
Experiences with Using SVM-based Learning
for Multi-Objective Ranking

Linh Thai Nguyen, Wai Gen Yee, Roger Liew
Technology Group
Orbitz Worldwide
Chicago, IL 60661

{lnguyen, rliew, wyee}@orbitz.com

Ophir Frieder
Department of Computer Science

Georgetown University
Washington, DC 20057

ophir@cs.georgetown.edu

ABSTRACT
We describe our experiences in applying learning-to-rank
techniques to improving the quality of search results of an online
hotel reservation system. The search result quality factors we use
are average booking position and distribution of margin in top-
ranked results. (We expect that total revenue will increase with
these factors.) Our application of the SVMRank technique
improves booking position by up to 25% and margin distribution
by up to 14%.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – commercial services, web-based services. H.2.8
[Database Management]: Database Applications – data mining.

General Terms
Algorithms, Performance, Economics, Experimentation.

Keywords
Learning to rank, retail search engine, revenue maximization,
multiple objectives, hotel reservations.

1. INTRODUCTION
Unlike traditional search engines, which are designed to return the
results that are most relevant to a query, retail search engines are
designed to maximize revenue. This goal is realized by
improving revenue per conversion as well as conversion rate.

Our goal is to identify results that are both relevant to a query and
yield high margin. To this end, we apply a “learning to rank”
(LTR) technique and adapt it to consider margin when producing
the final ranked result set. The challenge is that the goals of
query relevance and margin maximization are often mutually
exclusive. Improving on one metric at the expense of the other
may have a significant negative impact on total revenue.

Our data set is a click log from Orbitz’s hotel search engine for
the Chicago and New York markets. We use an adapted version

of SVMRank [5] as our LTR technique. Offline experimental
results show that, with some tuning, SVMRank has the potential
to improve both relevance and margin in search results.

2. RELATED WORK
Liu describes three types of LTR techniques based on their types
of training data [8]. Point-wise techniques require a relevance
judgment for each result in a training set [3][7]. Pair-wise
techniques require a relative relevance judgment for each pair of
results [1][5]. List-wise techniques require relevance judgments
for a list of results [2][9].
Among the many LTR techniques, we adopt the pair-wise
SVMRank for several reasons. First, it is easy and cheap to collect
pair-wise training data that represents customer relative
preferences. (Building training data for either point-wise or list-
wise techniques is much less practical.) Second, SVMRank is
efficient in both learning and ranking, as it is a linear SVM. Other
pair-wise LTR techniques, such as those based on neural
networks, have a higher learning cost [1]. Third, SVMRank is
guaranteed to find the global optimum, unlike other, non-convex
techniques, such as ones based on neural networks. Finally,
SVMRank results in a linear scoring function, which is easy to
understand and tune. Complex, nonlinear functions may also
over-fit training data and perform poorly when deployed.

3. MODEL
A query is defined by a location and a date range and retrieves a
ranked list of results. Each result is a hotel that matches the query
criteria and is defined by features, including:

• Price – The nightly room rate.

• Star rating – The star rating.

• Distance – The distance from the city center.

• Margin – The profit earned by the seller of the hotel.
We consider the first three features (among others) to be “buyer
preferences” or “buyer features” because their values directly
affect the result’s relevance to the user. Margin, in contrast, is a
“seller preference” or “seller feature” because its value is of
greatest concern to the seller. (Note that seller features are
generally not exposed to users.)
We assume that all features’ values are fixed. We thus do not
consider the case where prices and margins can be tuned based on
some special knowledge of the market.
A result set is a ranked list of hotel information retrieved by a user
query. Each time a hotel is displayed in an impression list, it is
known as an impression for the hotel. Each time the user books a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10…$10.00.

1917

hotel, it is known as a conversion or a booking. We refer to the
rank of the booked hotel in a result set as the booking position of
the result set. The conversion rate of a hotel is the ratio of the
number of conversions to the number of impressions for the hotel.
The overall conversion rate is the ratio of the number of
conversions to the number of result sets.
Margin (or revenue) is the profit margin associated with the
booking of a hotel. The margin distribution of a result set is the
sum of the margins of the top N results in the result set.
Total revenue is total margin of all bookings. Average margin is
total revenue divided by the number of bookings.
Impression data or data set refers to a set of result sets and their
booking positions, excluding result sets with no bookings.
Our goal is to maximize total revenue. To do this, our approach
must increase one or both of conversion rate and average margin.
We assume that conversion rate increases with the quality of the
query results in terms of relevance. We also assume that users
have a strong bias toward clicking (and, hence, booking) the top-
ranked results. (“Position bias” is a well-known and accepted
phenomenon (e.g., [4]) and also occurs in our data.)
We measure the ability of our ranking function to rank relevant
results highly by average booking position and measure the
ability of our ranking function to rank high-margin results highly
by margin distribution. Hence, if we are able to improve either
average booking position or margin distribution (or both) without
hurting either, we expect that total revenue will increase.
Although we do not quantify the change in revenue, we believe
that there is a direct relationship between total revenue and
improvement in either booking position or margin distribution.

4. PERFORMANCE EVALUATION
4.1 BASELINE RANKING APPROACH
For base case performance, we use a standard ranking function,
where each hotel j is scored as a weighted sum of feature values:

 ∑ =
=

n

j
i
jj

i
basic fwS

1
 (1)

In the formula above, fj
i is the value of hotel i's feature j (1 ≤ j ≤

n) and wj is the weight of this feature. Initial weights are
manually tuned by a system administrator based on business goals
(i.e., revenue maximization) and empirical evidence. Each result
receives a score computed by this formula, and results are sorted
in descending order of score. As will be shown, we achieve our
goals to varying degrees by tuning these weights.

4.2 LEARNING TO RANK WITH SVM
Our training data consists of a random subset of Orbitz impression
data from the last quarter of 2009 for the Chicago and New York
markets – consisting of thousands of bookings. For each
impression, we generate pair-wise preference rules, where a
booked result is defined as being more relevant than others (i.e.,
unbooked results) in the result set. We apply SVMRank [5] to the
impression data to yield weights for the ranking function
described above in Equation 1.
We define as a positive rule any rule that relates the booked result
to lower-ranked results. Simiarlly, we define as a negative rule
any rule that relates the booked hotel to higher-ranked results. All

negative rules are considered rule violations. The goal of
SVMRank is to generate a model that minimizes the number of
rule violations in the training set.

4.3 Metrics
Let ranki be the rank of the booked hotel in result set i. Let NT be
the number of result sets in the impression data. For each
experiment, we use the following metrics to measure result
quality in terms of relevance:

• Average booking position (ABP) – This is the average rank
position of the booked hotel.

 ∑ =
=

TN

i iT rank
N

ABP
1

1 (2)

• Mean reciprocal rank (MRR) – We measure the average of
the inverse of the rank positions of the booked hotels.

 ∑ =
=

TN

i
i

T rankN
MRR

1

11 (3)

Ideally, ABP is as low as possible, with a minimum value of 1.
MRR is ideally as high as possible, with a maximum value of 1.
ABP gives an unbiased view of result quality in the sense that it
measures changes in booking position anywhere in a ranked list
(unlike MRR). However, MRR captures the fact that users have a
strong preference for higher-ranked results in practice.
We report margin@N for each impression set for N = 5 and N =
10 (denoted m@5 and m@10). As stated above, ABP, MRR, and
margin are assumed to be related to conversion rate and average
margin.
We report the percentage change in these metrics between
baseline results (see Section 4.1) and experimental results. For
consistency, we use positive percentage changes to indicate
positive results. Hence, a positive percentage change in ABP
actually refers to a decrease in rank value (i.e., closer to the top).
We use 10-fold cross validation to tune parameters.

4.4 Parameter Tuning and Results for User
Preference Optimization
With SVMRank, there are several parameters to tune (e.g.,
parameters that control for over-fitting). We use standard
parameter exploration techniques [10] and pick the parameters
that minimize the following expression:

))5@(1log(
2

))(1log(
2

))(1log(

mpctimprove

MRRpctimprove

ABPpctimprove

+

+
+

+
+

 (4)

In this expression, pctimprove() represents the improvement for
the respective metric for a set of parameters. We use both MRR
and ABP to represent the dual goals of improving ranking quality
near the top of the list of results and improving overall ranking
quality. The margin@5 is included to find high-margin solutions
and is given an equal contribution as both ABP and MRR.

1918

Figure 1. Results for buyer preferences.

SVMRank, by design, minimizes the number of rule violations
(see Section 4.2) [6], which only indirectly satisfies our goals.
Hence, we apply this additional objective. Similarly, we test a
variety of numbers of positive and negative rules and pick the
number that gives the best overall performance during training.
After applying SVMRank to our data set to the impression data,
we were able to improve average booking position and MRR as
shown in Figure 1. ABP (MRR) improves by at least 25% (15%)
in both markets. The fact that both ABP and MRR improve
suggest that the improvement occurred over all ranking positions.
Unfortunately, these improvements come at a price. Margin@N
decreases in both markets. Chicago’s margin@5 decreased by
12%, while New York’s decreased by 1%. This shows that users
prefer less expensive hotels (there was also a drop in “price@N”
on the order of 15%), which generally yield lower margins.
The large improvement in ABP and MRR are good signs.
However, the negative values in the margin distributions in these
results makes uncertain the effect of this model on total revenue,
as discussed above. Hence, we search for a better solution with –
one with no negative results.

4.5 CONSIDERING MARGIN
4.5.1 Weighted Sum of Buyer and Seller Features
Due to the large improvement in buyer preferences with the basic
SVMRank results, we decided to trade off ABP/MRR
performance for improved margin@N performance by varying the
weight assigned to margin, fi

M, using parameter α:

 i
MMj

i
jj

i
b ffwS)1(αα −+= ∑ ≠

 (5)

We pick the α value that maximizes Equation 4 and show the
results in Figure 2.
We were able to improve margin distribution with a drop ranking
quality (e.g., for Chicago, the percentage change in ABP drops
from 28% to 23%). However, ranking quality is still positive
compared with the base case. For Chicago, ranking quality is still
good with 23% and 3% scores for ABP and MRR, respectively.
Margin@5 and margin@10 are also both positive, but small at
about 3% for both.

4.5.2 SVMRank Rules Engineering – Rule Deletion
We also tried improving margin@N performance by a process we
refer to as rules engineering – by replicating or removing
preference rules based on our objectives.

Figure 2. Weighted sum of buyer and seller preferences.

With rule deletion, we first create a set of input rules for
SVMRank as described in Sections 4.4. We then delete a subset
of these rules based on the following criterion:
Let R be a rule between results ri and rj: ri > rj. Let margin(ri)
denote the margin value of the hotel associated with ri.

Keep R only if margin(ri) > (1 - β)margin(rj).

Hence, if β = 1, we keep all rules, and if β = 0, we only keep the
rules that rank the results in descending order of margin. Note
that β = 0 does not necessarily result in a ranking based on margin
because of the contribution of the other features to the scoring.

4.5.3 SVMRank Rules Engineering – Rule Addition
With rule addition, we probabilistically replicate rules that
reinforce the seller’s preferences if the following criterion holds:
Let R be a rule in the rule set between results ri and rj: ri > rj.
With probability 1 - β:

If margin(ri) > margin(rj),
 add an additional instance of R to the rule set.
Else,
 add an instance of ¬R (rj > ri) to the rule set.

The goal of rule addition is to reinforce rules that satisfy the
margin requirement and to weaken rules that violate it.
Again, if β = 1, this technique reduces to the base case rule set. If
β = 0, all eligible additional rules are added to the rule set to
weaken margin violations.

4.5.4 Results
For our experimental results, we tune α from Equation 5, β from
above to values that maximize Equation 4.
As shown in Figure 3, our results for rules engineering by
deletion have mixed results. For the Chicago market, ABP and
MRR improve by 23% and 14%, respectively. Margin@5,
however decreases by 3%, while margin@10 increases by 1%.
The New York results are better overall. New York has ABP and
MRR scores similar to those of Chicago at 24% and 10%,
respectively, but its margin@5 and margin@10 are significantly
better at 10% and 3%, respectively.
As shown in Figure 4, the results for rule addition are more
consistent than those for rule deletion. Although the
improvements to ABP and MRR are lower (there is no change in
MRR for New York), the improvements in margin distribution are
much greater than with rule deletion.

1919

Figure 3. Rule deletion.

Overall, our techniques improve on ABP more than MRR. This is
likely a sign of how difficult it is to improve the rank position of
results already ranked near the top of a list. Margin is also
difficult to improve on, likely due to users’ preferences for more
economical hotel rooms. Fortunately, the data strongly suggests
that it is possible to improve rankings in a way that improves total
revenue.

5. DISCUSSION
Judging from the results above, the ordering of the ranking
techniques from most to least effective is:

1. Rules addition
2. Weighted sum
3. Rules deletion

We quantify the ordering of these three results by their scores
with Equation 4.
The fact that the rules engineering results performed both best and
worst suggests the importance of picking the right set of
preference rules for training SVMRank. Intuitively, to the
learning process, rules addition makes more data available, while
rules deletion does the reverse. This may explain their overall
performances. Also, the superior performance of rules
engineering suggests the importance of building a good model
before fine-tune performance using techniques like weighted sum.

In practice, both rules engineering and tuning the contribution of
margin are important to retail search engine performance. Rules
engineering will boost expected performance offline and tuning
the weight of margin to rank score allows control over total
revenue.

6. CONCLUSION
Our goal is to share our experiences with learning how to rank to
satisfy both buyer and seller objectives using SVMRank on real
hotel booking data. Our business objective is to maximize
revenue and our approach is to improve ranking quality and
distribution of margin over the top-ranked results.

We try three techniques: a weighted sum score, rules engineering
by rule deletion, and rules engineering by rule addition.

Figure 4. Rule addition.

Our results indicate that it is possible to improve both ranking
quality and margin distribution. In Chicago, for example, we
were able to improve average booking position by 19% and
margin@5 by 3%. To this end, rules addition was the most
effective technique, giving us the idea that fine-grained
approaches may be a better way of approaching this problem.
For future work, we will consider other ways of creating and
selecting rules for input into the learning system. We will also
explore ways of creating a pairwise LTR technique that directly
optimizes for the objective of total revenue.

7. REFERENCES
[1] Burges, C. J. C., Shaked, T., Renshaw, E., Lazier, A., Deeds,

M., Hamilton, N., and Hullender, G. 2005. Learning to Rank
Using Gradient Descent. In Proc. ICML, 2005.

[2] Burges, C. J. C., Ragno, R., and Le, Q. V. 2007. Learning to
Rank with Nonsmooth Cost Functions. Advances in Neural
Information Processing Systems 19, 2007.

[3] Crammer, K. and Singer, Y. Pranking with Ranking. Advances
in Neural Information Processing Systems 14, 2001.

[4] Agichtein, E, Brill, E., Dumais, S., and Ragno, R. 2006.
Learning user interaction models for predicting web search
result preferences. In Proc. ACM SIGIR, 2006.

[5] Joachims, T. 2002. Optimizing search engines using
clickthrough data. In Proc. ACM SIGKDD. 2002.

[6] Joachims, T. 2005. A Support Vector Method for
Multivariate Performance Measures. Reasoning about
naming systems. In Proc. ICML, 2005.

[7] Li, P., Burges, C. J. C., and Wu, Q. 2008. Learning to Rank
Using Classification and Gradient Boosting. Advances in
Neural Information Processing Systems 20, 2008.

[8] Liu, T.-Y. 2009. Learning to Rank for Information
Retrieval. Foundations and Trends in Information Retrieval,
Vol. 3, No. 3, pp. 225-331, 2009.

[9] Moon, T., Smola, A., Chang, Y. and Zheng, Z. 2010.
IntervalRank – Isotonic Regression with Listwise and
Pairwise Constraints. In Proc. WSDM, 2010.

[10] Witten, I. and Franke, E. 2005. Data Mining: Practical
Machine Learning Tools and Techniques. 2nd ed. Morgan
Kaufmann. June, 2005.

1920

