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Abstract-In this paper we consider WDM networks with
tunable transmitter and a fixed-wavelength receiver at

each station (similar results hold when the transmitter is
fixed and the receiver is tunable). Traditionally, each sta-
tion is  required to be able to access al l  wavelength channels
used in the network. Such requirement limits the number
of wavelengths that can be exploited in a WDM network
up to the size of the resolvable wavelength set of optical
transceivers, which is very limited with current technology.
In this paper we observe that this requirement is actually
an overkill. To realize a communication topology, physical
or logical, it is sufficient that the tunable range of the trans-
mitter at each station  covers all the wavelengths of the re-
ceivers at its neighboring stations. This observation leads
to the study of optimal wavelength assignment to minimize
the tunabil ity requirement while sti l l  guaranteeing that each
receiver has a unique wavelength channel. This optimiza-
tion problem is shown to NP-complete in general and ap-
proximation algorithms with provable performance guaran-
tees are presented. When the communication topologies are
complete graphs,  de Bruijin digraphs,  Kautz digraphs,  shuf-
fle or rings, the optimal solutions are provided. Finally, we
present tight lower bounds when the communication topol-
ogy is a hypercube.

Keywords: WDM, free spectral range, tunable range,
minimum bandwidth, wavelength assignment.

I. INTRODUCTION

In WDM optical networks, either passive optical net-
works or wavelength routed optical networks [9],  the
multi-wavelength transmission/reception at each station
is realized through either an array of fixed-wavelength
transceivers or a tunable transceiver. A transceiver array
has the advantage of being able to select the wavelength
for each transceiver independently. However it becomes
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very bulky as the number of transceivers increases. On
the other hand tunable transceiver has very limited tun-
able range with the current technology. The tunability of
tunable transceivers is usually realized via tunable optical
filters. Many tunable optical filters have a very limited re-
solvable wavelength set. These resolvable wavelength set
in general consists of a number of contiguous wavelength
channels, for an example, determined by the free spectral
range. Traditionally, each station is required to be able to
access all wavelength channels used in the network. Under
such requirement, the.set  of working channels of the net-
work is limited to the resolvable wavelength set of tunable
transceivers. To increase the transmission capacity of the
network, the transceivers at each station must be upgraded
to support more resolvable wavelength set. Unfortunately,
this is often not practical most of the time.

At the first glance, one might feel pessimistic on the
transmission capacity of the WDM networks making use
of tunable transceivers with limited resolvable wavelength
channels. However, careful re-examining the operation
principles of WDM networks reveals more optimistic dis-
coveries. The requirement on stations to be able to access
all working wavelength channels is actually an overkill in
most situations. For  an example, in many real applications,
each station only communicates with a small number of
stations among a potentially large population of stations in
the entire network. To support the communications with
these subset of stations, the tunable transceiver only have
to access the wavelength channels used by these subset of
stations. If the number of these channels are very small,
then a tunable transceiver with a small resolvable wave-
length set is sufficient to carry out all communications.

Based on this observation, one might be interested in
finding out the minimum requirement on the tunable range
of optical transceivers to support a communication topol-
ogy, either physical or logical. This paper is intended to
address this question. Each station is assumed to have a
tunable transmitter and a fixed-wavelength receiver. The
results can be extended to the opposite configuration in
which the transmitter is fixed while the receiver is tunable.
Each tunable transmitter can access the same number of

O-7803-5794-9/99/$10.00 0 1999 IEEE 404



contiguous resolvable wavelength channels while the re-
solvable wavelength set of different transmitters might be
different. Such assumption reflects the free spectral range
of many tunable filters [2].  These filters can operate on
any contiguous resolvable wavelength channels as long as
the number of these channels does not exceed the size of
the free spectral range. The c,ontiguous  resolvable wave-
length channels of any transmitter is referred to as a wuve-
band. Then to support a given communication topology,
the wavebands of the tunable transmitters and the wave-
length channels of the fixed-wavelength receivers must be
carefully selected such that for any link in the commu-
nication topology, the wavelength of the receiver at the
destination station is within the waveband  of the trans-
mitter at the source destination. In addition, we require
that each receiver owns a unique wavelength channel so
as to maximize the number of working wavelength chan-
nels of the entire network. (Note that it’s the set of wave-
length channels used by the fixed-wavelength receivers,
rather than the set of wavelength channels covered by the
wavebands of the transmitters, that determines the working
wavelength channels of the entire network.) Any wave-
band/wavelength assignment to the transmitters and re-
ceivers satisfying these conditions is said to be valid. The
tunability requirement of any valid waveband/wavelength
assignment is then simply one plus the maximum differ-
ence of the wavelength channels to any pair of receivers
that can potentially talk to the same transmitter. Our ob-
jective is then to find a valid waveband/wavelength  assign-
ment with minimum tunability requirement.

The remaining of this chapter is arranged as follows.
Section II formulate the minimum tunability problem into
a graph-theoretic optimization problem. Section III studies
the computational complexity of this problem in general
communication topologies and provides approximation al-
gorithms with provable performance. Section IV present
the optimal wavelength assignment in complete graphs, de
BruijiniKautz/shuffle digraphs, and rings respectfully, and
tight lower bounds on minimum tunability in hypercubes.
Finally Section V summarizes this paper.

II. GRAPH-THEORETIC FORMULATION

The given communication topology in a WDM net-
work is represented by a graph G = (V, E) where V =
(0, 1, . . . , N - l}. Depending on whether the communi-
cations are bidirectional or unidirectional, G is expressed
as an undirected graph or directed graph correspondingly.
The wavelength channels are indexed by nonnegative inte-
gers. In the following, we prove that there always exists an
optimal valid waveband/wavelength  assignment in which
the set of wavelength channels assigned to the receivers is

exactly {O,l,...  ,N-  1).
Lemma 1: For any given communication topology with

N stations, there always exists an optimal valid wave-
band/wavelength assignment in which the set of wave-
length channels assigned to the receivers is exactly
(0,  1, . . . ,N  - 1).

Prooj? Consider any optimal valid wave-
band/wavelength assignment in which the N wavelengths
assigned to the N receivers are wa  < wr  < . . . < ‘WN-1.
If wa  # 0, then replacing each wavelength w by w - wg  re-
sults in another valid waveband/wavelength  with the same
tunability requirement. Let 0 = wb  < wi  < . . . < w&-~
denote the N wavelengths assigned to the N receivers in
this new optimal waveband/wavelength  assignment. If it
is still not the desired, then choose the minimum Ic such
that w;  > k and then replace each wavelength w 1 w;  by
w - w;  + k. The resulting waveband/wavelength  assign-
ment is still an optimal valid one. Such procedure can be
repeated until a desired waveband/wavelength  assignment
is obtained. n

From Lemma 1 we can restrict our.attention  to those
valid wavebandlwavelength assignments in which he set
of wavelength channels assigned to the receivers is ex-
actly (0,  1, . . . , N - 1).  Furthermore, any such wave-
length assignment to the receivers only can be extended
to one or more valid waveband/wavelength  assignment
by assigning each transmitter a waveband  containing the
wavelengths of all receivers that it communicates with.
Thus we can focus on only the wavelength assignment
to the receivers with wavelengths (0,  1, . . . , N - 1).  As
each receiver must have a unique wavelength, any wave-
length assignment corresponds to a permutation over the
set (0,  l,... , N - l}. Thus the problem can be formu-
lated as follows.
Minimum Tunability Problem Given a graph G =
(V,  E), find

@  (G) = 1 + min max
xEPv vEV

max 44 - (v$;E  +I
(v,u)~E

where Pv  is the set of all permutations on V.
A remark on the above description is that when G is a

directed graph, the (21,  U) represents the link from node u
to node u and thus is an ordered pair. @  (G) is exactly the
minimum tunability.

An opposite of the minimum tunability problem is the
Maximum Concurrence Problem in which the tunability
w of the transmitters is given and we would like to assign
as many wavelengths as possible to the receivers under the
constraint that the wavelengths assigned all receivers that
communicate with a common transmitter must within a
waveband  of length 20. For any graph G = (V, E) and
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the tunability 1 5 w _< /VI, the maximum concurrence
can be represented by

A, (G) = max(I(X(u)  1 v E V}j  :

max
{

max A(u)  - mfzEA(u)  < w .
IJEV (V,U)EE 1 >

To calculate Q  (G), one may first calculate A, (G) for
each 1 5 w 5 ) VI and then obtain <p (G) according to the
following relation

Cp (G) = min{l  _< w 5 IV/ : A, (G) = IV\}.

This approach will be used later in this paper.

III. OPTIMAL WAVELENGTH ASSIGNMENT IN

ARBITRARY UNDIRECTED GRAPHS

In this section, we first prove that the minimum tunabil-
ity problem is NP-hard in general. A reduction will be
made from the well-known minimum bandwidth problem
161:
Minimum Bandwidth Problem Given a graph G =
(V,  E), find

sw(G)=l+ min max j7r(u)  - 7r(v)I
epv  (lq)EE

where PV  is the set of all permutations on V.
Theorem  2: The minimum tunability problem is NP-

Hard. It is even NP-Hard to approximate it within absolute
error NlhE for any E  > 0.

Proof: We reduce the problem of minimum band-
width of cobipartite graph to the minimum tunability prob-
lem [6].  Let G = (U, V, E) be any cobipartite graph.
Then for any E  2 0, it is NP-hard to approximate BW (G)
within absolute error of (IV/  + IVj)l-’  [6].  Without loss
of generality, we assume that IUI 5 1 VI/I. We construct
graph H = (V(H), E(H)) as follows:

V(H) = {a,b}UUUU’UV,

where U’ = {u’ :uEU}isacopyofU.

E(H)  = {ca,  uj : u E uj  u {cw,  b)  : 21  E VI u
{(zq’)  : u E u}  u {( u(v) : (u,v) E E(G)}.

Let K = (V (K) , E (K)) be the graph in which

V(K) = {a,b}  U U’,

and

E(K)
= {(U,U’)  : u E  u}  u {(u’,b)  : u E  u}  u {(u’1,u’2)

: u1,u2  E u;3v  E v,(u1,4(u2,4  E E(G)}.

Then Q(H)  = max {BW(G),  BW(K)}.  Obviously,

BW(K)  < 1+  IU’I  = 1 + IUJ  < 1 + IV1

and

BWG)  2 IV/.

Thus BW(G)  < (9(H) < 1 + BW(G).  So the mini-
mum tunability problem is at least as hard as the minimum
bandwidth problem over cobipartite graphs. Therefore,the
lemma follows from the NP-hardness and approximality of
the minimum bandwidth problem over cobipartite graphs.

n
In the next, we seek approximation algorithms for the

minimum tunability problem in general graphs. The
approximation algorithms can be obtained by reducing
the minimum tunability problem to minimum bandwidth
problem. For any graph G = (V,  E), let ?? = (V, z) be
the graph in which

z = {(VI,  212)  : VI, v2 E U;  3w  E V, (‘~1,  v), (214  E E} .

It’s obvious that Q(G)  = BW(c).  Thus any approxi-
mation algorithms for minimum bandwidth problem can
be applied to ?? to obtain an approximation algorithm for
the minimum tunability of G. There are many approxima-
tion results on the minimum bandwidth problem that can
be readily adopted for the minimum tunability problem.
For examples, if the nodal degree is O(  IV/),  the minimum
bandwidth problem is approximable within 3 171. If G is
a caterpillar, the minimum bandwidth problem is approx-
imable within O(log IV))  [3].  If G is asteroidal triple-free,
the minimum bandwidth problem is approximable within
2 [8].  However, there are also some inapproximality re-
sults. For any E > 0, the minimum bandwidth problem is
not approximable within 1.5 - &  [l], and not approximable
with an absolute error guarantee of IVjl-&  [6].  Even if G
is a tree, it is still not approximable within 1.332 - E for
any E > 0 [l].

Fortunately, most applications deals with special com-
munication topologies, which allow for polynomial-time
optimal solution. Before we move on to the these spe-
cial communications topologies, we first give the follow-
ing straightforward bounds on A, (G): for any graph
G=(V,E)andanyl<w<IVI,w<A,(G)~IVI.

IV. OPTIMAL WAVELENGTH ASSIGNMENT IN

REGULAR GRAPHS

A. Complete Graphs

The complete graph corresponds to a single-hop net-
work if it represents the virtual topology embedded into
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the physical networks, or a all-to-all personalized commu-
nication request if it represents a communication pattern.
We use KN to denote the complete graph of N vertices.
We show that for any 1 5  w _<  N, A,  (KN)  = w. Ob-
viously, A, (KN)  > w. On the other hand, consider any
feasible wavelength assignment X( .). Let station a be the
one assigned with the smallest wavelength x(a),  and sta-
tion b the one assigned with the largest wavelength X(b).
As a and b  are both neighbors of any other node other than
a and b, X(b) - A(u)  < w. Thus A,  (KN)  5  w. There-
fore A,  (KN)  = w, and therefore @ (KN)  = N. Thus
any wavelength assignment which uses w wavelengths is
optimal. To make the wavelengths sharing the same work-
load, we should equally partition the stations into w sub-
sets, and assign a distinct wavelength to all stations in the
same subset.

B. de Bruijin Digrajhs,  Kautz Digraphs and ShufJles

A de Bruijin digraph [4], [lo] (or Kautz digraph [5],
shuffle respectively) of size N and degree p is denoted
by D(N,p)  (or K(N,p),  S(N,p)  respectively). We as-
sume that in these graphs, the degree p is always se-
lected to be a factor of the size N. For each 0 5  i <

+, let R) =
C

) J + 11 1 I 5  I(  < J . Then R) con-
>

sists of exactly the immediate successors of some node
in D(N,p),  K(N,p)  or S(N,p),  and thus can be as-
signed with at most min {p, w} wavelengths. Further-
more, in any optimal wavelength assignment the two sets
of wavelengths assigned to R) and RI should be disjoint

for any 0 5  i < j < $. So the total number of wave-

length used is at most F min {p, w} = min
{ “1.

N, w p

On the other hand, there are many wavelength assign-

ments which use min {N, w$}  wavelengths. For an

example, for each 0 _<  i < f, we partition R)
into min {p, w} groups as equally as possible and then
any min {p, w} contiguous wavelengths are assigned to
these min {p,  w} groups. Therefore, A, (D (n,p))  =

Aw  P+,P))  =  Aw  (S (TP))  = min{N,wf}. This

implies Q (D (n,p))  = @ (K (n,p))  = Q (S (n,p))  = p.
Thus even with fixed-wavelength transmitters, certain de-
gree of concurrence (+)  is achievable. In particular, if the
nodal degree is two, we can still achieve half of the full
concurrence.

Consequently, as long as the number of resolvable
wavelengths of each transmitter is no less than the degree
of these graphs, full concurrence can be achieved. In par-
ticular, if the degree is equal to two, then any tunable trans-
mitters are sufficient to achieve full concurrence. In gen-

eral, when choosing the degree of these graphs as virtual
topologies to be embedded into any given physical net-
works, the degree should be chosen to be no more than
the number of resolvable wavelengths of the transmitters
in order to achieve the full concurrence.

C. Rings

We begin with unidirectional rings. Let URN  denote
the unidirectional ring of N vertices (0,  1, . . . , N - 1).
The wavelength assignment which assigns each vertex a
distinct wavelength is feasible as each vertex has only
one immediate successor. Thus for any 1 < w _<  N,
A, (URN) = N, and thereby Q (URN) = 1. This im-
plies that there is no need to use tunable transmitter at all
in unidirectional rings. The fixed-wavelength transmitter
is sufficient.

Now we consider bidirectional rings. Let BRN  denote
the bidirectional ring of N vertices (0,  1, + . . , N - l}.
Without loss of generality, we assume that the vertices are
numbered in the clockwise order. The wavelength rout-
ing in bidirectional rings will be reduced to the following
optimal ring labeling problem in the bidirectional rings.
Optimal ring labeling problem: Given a ring of size N
and an integer 0 < w < N, assign a label C(i) to each
0 5  i < N such that

I!(i)  -e((i+ l)modN)(  <w

and I{!(i)  : 0 5  i < N}I is maximized. The maxima is
denoted by ru, (N) .

Then for any 1 5  w 5  N,

A, (BRN)  =
2I’,  (8) if N is even,

rw  (NJ if N is odd.

In fact, when N is even, let BRL and BR;  be the
two rings consisting of all even nodes and all odd nodes
in BRN  respectively. Thus a wavelength assignment in
BRN  is feasible if and only if it induces a feasible ring
labeling with respect to w in both BR’,  and BR$.  Thus,
to maximize the number of wavelength used, the wave-
lengths/labels assigned to these two small rings should be
disjoint. Hence A, ( BRN)  is twice of rw  ($) . Now we
assume that N is odd. Consider the ring G in which nodes
are arranged clockwise in the following order

0,2,4,.  . . ,N-3,N-1,1,3,5,...  ,N-4,N-2.

It can be shown that a wavelength assignment in BRN  is
feasible if and only if it induces a feasible ring labeling
with respect to w in G. Thus Aw  (BRN) = lTw  (N).

In the next we find the optimal ring labeling. If w = 1,
then all nodes in the ring must have the same labeling and
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thus rl (N) = 1. If w > 2 and N is even, we consider
the following ring labeling e(.):  f?(O) = 0, f?  ($)  = N -
l$(i)=2i-lforanyO<i<$!,Qi)=2(N-i)for
any $ < i < N. If w > 2 and N is odd, we consider the
following ring labeling e(.):  f!(O)  = 0, e(i) = 2i-1 for any
O<i< [g],c(;)=2(N--i)forany[$l  <i<N.In
both cases, j!(i)  - e ((i + 1) mod N)]  5 2 < w - 1 and
I{!(i) : 0 5 i < N}j = N. Thus we also have Fw (N) =
N if w > 2. Now we assume that w = 2. Then for
any 0 < i < N, It(i) - e(O)1  < min{i,  N - i} 5 1%).
Thus I?2 (N) 2 1 + L%]  = [vl. On the other hand,
there is a ring labeling that uses [y]  different labels.
If N is odd, we consider the following ring labeling e(.):
l(O)  = O,f?(i) = t(N  - i) = i for any 0 < i 5 [%I.
If N is even, we consider the following ring labeling e(.):
C(0) = O,!(g)  = $,l(i)  =‘C(N  - i) = i for any 0 <
i < g.  Thus r2 (N) = [yl  for any N. In summary,
foranyN  > 1,

l?,(N)=  ;y,
i

ifw = 1,
ifw = 2,

N ifw > 2.

Therefore,

2 - N m o d 2 ifw = 1,

A, mw = 2 l$J + [(N-1~mod4]  + 1 if w = 2,

N if w > 2.

a (B&r)  = 2 if N = 2 or 4,
3 ifN>5orN=3.

This implies that to achieve the full concurrence the num-
ber of resolvable wavelengths can be as low as three. If
each transmitter can tune to only two contiguous wave-
lengths, we can still achieve the full concurrence when
N = 2 or 4, and around half of the full concurrence if
N 2 5 or N = 3. If the transmitters are fixed, the concur-
rence is very poor.

D. Hypercubes

Let C, to denote the n-dimensional hypercube. Without
loss of generality, we always assume that the wavelengths
are positive integers and the lowest wavelength is 1 which
is assigned to node 0. Consider any optimal wavelength
assignment in C, which achieves full concurrence while
requires minimum tunability. Note that there are (:)  nodes
which have distance of two from node 0, and all of them
have a unique larger wavelength. One of them must have
wavelength at least (;)  + 1. Hence Q,  (Cn)  1 1 + (;)  . This
lower bound is also sufficient when n 2 4. If n = 2, 1 +
(z) = 2. The following feasible wavelength assignment

achieves full concurrence, and the difference between the
wavelengths assigned to two neighbors of any node is at
most 2:

X(00) = 1,X(11)  = 2,X(01)  = 3,X(10)  = 4.

If n = 3, 1 + (i)  = 4. The following feasible wavelength
assignment achieves full concurrence, and the difference
between the wavelengths assigned to two neighbors of any
node is at most 4:

X(000) = 1 , X(011) = 2 , X(101) = 3 , X(110) = 4 ,

X(001) = 5 , X(010) = 6 , X(107) = 3 , X(111) = 8 .

If n = 4, 1 + (y) = 7. The following feasible wavelength
assignment achieves full concurrence, and the difference
between the wavelengths assigned to two neighbors of any
node is at most 7:

x(0000)  = 1
X(0101) = 3
X(1001) = 5
X(1100) = 7
x(0001)  = 9
x(0100)  = 11
X(1000) = 13
X(1101) = 15

X(0011) = 2
X(0110) = 4
X(1010) = 6
X(1111) = 8
x(0010)  = 10
X(0111) = 12
X(1011) = 14
X(1110) = 16

W h e n n  2 5,wehaveQ(C,)  > (t) +  v +l.
L 1

Suppose to the contrary. Then all (y)  nodes which contain
exactly two l’s must have wavelengths of no more than

(;) + pj.Let a be the node with the smallest wave-

length among these (;) nodes. Then the wavelength as-

signed to a is at most
i i

‘“i2’- + 1. Among the wavelengths

assigned to those (“i”) node s which contain exactly four
l’s and have distance of two from a, the maximum is at
least 1 + (;) + (“i2).  Therefore,

‘q&J  2 1+ 1+( Q+(y))-(jq+l)

=(;)+[q+l

which is a contradiction.
In the next, we present another stronger lower bound

on Q,  (Cn)  when n is large. We consider the wavelengths
assigned to all 2+l  nodes of even parity in any opti-
mal wavelength assignment. Suppose that node a has the
lowest wavelength and node b has the largest wavelength.
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Let m be the Hamming distance between a and b. Let [31

a = IJO,  211,.  . . , VP = b be the nodes of even parity along
a shortest path from a to b.  Since the differences between
the two wavelengths assigned to a = ~0  and WY  = b is

at least 2n-1 - 1, there exist some 0 5  i < 7 such that
the difference of the two wavelengths assigned to Q and

~+i  is at least 1 v  / = [VI . So when n is even,

m _<  n and thus

when n is odd, m 5  n - 1 and thus

[41

PI

[61

[71

In summary, for and 2 5  n < 4,- 191
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for any n 2  5, if n is even,

and if n is odd,

V. CO N C L U S I O N

This paper studies the minimum tunability requirement
of a WDM network with a tunable transmitter and a fixed-
wavelength receiver at each station to achieve full trans-
mission concurrence. The problem is proved to be NP-
hard in general. In addition, it is even NP-Hard to ap-
proximate it within absolute error N1+ for any E > 0.
However, polynomial time approximation algorithms can
be obtained by reducing it to the well-studied minimum
bandwidth problem. When the communication topologies
are complete graphs, de Bruijin digraphs, Kautz  digraphs,
shuffle or rings, the optimal solutions are provided. Fi-
nally, we present tight lower bounds when the communi-
cation topology is a hypercube.

RE F E R E N C E S

[l] G. Blache,  M. Karpinski, and J. Wirtgen,(l998),  “On ap-
proximation intractability of the bandwidth problem”,
Technical Report TR98-014, ECCC, ftp:llftp.eccc.uni-
trier.de/pub/eccclreportsl1998lTR98-014lindex.html

[2] P.E. Green, Jr., Fiber Optic Networks, Prentice Hall, 1993.

409


