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ABSTRACT 
We describe our experiences in applying learning-to-rank 
techniques to improving the quality of search results of an online 
hotel reservation system.  The search result quality factors we use 
are average booking position and distribution of margin in top-
ranked results.  (We expect that total revenue will increase with 
these factors.)  Our application of the SVMRank technique 
improves booking position by up to 25% and margin distribution 
by up to 14%.   

Categories and Subject Descriptors 
H.3.5 [Information Storage and Retrieval]: Online Information 
Services – commercial services, web-based services. H.2.8 
[Database Management]: Database Applications – data mining.  

General Terms 
Algorithms, Performance, Economics, Experimentation. 

Keywords 
Learning to rank, retail search engine, revenue maximization, 
multiple objectives, hotel reservations. 

1. INTRODUCTION 
Unlike traditional search engines, which are designed to return the 
results that are most relevant to a query, retail search engines are 
designed to maximize revenue.  This goal is realized by 
improving revenue per conversion as well as conversion rate. 

Our goal is to identify results that are both relevant to a query and 
yield high margin.  To this end, we apply a “learning to rank” 
(LTR) technique and adapt it to consider margin when producing 
the final ranked result set.  The challenge is that the goals of 
query relevance and margin maximization are often mutually 
exclusive.  Improving on one metric at the expense of the other 
may have a significant negative impact on total revenue. 

Our data set is a click log from Orbitz’s hotel search engine for 
the Chicago and New York markets.  We use an adapted version 

of SVMRank [5] as our LTR technique.  Offline experimental 
results show that, with some tuning, SVMRank has the potential 
to improve both relevance and margin in search results. 

2. RELATED WORK 
Liu describes three types of LTR techniques based on their types 
of training data [8].  Point-wise techniques require a relevance 
judgment for each result in a training set [3][7].  Pair-wise 
techniques require a relative relevance judgment for each pair of 
results [1][5].  List-wise techniques require relevance judgments 
for a list of results [2][9]. 
Among the many LTR techniques, we adopt the pair-wise 
SVMRank for several reasons. First, it is easy and cheap to collect 
pair-wise training data that represents customer relative 
preferences. (Building training data for either point-wise or list-
wise techniques is much less practical.) Second, SVMRank is 
efficient in both learning and ranking, as it is a linear SVM. Other 
pair-wise LTR techniques, such as those based on neural 
networks, have a higher learning cost [1].  Third, SVMRank is 
guaranteed to find the global optimum, unlike other, non-convex 
techniques, such as ones based on neural networks. Finally, 
SVMRank results in a linear scoring function, which is easy to 
understand and tune. Complex, nonlinear functions may also 
over-fit training data and perform poorly when deployed.   

3. MODEL 
A query is defined by a location and a date range and retrieves a 
ranked list of results.  Each result is a hotel that matches the query 
criteria and is defined by features, including: 

• Price – The nightly room rate. 

• Star rating – The star rating. 

• Distance – The distance from the city center. 

• Margin – The profit earned by the seller of the hotel. 
We consider the first three features (among others) to be “buyer 
preferences” or “buyer features” because their values directly 
affect the result’s relevance to the user.  Margin, in contrast, is a 
“seller preference” or “seller feature” because its value is of 
greatest concern to the seller.  (Note that seller features are 
generally not exposed to users.) 
We assume that all features’ values are fixed.  We thus do not 
consider the case where prices and margins can be tuned based on 
some special knowledge of the market. 
A result set is a ranked list of hotel information retrieved by a user 
query.  Each time a hotel is displayed in an impression list, it is 
known as an impression for the hotel.  Each time the user books a 
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hotel, it is known as a conversion or a booking.  We refer to the 
rank of the booked hotel in a result set as the booking position of 
the result set.  The conversion rate of a hotel is the ratio of the 
number of conversions to the number of impressions for the hotel.  
The overall conversion rate is the ratio of the number of 
conversions to the number of result sets. 
Margin (or revenue) is the profit margin associated with the 
booking of a hotel.  The margin distribution of a result set is the 
sum of the margins of the top N results in the result set. 
Total revenue is total margin of all bookings.  Average margin is 
total revenue divided by the number of bookings.  
Impression data or data set refers to a set of result sets and their 
booking positions, excluding result sets with no bookings. 
Our goal is to maximize total revenue.  To do this, our approach 
must increase one or both of conversion rate and average margin.   
We assume that conversion rate increases with the quality of the 
query results in terms of relevance.  We also assume that users 
have a strong bias toward clicking (and, hence, booking) the top-
ranked results.  (“Position bias” is a well-known and accepted 
phenomenon (e.g., [4]) and also occurs in our data.) 
We measure the ability of our ranking function to rank relevant 
results highly by average booking position and measure the 
ability of our ranking function to rank high-margin results highly 
by margin distribution.  Hence, if we are able to improve either 
average booking position or margin distribution (or both) without 
hurting either, we expect that total revenue will increase.  
Although we do not quantify the change in revenue, we believe 
that there is a direct relationship between total revenue and 
improvement in either booking position or margin distribution. 

4. PERFORMANCE EVALUATION 
4.1 BASELINE RANKING APPROACH 
For base case performance, we use a standard ranking function, 
where each hotel j is scored as a weighted sum of feature values: 
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In the formula above, fj
i is the value of hotel i's feature j (1 ≤ j ≤ 

n) and wj is the weight of this feature.  Initial weights are 
manually tuned by a system administrator based on business goals 
(i.e., revenue maximization) and empirical evidence.  Each result 
receives a score computed by this formula, and results are sorted 
in descending order of score.  As will be shown, we achieve our 
goals to varying degrees by tuning these weights. 

4.2 LEARNING TO RANK WITH SVM 
Our training data consists of a random subset of Orbitz impression 
data from the last quarter of 2009 for the Chicago and New York 
markets – consisting of thousands of bookings.  For each 
impression, we generate pair-wise preference rules, where a 
booked result is defined as being more relevant than others (i.e., 
unbooked results) in the result set.  We apply SVMRank [5] to the 
impression data to yield weights for the ranking function 
described above in Equation 1. 
We define as a positive rule any rule that relates the booked result 
to lower-ranked results.  Simiarlly, we define as a negative rule 
any rule that relates the booked hotel to higher-ranked results.  All 

negative rules are considered rule violations.  The goal of 
SVMRank is to generate a model that minimizes the number of 
rule violations in the training set. 

4.3 Metrics 
Let ranki be the rank of the booked hotel in result set i.  Let NT be 
the number of result sets in the impression data.  For each 
experiment, we use the following metrics to measure result 
quality in terms of relevance: 

• Average booking position (ABP) – This is the average rank 
position of the booked hotel. 

 ∑ =
=

TN

i iT rank
N

ABP
1

1  (2) 

• Mean reciprocal rank (MRR) – We measure the average of 
the inverse of the rank positions of the booked hotels. 
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Ideally, ABP is as low as possible, with a minimum value of 1.  
MRR is ideally as high as possible, with a maximum value of 1. 
ABP gives an unbiased view of result quality in the sense that it 
measures changes in booking position anywhere in a ranked list 
(unlike MRR).  However, MRR captures the fact that users have a 
strong preference for higher-ranked results in practice.   
We report margin@N for each impression set for N = 5 and N = 
10 (denoted m@5 and m@10).  As stated above, ABP, MRR, and 
margin are assumed to be related to conversion rate and average 
margin. 
We report the percentage change in these metrics between 
baseline results (see Section 4.1) and experimental results.  For 
consistency, we use positive percentage changes to indicate 
positive results.  Hence, a positive percentage change in ABP 
actually refers to a decrease in rank value (i.e., closer to the top). 
We use 10-fold cross validation to tune parameters. 

4.4 Parameter Tuning and Results for User 
Preference Optimization 
With SVMRank, there are several parameters to tune (e.g., 
parameters that control for over-fitting).  We use standard 
parameter exploration techniques [10] and pick the parameters 
that minimize the following expression: 
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In this expression, pctimprove() represents the improvement for 
the respective metric for a set of parameters.  We use both MRR 
and ABP to represent the dual goals of improving ranking quality 
near the top of the list of results and improving overall ranking 
quality.  The margin@5 is included to find high-margin solutions 
and is given an equal contribution as both ABP and MRR. 
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Figure 1.  Results for buyer preferences. 

SVMRank, by design, minimizes the number of rule violations 
(see Section 4.2) [6], which only indirectly satisfies our goals.  
Hence, we apply this additional objective.  Similarly, we test a 
variety of numbers of positive and negative rules and pick the 
number that gives the best overall performance during training. 
After applying SVMRank to our data set to the impression data, 
we were able to improve average booking position and MRR as 
shown in Figure 1.  ABP (MRR) improves by at least 25% (15%) 
in both markets.  The fact that both ABP and MRR improve 
suggest that the improvement occurred over all ranking positions. 
Unfortunately, these improvements come at a price.  Margin@N 
decreases in both markets.  Chicago’s margin@5 decreased by 
12%, while New York’s decreased by 1%.  This shows that users 
prefer less expensive hotels (there was also a drop in “price@N” 
on the order of 15%), which generally yield lower margins. 
The large improvement in ABP and MRR are good signs.  
However, the negative values in the margin distributions in these 
results makes uncertain the effect of this model on total revenue, 
as discussed above.  Hence, we search for a better solution with – 
one with no negative results. 

4.5 CONSIDERING MARGIN 
4.5.1 Weighted Sum of Buyer and Seller Features  
Due to the large improvement in buyer preferences with the basic 
SVMRank results, we decided to trade off ABP/MRR 
performance for improved margin@N performance by varying the 
weight assigned to margin, fi

M, using parameter α: 
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We pick the α value that maximizes Equation 4 and show the 
results in Figure 2. 
We were able to improve margin distribution with a drop ranking 
quality (e.g., for Chicago, the percentage change in ABP drops 
from 28% to 23%).  However, ranking quality is still positive 
compared with the base case.  For Chicago, ranking quality is still 
good with 23% and 3% scores for ABP and MRR, respectively.  
Margin@5 and margin@10 are also both positive, but small at 
about 3% for both. 

4.5.2 SVMRank Rules Engineering – Rule Deletion 
We also tried improving margin@N performance by a process we 
refer to as rules engineering – by replicating or removing 
preference rules based on our objectives. 

 
Figure 2.  Weighted sum of buyer and seller preferences. 

With rule deletion, we first create a set of input rules for 
SVMRank as described in Sections 4.4.  We then delete a subset 
of these rules based on the following criterion: 
Let R be a rule between results ri and rj: ri > rj.  Let margin(ri) 
denote the margin value of the hotel associated with ri. 

Keep R only if margin(ri) > (1 - β)margin(rj). 

Hence, if β = 1, we keep all rules, and if β = 0, we only keep the 
rules that rank the results in descending order of margin.  Note 
that β = 0 does not necessarily result in a ranking based on margin 
because of the contribution of the other features to the scoring. 

4.5.3 SVMRank Rules Engineering – Rule Addition 
With rule addition, we probabilistically replicate rules that 
reinforce the seller’s preferences if the following criterion holds: 
Let R be a rule in the rule set between results ri and rj: ri > rj.  
With probability 1 - β: 

If margin(ri) > margin(rj),   
  add an additional instance of R to the rule set. 
Else,  
  add an instance of ¬R (rj > ri) to the rule set. 

The goal of rule addition is to reinforce rules that satisfy the 
margin requirement and to weaken rules that violate it. 
Again, if β = 1, this technique reduces to the base case rule set.  If 
β = 0, all eligible additional rules are added to the rule set to 
weaken margin violations. 

4.5.4 Results 
For our experimental results, we tune α from Equation 5, β from 
above to values that maximize Equation 4. 
As shown in Figure 3, our results for rules engineering by 
deletion have mixed results.  For the Chicago market, ABP and 
MRR improve by 23% and 14%, respectively.  Margin@5, 
however decreases by 3%, while margin@10 increases by 1%.   
The New York results are better overall.  New York has ABP and 
MRR scores similar to those of Chicago at 24% and 10%, 
respectively, but its margin@5 and margin@10 are significantly 
better at 10% and 3%, respectively. 
As shown in Figure 4, the results for rule addition are more 
consistent than those for rule deletion.  Although the 
improvements to ABP and MRR are lower (there is no change in 
MRR for New York), the improvements in margin distribution are 
much greater than with rule deletion.  
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Figure 3.  Rule deletion. 

Overall, our techniques improve on ABP more than MRR.  This is 
likely a sign of how difficult it is to improve the rank position of 
results already ranked near the top of a list.  Margin is also 
difficult to improve on, likely due to users’ preferences for more 
economical hotel rooms.  Fortunately, the data strongly suggests 
that it is possible to improve rankings in a way that improves total 
revenue. 

5. DISCUSSION 
Judging from the results above, the ordering of the ranking 
techniques from most to least effective is: 

1. Rules addition 
2. Weighted sum 
3. Rules deletion 

We quantify the ordering of these three results by their scores 
with Equation 4. 
The fact that the rules engineering results performed both best and 
worst suggests the importance of picking the right set of 
preference rules for training SVMRank.  Intuitively, to the 
learning process, rules addition makes more data available, while 
rules deletion does the reverse. This may explain their overall 
performances.   Also, the superior performance of rules 
engineering suggests the importance of building a good model 
before fine-tune performance using techniques like weighted sum. 

In practice, both rules engineering and tuning the contribution of 
margin are important to retail search engine performance.  Rules 
engineering will boost expected performance offline and tuning 
the weight of margin to rank score allows control over total 
revenue. 

6. CONCLUSION 
Our goal is to share our experiences with learning how to rank to 
satisfy both buyer and seller objectives using SVMRank on real 
hotel booking data.  Our business objective is to maximize 
revenue and our approach is to improve ranking quality and 
distribution of margin over the top-ranked results.   

We try three techniques: a weighted sum score, rules engineering 
by rule deletion, and rules engineering by rule addition.   

 

 
Figure 4.  Rule addition. 

Our results indicate that it is possible to improve both ranking 
quality and margin distribution.  In Chicago, for example, we 
were able to improve average booking position by 19% and 
margin@5 by 3%.  To this end, rules addition was the most 
effective technique, giving us the idea that fine-grained 
approaches may be a better way of approaching this problem. 
For future work, we will consider other ways of creating and 
selecting rules for input into the learning system.  We will also 
explore ways of creating a pairwise LTR technique that directly 
optimizes for the objective of total revenue. 
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