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ABSTRACT
Peer-to-peer file-sharing systems suffer from the over-
specification of query results due to the fact that query processing 
is conjunctive and the descriptions of shared files are sparse.  
Ultimately, longer queries, which should yield more accurate 
results, do the opposite.  To alleviate this problem, we consider 
alternative means of query processing.  That is, results are sent 
from the server to the client only if they are deemed relevant 
based on cosine similarity.  Based on our results, these alterna-
tives can increase query accuracy by 40% at virtually no cost.   

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – search process.  

General Terms
Performance, Design, Experimentation. 

Keywords
Query processing, peer-to-peer, search. 

1. INTRODUCTION 
Peer-to-peer (P2P) file-sharing is a leading search application 
where millions of users share petabytes of data [6].  Due to this 
application’s scale, it is vital that queries retrieve relevant results. 

Two characteristics of P2P file-sharing, however, make accurate 
result retrieval difficult: sparse description of shared files and 
conjunctive query processing [5].  Sparse description is a conse-
quence of the fact that most files are described by solely their 
filenames, which are limited to about 200 bytes.  Conjunctive 
query processing is used because of its simple semantics and its 
conservative use of network bandwidth, which is at a premium in 
inter-networked applications.  Together, these characteristics can 
lead to a decrease of query accuracy when even relevant results 
are excluded from the result sets returned to users. 

To find more precise results, a user may increase the number of 
terms in a query.  With length, however, queries may become so 
constrained that no instances of relevant results are returned, re-
ducing overall accuracy and forcing the user to re-issue the query. 

Consider a search for Mozart’s Clarinet Concerto in the key A 
major by clarinetist Michele Zukovsky.  We searched for this song 
on the eDonkey P2P file-sharing system with various combina-
tions of candidate query terms, “Mozart, clarinet, A, major, Zu-
kovsky.”  This experiment revealed that increasing the number of 
query terms generally yields fewer but more precise results.  
However, a query containing all candidate query terms returned 
no results.  (The number of results is denoted nresp in Table 1.) 

Table 1 Number of results with various queries issued on the 
eDonkey P2P file-sharing system. 

Terms nresp mozart Clarinet A major Zukovsky 
X X    80 
X X X X  54 
X X X X X 0 
X X   X 2 

We retrieve the desired result only with an appropriate subset of 
terms; the last combination in Table 1 contained only relevant 
results.  This experiment demonstrates that the empty result set for 
the full query was not caused by the desired result’s non-existence 
in the system, but by query over-specification.  Note that issuing 
the full query on a Web search engine (e.g., Google) resulted in 
more accurate results than did any of the sub-queries.  We expect 
similar behavior from P2P file-sharing systems. 

We address this problem by having the result servers return results 
based on alternatives to conjunctive query matching – cosine si-
milarity in particular.  Files whose descriptors “nearly match” the 
query are returned to a degree commensurate with their degree of 
match.  The questions are how well this works in a P2P environ-
ment and at what cost.   

It turns out that our query processing alternatives can improve 
accuracy by over 70% but with a seven-fold increase in cost.  We 
show how cost can be tuned so that we have both an increase in 
accuracy with a reduction in cost. 

2. RELATED WORK 
Much of today's work in P2P information retrieval (IR) research 
focuses on identifying highly reliable peers and giving them spe-
cialized roles in statistics maintenance, indexing, and routing 
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[9][11][14].  Such work assumes fixed environments, distinct 
from the highly dynamic and distributed one we assume.  

Some systems employ distributed hash tables, or more recently, 
trees, to route queries in distributed environments [8][13].  Be-
cause these search methods are based on exact key matching, 
multi-term queries are difficult to implement (e.g., semi-join-like 
techniques over multiple inverted lists have been proposed [15]).  

One problem we are trying to address is “term mismatch” – where 
queries “fail” because they do not contain the same terms as a 
descriptor [12] – which is particularly problematic in the P2P file-
sharing environment.  One solution to this problem is to use tech-
niques to transform or expand the terms in either the query or the 
descriptor [2].  Such techniques, however, are particularly vulner-
able to semantic drift due to the sparsness of available terms and 
lack of global statistics. 

A related technique is to mask out terms from a query, preserving 
only those most likely to match a relevant result, thereby reducing 
the likelihood of result over-specification [10]. Although this 
technique improves overall accuracy, result sets suffer from a low 
precision as well skew toward the unmasked query terms. 

There is a similar problem in the database community, where 
queries with over-specific predicates fail because they return emp-
ty result sets [4][16].  Query reconciliation in this case consists of 
weakening or eliminating some of the selection conditions.  This 
is in the same spirit as our work but can employ different tech-
niques due to the fixed, centralized nature of databases. 

3. QUERY PROCESSING SPECIFICATION 
In typical P2P file-sharing systems (e.g., Gnutella) peers collec-
tively share a set of (binary) files by maintaining local replicas of 
a subset of them.  Each replica is represented by a user-tuned 
descriptor, which also contains an identifying key (e.g., an MD5 
of SHA-1 hash on the file’s bits).  All replicas of the same file 
share the same key.  A client’s query is routed to all reachable 
servers based on its “time-to-live.”  A server compares each query 
to its local descriptors; a query matches a replica if the replica’s 
descriptor contains all of the query’s terms.  For all matches, the 
server returns its server identifier and the matching replica’s de-
scriptor.  This information allows the client to distinguish and, if 
desired, download the associated file. 

Formally, let O be the set of files, M be the set of all terms, and P
be the set of peers.  Each file oi ∈ O has a key associated with it, 
denoted ki, such that ki = kj if and only if oi = oj. 

Associated with each file oi is a set of terms, Ti ⊆ M, that validly 
describe it.  Each term t ∈ Ti has a strength of association with oi, 
denoted soa(t, oi), where 0 � soa(t, oi) � 1 and �t∈Tisoa(t, oi) = 1.  
The strength of association t has with oi describes the relative 
likelihood that it is used to describe oi, assuming that all terms are 
independent.   The distribution of soa values for a file oi is called 
the natural term distribution of oi.  Intuitively, an average person 
will describe oi with terms from Ti with a distribution described by 
oi’s natural term distribution. 

A peer pj ∈ P is defined as a pair, (Rj, gj), where Rj is pj’s set of 
replicas (i.e., its local repository) and gj is pi’s unique system 
identifier (e.g., its IP address).  Each replica r ∈ Rj is pj’s copy of 
some file oi ∈ O and has an associated locally maintained descrip-

tor, d(r) ⊆ M, which is a multiset of terms.  Each descriptor d(r) 
also contains ki, the key of file oi, which we denote by k(r). The 
maximum number of terms in a descriptor is limited by the sys-
tem-defined number of bytes descriptors are allocated. 

A query Qi ⊆ Ti for file oi is also a multiset of terms.  The terms in 
Qi follow oj’s natural term distribution.  When Qi arrives at a serv-
er pj, pj returns result set Uj = {(d(r), gj) | r ∈ Rj and Qi ⊆ d(r) and 
Qi � Ø}: all results’ descriptors must contain all query terms in 
accordance to the conjunctive matching criterion. 

The client that issues Q receives result set U = ∪pj∈PUj, and groups 
individual results in U by descriptor key, forming G = {G1, G2, 
…}, where Gi = (d(Gi), k(Gi), li).  d(Gi) = {⊕d(r) | (d(r), g) ∈ Gi} 
is the group’s descriptor, defined as the multiset sum of all of the 
descriptors of the results contained in Gi.  (⊕ denotes the multiset 
sum operation.)  k(Gi) is the key of Gi, identifying the file that Gi
represents. li = {gj | (d(r), gj) ∈ U and k(r) = k(Gi)} is the list of 
servers that returned the results in Gi.   

The client assigns a rank score to each group with function Fi ∈
F, defined as F: 2M×2M×Z×Z → R+.  If Fi(d(Gj), Q, |Gj|, timej) > 
Fi(d(Gk), Q, |Gk|, timek), where Gj, Gk are groups, then we say that 
Gj is ranked higher than Gk with respect to query Q.  In these de-
finitions, |Gj| is the number of results contained in Gj (the group’s
size) and timej is the creation time of the Gj (i.e., the time when 
the first result in Gj arrived at the client).  Note that in this paper, 
“result” may refer to an individual result or a group of results.  
The proper meaning should be clear from the context. 

Typically, ranking is performed by “group size,” as a large group 
suggests relevance to a query and multiple sources can better en-
sure a quick, successful download: 

Fgsize(d(Gj), Q, |Gj|, timej) = |Gj|. 

In practice, descriptors are generally implemented via filenames, 
but a small amount of descriptive information may be embedded 
in the actual binary of the replica (e.g., ID3 data embedded in mp3 
files [3]).  Furthermore, when a file is downloaded, the descriptor 
of this new replica is initialized as a duplicate of one of the serv-
ers’ descriptors from the result set, but can be subsequently tuned 
by the user as well. 

4. QUERY PROCESSING ALTERNATIVES 
Conjunctive queries are problematic because they are potentially 
overly selective, excluding desired results.  Given a query Q with 
term, t, the probability that a descriptor d(rp) for a replica rp of file 
p contains t is  

( )( ) ( )prdptsoa ,11 −− ,  (1) 

where ||d(rp)|| is the number of (not necessarily unique) terms in 
d(rp). Let Q’ be the set of unique terms of Q.  For d(rp) such that 
||d(rp)|| ≥ |Q’|, the probability that d(rp) contains Q is 

( )( ) ( )( )∏
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As Q grows, the probability that it is contained by d(rp) decreases 
exponentially. Although the conjunctive matching criterion is 
effective at filtering out results that are not relevant – identified 
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with different natural term distributions – it may also filter out 
desired results because their descriptors are too small or happen, 
by chance, to not contain all of Q. 

4.1 Proposed Alternatives 
We propose the application of cosine similarity at the server for 
matching incoming queries with shared files [1]. Cosine similarity 
is a commonly used metric in information systems to compare the 
similarity between two documents, when each is modelled as a 
term-frequency vector: 

)()(
)()(),(cosSim

21

21
21 DVDV

DVDV
DD

⋅=  (3) 

In the expression above, the inner product of the vector represen-
tations of documents D1 and D2 is normalized by the product of 
their lengths, so cosSim has a normalized maximum value of 1.  If 
the cosSim(Q, d) of an incoming query Q to a descriptor d is 
greater than some threshold τ, then d and Q match. 

As stated in the Section 2, alternatives to query performance in-
clude having the client mask out query terms (to reduce the 
query’s selectivity) [10] or using disjunctive matching.  Cosine 
similarity improves these alternatives in the following ways: 

• It yields better result quality than conjunctive matching be-
cause it is not overly selective with long queries. 

• It yields better result quality than query masking because it 
does not skew matching results toward particular query 
terms. 

• It is more efficient than disjunctive matching because it is 
better at matching relevant results. 

The parameter that must be tuned, however, is τ.  A low τ value 
would make cosSim too permissive, like disjunctive matching.  
Too high a τ value makes cosSim too selective, like conjunctive 
matching. 

We also tested techniques such as having the server compute the 
largest subset of query terms that match at least one descriptor 
(which was inspired by work on query relaxation in database 
query processing [16]).  For a variety of reasons (e.g., inconsistent 
matching over different servers) these techniques underperformed 
cosSim, so, due to space limitations, we exclude them. 

5. EXPERIMENTAL RESULTS 
We simulate the performance of a P2P file-sharing system to test 
the large-scale performance of our query processing methods.  In 
accordance with the accepted model described in [7] and observa-
tions presented in [8], we include in our experimental model in-
terest categories C, a partitioning of O into sets Ci ∈ C, where Ci
⊆ O, and ∪iCi = O.  Interest categories are used to model con-
straints on user interests. 

Each category Ci has popularity, bi, with a Zipf-skewed distribu-
tion.  At initialization, each peer pj is assigned some interests Ij ⊆
C, based on bi. 

Each file within an instance of an interest category varies in popu-
larity, which is also Zipf skewed. This re-skewing of popularities 
models individual user interests and governs the likelihood that a 

peer who has interest in the category that contains om is initialized 
with a replica of om.  Each replica allocated at initialization has a 
randomly initialized descriptor subject to its natural term distribu-
tion. Peer pj’s interest categories also constrain its searches; pj
only searches files from ∪nLn for all Ln ∈ Ij. 

We use Web data to simulate our language model (i.e., term dis-
tributions and interest categories). Web data are a convenient 
choice because they constitute a grouping of terms (we use terms’ 
relative frequencies within a Web document to simulate the natu-
ral term distribution for a file) and a grouping of documents (we 
use Web domains to simulate interest categories). 

Our data consist of an arbitrary set of 1,000 Web documents from 
the TREC 2GB Web track (WT2G).  These documents come from 
37 Web domains.  Terms are stemmed, and markup and stop 
words are removed.  The final data set contains approximately 
800,000 terms, some 37,000 of which are unique. We also con-
ducted experiments using other data sets with other data distribu-
tions, but, due to space constraints, we only present a representa-
tive subset of our results.   The data used for all experiments as 
well as other experimental results are found on our Web site or 
are available on request [17].  

Table 2 Query length distribution. 

Length 1 2 3 4 5 6 7 8 
Prob. .28 .30 .18 .13 .05 .03 .02 .01 

Table 3 Parameters used in the simulation. 

Parameter Value(s) 
Num. Peers 1,000 
Num. Queries 10,000 
Max. descriptor size (terms) 20 
Num. terms in initial descriptors 3-10 
Num. categories of interest per peer 2-5 
Num. files per peer at initialization 10-30 
Num. trials per experiment 10 

Each peer is initialized with a random number of interest catego-
ries and a random number of file replicas from these categories.  
Descriptors for these replicas are initialized independently based 
on each file’s natural term distribution.  Queries are issued for 
files a peer does not already have in the peer’s interest category. 

Query terms are picked randomly based on the desired file’s natu-
ral term distribution, similar to a technique described in [1]. The 
query length distribution shown in Table 2 was derived from ob-
servations of query logs we collected over several days on the 
Gnutella network in the Spring and Summer of 2006 and match 
that of the literature [6].  Without loss of generality, queries are 
flooded to all peers.  The simulation parameters listed in Table 3 
are based on observations of real-world P2P file-sharing systems 
and are comparable to the parameters used in the literature [6]. 

Although other behavior is possible, we assume that the user iden-
tifies and downloads the desired result group with a probability 
1/r, where r ≥ 1 is its position in the ranked set of results.  If the 
desired result is not in the result set, r = � and the top-ranked 
result, using group size ranking described in Section 4, is selected.  
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We tried other ranking functions (e.g., cosine similarity), but 
group size ranking results are representative. 

Performance is measured using mean reciprocal rank score 
(MRR) [1].  MRR is appropriate for known-item search, which is 
the assumed behavior in P2P file-sharing systems [11].  MRR 
assumes that there is a single, identifiable desired result, and uses 
the ranking of this result in the result set to compute an accuracy 
score.  The score for an individual query is the reciprocal of the 
rank at which the desired result is returned.   MRR is defined as 

� =
= qN

i
iq rankN

MRR
1

11 (4) 

where Nq is the number of queries issued by the client and ranki is 
the rank of the desired file in query i's result set. 

For reference, we also present precision and recall results, which 
have slightly different meanings here than they do in traditional 
Information Retrieval (IR) since result replication is a factor in 
P2P file-sharing, but not typically in IR.  Let SA be the set of rep-
licas of the desired file available throughout the file-sharing sys-
tem, and SR be the result set of the query.  Precision and recall are 
defined as: 
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These metrics are useful in roughly diagnosing the performance of 
query processing and in generalizing the presented performance to 
other domains. 

We test four query matching techniques.  Let Q be a query and d
be a descriptor in the following query matching technique defini-
tions: 

• Conjunctive – Q matches d if Q ⊆ d. 

• Disjunctive – Q matches d if Q ∩ d ≠ ∅. 

• Client masking – Let Q’ be a subquery of Q as defined in 
[10].  Q’ is matched with d conjunctively. 

• Cosine similarity – See definition in Section 4.1. 

5.1 Result Quality 
The accuracies of the matching techniques are shown in Figure 1. 
Disjunctive query matching (disj), client masking (cmask) and 
cosine similarity with τ = 0.1 (cos10) improves MRR by 80%, 
40% and 80%, respectively, over conjunctive query processing.  
Cosine similarity performance degrades with higher τ values.  The 
reason that the alternatives outperform conjunctive matching is 
because the alternatives perform better on longer queries as shown 
in Figure 2. 

An examination of the precision and recall graphs in Figure 3 and 
Figure 4 justifies the performance differences.  Although preci-
sion increases with query length with conjunctive matching, recall 
decreases drastically.  With the other techniques, recall is either 
stable or increases with query length.  In general, the techniques 
with higher recall perform better.  (This explains why cosine simi-
larity performance degrades with τ.) 

Figure 1. MRR. 

Figure 2. MRR over query length. 

Figure 3. Precision over query length. 

Figure 4. Recall over query length. 

Naturally, recall increases and precision decreases with query 
length with disjunctive matching.  Longer disjunctive queries 
match more results, both relevant and irrelevant.  Recall and pre-
cision are steady with masking as term used in the single-term 
query is generally the term left unmasked. 

Cosine similarity matching works like either disjunctive or con-
junctive matching depending on the value of τ.  With low τ values 
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(i.e., low selectivity), longer queries have higher recall and lower 
precision when using cosine similarity matching, just like disjunc-
tive matching.  The opposite is true with high τ values. 

What makes cosine similarity matching attractive is that neither its 
recall nor precision suffer from the extreme low values for longer 
queries as does conjunctive or disjunctive matching, resulting in 
better overall performance.  Moreover, the particular mix of recall 
and precision can be controlled with a single parameter, τ. 

5.2 Efficiency of the Techniques 
The price that must be paid for increased recall is increased cost 
in terms of the number of results returned to the client.  In addi-
tion to accuracy, we use cost to demonstrate the superiority of 
cosine similarity query matching. 
When comparing cost shown in Figure 5 to the result quality 
shown in Figure 1, we see a correlation.  The two most effective 
query matching techniques, disjunctive and cos10, cost the most.   

Figure 5. Average number of results per query. 

However, cmask, cos25 and cos40 are good compromises be-
tween quality and cost.  cos25 has an MRR that is only 8% lower 
than disj, but at less than half the cost.  cos40 has an MRR that is 
similar to that of cmask, but with a cost that is almost 60% lower.  
In fact, the cost of cos40 is similar to that of conj, but with a 42% 
greater query accuracy.  Cosine similarity query matching there-
fore allows us to tune the query quality we desire with a trade-off 
in cost: cos25 nearly matches our best performance but at less 
than half the cost, while cos40 matches our best cost, but with a 
42% improvement in accuracy.  (Likewise, cos50 reduces cost by 
40% with an 18% increase in accuracy compared with conj.) 

6. CONCLUSION 
We consider the problem of query processing in fully distributed 
P2P environments.  The current practice of conjunctive query 
processing turns out to be too restrictive, overspecifying results to 
the point that no relevant results are returned by long queries.  
Previous solutions, such as disjunctive query processing, yield 
more accurate query results, but at a high cost. 

Using cosine similarity result matching instead yields a query 
accuracy on par with the best existing techniques, but with lower 
cost.  It can improve query accuracy by 80% if cost is not an is-
sue.  If cost is an issue, it can improve accuracy by 42% with no 
cost, or, surprisingly, by 18% with a cost reduction of 40%. 

Our next step is to analyze the effect that the results yielded by the 
various query matching techniques have on the effectiveness of 
various client-side ranking functions. 
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