term queries because 
they are already very unselective and increasing the sizes 
of their result sets through longer descriptors leads to the 
inclusion of many superfluous results.  These results serve 
to obscure the desired one.  Given the small performance 
loss in this case, particularly as compared with the gains, 
overall performance is still improved.
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Figure 3. MRR with various probe triggering 
techniques.
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Figure 4. MRR for various query lengths.
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Figure 5. Effect of various probing rates on MRR.

To test the impact of probe rate, we varied T so that 
2,500, 5,000, 7,500, and 10,000 probe queries were issued 
per 10,000 file queries.  As shown in Figure 5, MRR in-
creases with more probes, but at a decreasing rate.  This 
indicates that probing should be controlled, as its benefit 

diminishes.  We analyze probing costs and benefits in 
more detail in cost Section 5.4.

Another indication of the effectiveness of probing is 
how it allows peers to tune their participation levels.  In 
Table 3, we see that the average actual participation level 
(defined in Section 4.2.1) increases with probe rate by 
30% to 94%.  That the increase in standard deviation in 
actual participation level (29%) is relatively low com-
pared with the increased averages (94%) is indicative of 
system responsiveness to user control.

Table 3. Mean and standard deviation of actual 
participation level (Nr/(NfNq)) with various prob-

ing rates.  Values are 10-2.

Noprobe T2.5K T5K T7.5K T10K

mean 0.262 0.343 0.412 0.469 0.508

std dev 0.097 0.093 0.104 0.115 0.125

5.3. Probe file selection techniques
We now consider the impact of five different file selec-

tion techniques based on the combinations of the criteria 
discussed in Section 4.2.2.  We use number of query hits 
(Nr

i) and number of probes (i.e., round-robin) (Np
i) as our 

primary criteria:

 Rand – Randomly select a file to probe (base case).

 LPF – least popular first:  Select file ri with the mini-
mum number of query hits (min Nr

i). On a tie, use the 
minimum descriptor size (min |d(ri)|).

 MPF – most popular first: Same as LPF, but with 
max Nr

i instead.

 RR-LPF – round-robin-LPF: Select file ri with the 
minimum number of probe queries (min Np

i). On the 
first tie use the minimum number of query hits (min 
Nr

i).  On the second tie, use the minimum descriptor 
size (min |d(ri)|).

 RR-MPF – round-robin-MPF: Same as RR-LPF, but 
with max Nr

i instead.

In these experiments, probes are triggered randomly at a 
rate of 5,000 probe queries per 10,000 file queries.

In Table 4, we compare each file selection technique 
with the base case of random selection.  The “Cost” col-
umn indicates the total number of responses to both probe 
and file queries.  The “Pct. Contained” column indicates 
the percentage of queries whose result sets contain the 
desired result.  Only RR-MPF outperforms the random 
base case in all the metrics.

The two round-robin techniques outperform those 
based on popularity because the uniform distribution of 
probes reduces the likelihood that probes are wasted on 
unpopular files (LPF) or that popular files are over-probed 
(MPF).  LPF probing increases the MRR of queries for 



unpopular files (not shown), but without a noticeable 
overall difference because few queries are for these files.  
Over-probing a file (e.g., a popular file) with MPF is 
wasteful and counterproductive because additional probes 
for a file, which could be better allocated to another file, 
yield only marginal information and increases the likeli-
hood that the file matches irrelevant queries.  Conse-
quently, both precision and recall when using MPF are 
worse than with rand.  Cost increases with MPF because 
probes return many results and increase the recall of com-
mon file queries.

Table 4. Comparison of various file selection 
techniques against Rand on different metrics.  
Comparators indicate how well each file selec-

tion criteria compares with random file selection.

MRR Cost Recall Prec.
Pct. 

Contained

Rand = = = = =

LPF < < < < >

MPF < > < < <

RR-LPF < < > < >

RR-MPF > < > > >

The round-robin techniques smooth out the problems 
associated with using popularity a primary file selection 
criterion.  RR-MPF prioritizes the more popular files by 
using popularity as a tie-breaker and therefore has a better 
impact on all the metrics for the reasons stated above:  
MRR increases by 11% and cost decreases by 10% over 
rand.  The increase in accuracy is supported by the fact 
that RR-MPF increases both precision and recall.  This is 
an indication that the right files are being probed.  The 
higher cost of rand is due to the fact that it is more likely 
to repeatedly probe popular files because there are many 
of them.  RR-LPF works worse than RR-MPF because the 
former focuses too much on unpopular files and introduc-
ing unpopular results into queries for popular files de-
creases precision.  Random selection works reasonably 
because it ensures that there is no correlation among the 
choices of the peers (e.g., not all peer probe the same file.)

A two-tail t-test at a 95% significance level verified the 
statistical significance of these results.  The difference 
between RR-MPF and the base case is statistically signifi-
cant as the calculated t value (2.12) exceeds the t value 
threshold (1.96). 

5.4. Cost analysis
We define cost as the number of query responses be-

cause it is a rough estimate of both client processing and 
network load.  Because there are two types of queries –
probe queries for descriptors and file queries for files –
there are two types of query responses, and two cost com-
ponents.

Our strategy to reduce cost is to use server-side Ber-
noulli sampling on the result set for each query.  That is, 
for each matching file query result, the server decides to 
return it to the client with a fixed probability Pr, 0 ≤ Pr ≤ 
1.  This type of sampling is expected to preserve the over-
all distribution of terms and results in the result set with a 
predictable reduction in cost by a factor Pr.  We define the 
sampling rate of probe queries similarly at Pp. The ques-
tion is what effect such sampling has on query accuracy.

In Figure 6 and Figure 7, we see the impact that sam-
pling rates have on cost and accuracy. Peers perform 
probe queries using the T5K threshold described above. 
Cost is lower than the no probing case in three combina-
tions of Pp and Pr, respectively:  (.50, .25), (.25, .50), (.25, 
.25).  However, as shown in Figure 7, for all combinations 
of Pp and Pr, MRR is higher than without probing.  This 
indicates that, although accuracy always improves, it is 
also possible to simultaneously improve both accuracy 
and cost.  For example, when Pp = .25 and Pr = .25, cost is 
half that of the no probing case with similar MRR.  When 
Pp = .25 and Pr = .5, cost is about 15% lower than that of 
no probing, but MRR is about 18% higher.

Figure 6. Total per-file-query cost for different file 
and probe query sampling rates.

Figure 7. MRR for different file and probe query 
sampling rates.

The reason for this positive performance/cost behavior 
is due to the fact that probing can increase both query 
recall and precision as shown in Figure 8.  The higher 
quality results are more able to resist the negative effect 
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that sampling has on accuracy because the desired result is 
less likely to be sampled out of the result set.  

Specifically, for a query to contribute to MRR, its re-
sult set must contain at least one instance of the desired 
result. The probability this result is not in a result set U is 
(1 – precision(U))|U|.  Probing increases both |U| and pre-
cision(U), while sampling decreases |U| but leaves preci-
sion(U) unchanged.  Probing therefore increases both U’s 
MRR and its ability to withstand sampling.
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Figure 8. Recall and precision with various 
probing rates.

5.4.1. Sampling in practice. From the experimental re-
sults shown in Figure 6 and Figure 7, it is clear that reduc-
ing the probe query sampling rate does relatively little to 
hurt MRR (especially compared with file query sampling), 
but significantly reduces cost.  A heuristic for probing 
rates, therefore, is to fix Pp at a low value and to progres-
sively decrease Pr until the user indicates that a query has 
failed (i.e., by not following a query with a download).  
For failed queries, Pr is restored to a higher value.

6. Conclusion
Given the conjunctive matching criterion of today’s 

P2P file-sharing systems, poor data description limits 
query accuracy.  Probe queries help solve this problem by 
automatically tuning local descriptors using those of other 
peers.  Our experimental findings demonstrate that it is 
possible to improve query accuracy up to 30% at a tunable 
cost by probing for better file descriptions and sampling 
result sets.  Furthermore, this is accomplished in a fully 
distributed fashion and is therefore suitable for general 
P2P environments.  Ours is the first work we know of that 
automatically tunes the descriptions of shared data and 
could be extended beyond the P2P environment to de-
scribing all non-self-describing binary data.

We are now considering ways of better controlling ex-
actly where probes are directed (i.e., more or less popular 
files).  We are also developing models to help in tuning 
probing threshold and sampling values manner.  We are 
also considering different ways of sampling the network to 
yield cardinality estimations on shared data for the sake of 

tuning sampling rates [21].  Finally, we are building test 
data from traces from the Gnutella network using a tool 
we recently developed [18] – no such data currently exists 
[22], esp. the lack of relevance judgment between queries 
and shared files in Gnutella network.
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