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Wavelength Assignment in WDM Rings to
Minimize SONET ADMs

Liwu Liu Xiangyang Li Peng-Jun Wan Ophir Frieder

Abstract— We study wavelength assignment for lightpaths over WDM
rings to minimize the SONET ADMs used. This problem has attracted
much attention recently. However, its computation complexity remains un-
known, and the only known heuristic [6] which does not allow the splitting
of lightpaths is problematic in both the algorithm itself and its performance
analysis. We first prove the NP-completeness of this problem, followed by
a nontrivial randomized

���������� -approximation scheme. We then present a
tighter lower bound on the minimum number of ADMs required. After
that, we show the incorrectness of the known heuristic and then modify it
to make it correct. We also propose three additional heuristics. Their per-
formances are compared through extensive simulation studies.

Keywords— Wavelength assignment, wavelength division multiplexing
(WDM), optical networks, SONET, add-drop multiplexer (ADM).

I. INTRODUCTION

WDM ring networks are being deployed by a growing number
of telecom carriers to support multiple high-level SONET/SDH
self-healing rings over a single physical fiber optical ring. One
of the most fundamental network design problems for WDM
networks is the assignment of wavelengths to a given set of light-
paths. While most of the previous work attempts to minimize the
number of wavelengths required for a given set of lightpaths, or
if given a fixed number of wavelengths, to minimize the num-
ber of blocked lightpaths [1], [2], [4], [7], [8], [9], it was ar-
gued in [5], [6] that unless the wavelength limit is exceeded,
the first-order optimization goal should be to minimize the over-
all network cost which is dominated by the number of required
SONET add/drop multiplexers (ADMs) and not the number of
wavelengths. It was also shown in [6] that these two minimiza-
tion problems are intrinsically different, and there exist cases
where the two minima cannot be simultaneously achieved.

In [6], a simple lower bound of the number of ADMs is de-
rived. In addition, two heuristics to minimize the number of
ADMs were developed: Cut-First, and Assign-First. The for-
mer allows splitting of lightpaths while the latter does not. We
further these studies and assume that the lightpaths are not al-
lowed to be split. First of all, despite of efforts in [6] in devel-
oping the heuristics, the computation complexity of the problem
remains unknown. Thus, the first part of our effort proves the
NP-completeness of this problem and discuss the approximality
issues. Second, the performance analysis to Assign-First is in-
correct and we present a counter-example to illustrate this. We
modify the algorithm and provide a correct performance anal-
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ysis. After that, we present three additional greedy heuristics:
Iterative Merging, Iterative Matching, and Euler Cycle De-
composition. Due to the difficulty of the theoretical analysis,
we conduct extensive simulations to compare the performance
of the three heuristics.

II. PROBLEM FORMULATION

Assume a Wavelength Division Multiplexed (WDM) ring
network consisting of

�
optical nodes labeled from � to�
	��

in clockwise order. Let 
 be a set of lightpaths����������������� ����� �"! 
 !$# where the lightpath
���%���&�����

is the arc
from

���
to
���

in clockwise direction over the ring. For simplicity,
we call

� �
the origin node and

� �
the termination node. A wave-

length assignment to a set of lightpaths is valid if any two over-
lapping lightpaths are assigned different wavelengths. A valid
wavelength assignment to a set of lightpaths 
 corresponds to
a vertex coloring of the circular arc graph determined by 
 as
follows: the vertex set is 
 and there is an edge between two
lightpaths if only if these two lightpaths overlap with each other.

It is easier to think of each wavelength around the ring as pro-
viding the connectivity for a single SONET ring. Each lightpath
within a SONET ring uses two ADMs, one at the origin, the
other at the termination. However, two adjacent lightpaths in
the same SONET ring, i.e., with the same wavelength, can share
one ADM at the common node. Our focus is to address the min-
imum ADM problem: assign wavelengths channels to a given
set of lightpaths such that the number of ADMs used is mini-
mized. A closely related problem is the maximum ADM sharing
problem: assign wavelengths channels to a given set of light-
paths such that the number of ADMs shared by the lightpaths
is maximized. It’s obvious that these two problems address the
same question, indeed, for any wavelength assignment, the sum
of the number of ADMs used and the number of ADMs shared
is always equal to twice the number of lightpaths.

We define a segment to be a sequence of lightpaths in which
the termination of a lightpath (except the last one) is the origin of
the subsequent lightpath, and any two lightpaths in the sequence
do not overlap with each other. A segment is said to be a circle
segment if the termination of the last lightpath is also the origin
of the first lightpath, in other words, a circle segment covers
the entire ring. A segment which is not a circle segment is said
to be a noncircle segment. The number of ADMs to be used
by a circle segment is equal to the number of lightpaths inside
the segment. The number of ADMs to be used by a noncircle
segment is one more than the number of lightpaths inside the
segment. Thus the total number of ADMs used is the number
of noncircle segments plus the total number of lightpaths. Thus
the minimum ADM problem can be solved in two phases: in the
first phase, the lightpaths are grouped into segments such that



the number of noncircle segments is as small as possible, in the
second phase, assign the wavelength channels to the segments.
Note that the second phase is exactly the well-studied circular-
arc coloring problem. It only affects the number of wavelengths
used, but has no impact on the number of ADMs used.

III. COMPUTATIONAL COMPLEXITY

Although some heuristics were presented in [6] to the mini-
mum ADM problem, the computational complexity of this op-
timization problem remains open. In this section, we show that
the problem is NP-complete.

Let 
 be any set of lightpaths. 
 is said to be uniform if the
number of lightpaths passing through each link is the same. In
particular, if there are exactly

�
lightpaths in 
 passing through

each link, 
 is said to be
�

-uniform. We have the following
result on the NP-completeness of the minimum ADM problem.

Lemma 1: The minimum ADM problem is NP-complete
even if the set of lightpaths is restricted to be uniform.

Proof. We reduce the circular-graph coloring problem to the
minimum ADM problem. The circular-arc coloring problem has
been proven to be NP-complete in [3]. The proof in [3] actually
implies the following stronger result:

Given an
�

-uniform lightpath set 
 , to decide whether its
corresponding circular arc graph is

�
-colorable is NP-Complete.

Let 
 be any
�

-uniform lightpath set. Note that the chro-
matic number of the circular-arc graph corresponding to 
 , de-
noted by � � 
 � , is at least

�
, and � � 
 ��� � if and only if 
 can

be partitioned into
�

subsets with the lightpaths in each subset
form a ring. On the other hand, the minimum ADMs required
by any

����� � � 
 ��� ! 
 ! if and only if 
 can be partitioned into�
subsets with the lightpaths in each subset form a ring. Thus��� � � 
 �	� ! 
 ! if and only if � � 
 �
� � . This implies that the

minimum ADM problem is NP-complete even if the lightpath
set is constrainted to be uniform.

In the next section, we provide a tighter lower bound and
heuristic algorithms for the minimum ADM problem.

IV. �
���� ��� 	 APPROXIMATING SCHEME

We exploit integral multicommodity flow model. By
�

we
denote the maximal link load (assuming) at link � , 
 ��� 
 is the
set of lightpaths containing link � , 

� ��� 

� 
 � . The number
of wavelengths used for optimal solution is between

�
and

! 
 ! .
Assume it is � . We add � 	��

one-hop “fake” lightpaths at link
� and cut the � lightpaths containing link � at its midpoint and
then wire the ring to a line. Assume � �"��� � !$����� � � #

is the
set of all right halves of cut lightpaths and � � ��� � ! ��� � � � #
is the set of left halves. By � � ��� ��� � ! ��� � � � � � #

,� � ��� ��� � ! � � � � � � � #
we denote all “fake” right and

left halves. We build an acyclic digraph ! with unitary vertex
capacity and edge cost function " as follows. ! � �$# �&% �

, where#'� 
��)(*�+(,� . For any - �
. # � -�� . # � if - � and -�� do not
overlap and

� - � � - � #0/ � � (1� � and - � is at the left of - � then
we add an edge

� - � � - � � .
Now define " , 2 � - � � -�� � . % �
Case 1. - � � -�� share some endpoint. Assign cost

�
.

Case 2. - � � -�� do not share endpoint, we have two sub cases.
Case 2.1

� - � � -�� #43 � � � (5� � �4�76 � assign cost 8 .
Case 2.2

� - � � - � #43 � � � (5� � �:9�76 � assign cost
�
.
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Any feasible solution is viewed as a set of � vertex disjoint

paths in ! that links all � pairs
���[� � �\� � � ! � � � � � #

and
contains all vertices and each path is corresponding to a unique
wavelength. Thus, the two halves of any cut lightpath are as-
signed the same wavelength, and our approach finally does not
cut lightpaths. For any feasible solution, if walking from all

� �
’s

to arrive at all
� �

’s along such � paths, the total edge cost we
collect is exactly the number of ADMs needed. So the integral
multicommodity model (Please refer to textbooks for this ILP
formulation) is:

To minimize ] �_^
�
^��` � `Za�b

�
� " � (1)

Subject to:

^
�[c �\d �CeWfhg c ikj b

�
� � � � 2l- . 
m� (2)

^
�[c �\d �CeWf i�c g j b

�
� � � � 2Y- . 
 � (3)

^
�\d �CeWfon�p c ikj brq�

�ts �[c
q
� � �Iuv� � �Gwhwow � � (4)



^
�\d �CeWf i�c � p j b q�

�7s � c
q
� � �Iu � � ��wowhw � � (5)

b
�
� . � � � � # � � � � �Gwhwow � � w � 2�� w (6)

Here s%� c
q
� � � � � u��&s%�[c

q
� � � � 9� u w (7)

By relaxing the constraints (6) as

� � b
�
� � � � � � � �Gwhwhw � � � 2�� w (6’)

and solving the relaxed linear programming problem, we get a
feasible fractional � -commodities flow ��� with objective value] � . We decompose the

�
-th commodity flow into � � paths from� �

to
� �

. Assume its
u
-th path is 	 � c q and it carries flow b

� c
q .We manafacture � dice. The

�
-th die has � � faces, and itsu

-th face is assigned probability b
�[c
q of being selected. We

flip all these � dice. If we get
u
-th face selected on the

�
-

th die, we select path 	 � c q
w

Use 	 � to denote the
�
-th such se-

lected path. We get a “coarse” integral multicommodity flow
� �"� 
b
�
� � �k` � ` a c ��� 
 consisting of � paths 	 � � 	 � �Gwhwhw � 	 a with

objective value

] . Here

%
[

]�� � ] ��� Easy to check,


� satisfies
constraints in (4)(5)(6) but may not satisfies constraints (2)(3).

By � � 
 we denote
# � 	 � � ( # � 	 � � ( whwow ( # � 	 a � ( 
 � � � � (� � , here

# � 	 � � is the set of vertices of the path 	 � . We assign
the

�
-th wavelength to the lightpaths in 	 � . This assignment uses
] ADMs for the lightpath set � .2l- . 
 � � (2)(3) are both satisfied or neither is satisfied by our

coarse solution
� 
b
�
� � , since the left of two constraints are always

equal. When flipping the
�
-th die, 2 - . 
:� , with probability� g c � ��� ^
q d g���� p�� �

b
�[c
q

- . 	 �\w Furthermore we have^��` � `Za � g c � � �
(8)

Since all � flipping experiments are independent, using (8) one
can prove

	:- � -��. � ��� � � 	*� g c � �kwhwow � � 	*� g c a ���
�
�

So %�� ! 
	��� ! � � �
�
� ! 
 � ! �

For any request not in � , we assign an individual wavelength
and 8 ADMs. Assume totally we used  ADMs and the optimal
solution uses Opt ADMs. We have%!�  � � %�� 
]"� � 8 %�� ! 
m� ! �

� ] � � 8 � � ! 
 !%	 � ��$#)� � � 8
�
� ! 
 !%	 � �

�$#)� � � 8
�
� #)� � 	 � �

Combined with the trivial result (Please refer to section VI)
 �%#)� � � 8 � , we get a probability algorithm with solution
 satisfying

%��  � �'& � ��4� � #)� �
This ratio is better than the trivial ratio of 8 (each request uses
one individual wavelength and two ADMs).

The randomized approach in fact gives a solution space, for
which the average worst case ratio is �
���� ��� . But we may have
discarded many terms when estimating the worst ratio, for ex-
ample, (*) � -+�. � � may be far less than

�� when
� g c � ��wowhw � � g c ,

are not equally distributed. So for certain instances, we can do
the experiments several times and select the best results which
might give ratio better than the worst ratio.

Another remaining problem is that we assume we know � ,
the number of wavelengths that the optimal solution uses. It is
not a problem if we call the above procedure several times by
setting � � � � � � � �Gwhwow � ! 
 ! and select the best result we get,
since the value of � that the optimal solution used should be
in the interval

� � � ! 
 ! � . So finally we get the polynomial time
probability algorithm with worst expected ratio �&� �� � � .

V. TIGHTER LOWER BOUND

Let - � , . � and
� �

denote the total number of lightpaths origi-
nating at, terminating at, and crossing over node

�
respectively.

Let / � denote the load on the link between node
�

and node�W� �
. A simple and straightforward lower bound on the min-

imum number of ADMs is given in [6]:

02143 �6587 �^ � e�9
:<;"= � - � � . � �

The calculation of this lower bound ignores the fact that the two
lightpaths can be matched only if they do not overlap with each
other. In this section, we provide a stronger lower bound based
on the maximum matching.

At each node
�
, we construct a bipartite graph > � �� � � ��# � �&% � � , where? � � is the set of lightpaths ending at node

�
;? # � is the set of lightpaths starting from node
�
;? for any @ . � � and A . # � , � @ � A � . % � if and only if @ and A

do not overlap with each other.?CB � is the size of the maximal matching of > � .
Then after considering the constraint that any two lightpaths

can not overlap if they share an ADM, we have the following
lower bound for the number of SONET ADMs we need:

0ED143 � 5F7 �^ � eG9
� - � � . � 	 B ���

� 5F7 �^
� eG9

� - � � . ��� 	 587
�^

� e�9
B �

� 8 ! 
 ! 	 5F7
�^

� e�9
B � w



It should be noted that the above lower bound is stronger than
the lower bound 0 1 3 � because

0 143 � 5F7 �^ � e�9
:<; = � - ��� . ���

� 5F7 �^
� e�9

� - � � . � 	 : ��� � - � � . � ���
and : ��� � - �&� . ����� B � .

VI. ASSIGN FIRST: REVISITED

If all lightpaths do not cross over some link, then the light-
paths form an interval graph, and the minimum ADM problem
for such instance has a greedy solution with polynomial time
complexity. Based on this conclusion, the Assign First heuristic
presented in [6] initially assign all lightpaths that pass through
a carefully selected link with unique wavelengths, and then use
the above greedy approach to assign wavelengths to the remain-
ing lightpaths. We found some error in its analysis and modified
it to avoid the error.

The Assign First heuristic presented in [6] initially assign all
lightpaths that pass through a carefully selected link with unique
wavelengths, and then greedily assign wavelengths as above to
the remaining lightpaths, which form an interval graph. It was
shown in [6] that the number of ADMs used by Assign First is
at most � 5F7 �� e�9 : ; = ��� � � . � #)� : ��� 5F7 �� e�9 ��� � � : ��� �	� � � . � # #Before we explain why the analysis and the algorithm itself
are incorrect, we first show by a counter-example that above ex-
pression is incorrect even as an upper bound. Consider a ring
network with

� ��

�
nodes, numbered from � to

� 	 �
in the

clockwise direction. A set of � � �
lightpaths is defined as

follows: � � ��� � � � ��� 8 � � � � :���� � � ! � � � � � #
Each

lightpath traverses 8 � � �
links, which is more than half way

around the ring. Thus, all these lightpaths must be assigned dif-
ferent wavelengths. This means no ADMs can be shared. Each
lightpath requires 8 ADMs, and the total number of ADMs used
is 8
� �����

. On the other hand, - � � . � � �
and
� � � 8 � .

According to the above upper bound, the total number of ADMs
used by Assign-First is at most

�'� 8 � � � ����� � �
, which is

impossible. Thus the performance analysis of the Assign-First
given in [6] must be incorrect.

Consider any � � � � �
. Let 
 � denote the set of links

passing through the link
�
. We first greedily assign wave-

lengths to the lightpaths not in 
 � and assume we have used� � wavelengths. After that we construct a weighted bipartite
graph ! � � � 
 � � � � �&% � � : There is an edge between a lightpath��� �&��� . 
 � and a wavelength � . � � if and only if? the lightpath

��� �&���
does not overlap with any lightpath as-

signed with � ,? either
�

is the termination node of some lightpath assigned
with � , or

�
is the origin node of some lightpath assigned with

� .
Suppose there is an edge between

��� �&��� . 
 � and � . � � . If�
is the termination node of some lightpath assigned with � and�
is the origin node of some lightpath assigned with � , then the

weight of the edge is set to 8 , otherwise
�
. The weight defined

this way represents the number of ADMs shared if the lightpath

��� �&���
is assigned with � . Find a maximum-weighted matching

in ! � . Each edge in the matching induces a wavelength assign-
ment to a lightpath in � � . If there are more lightpaths in 
 �
not assignde by the matching, we assign each of them a unique
wavelength . We do this procedure for all � � � � �

, and selet
the best. Easy to check, the number of ADMs used is at most

5F7 �^ � eG9
:<;"= � - ��� . � #)� 8 : ��� � / � � � � � � � #

� #)� � � 8 �
VII. GREEDY SEGMENTING APPROACHES

As indicated in Section II, the minimum ADM problem can
be solved in two phases: in the first phase, the lightpaths are
grouped into segments such that the number of noncircle seg-
ments is as small as possible; in the second phase, assign the
wavelength channels to the segments. The first phase com-
pletely determines the number of ADMs used, which is equal to
the number of noncircle segments plus the total number of light-
paths. The second phase intends to minimize the wavelength us-
age. In this section, we present three general greedy approaches
for the first phase, Iterative Merging, Iterative Matching, and
Euler Cycle Decomposition.

A. Iterative Merging

Initially we have
! 
 ! segments, with each segment consist-

ing of one lightpath. At each step, one of the following three
possible operations is performed in decreasing priority:
Operation 1. Merge two noncircle segments into a circle seg-
ment.
Operation 2. Split a noncircle segment into two noncircle seg-
ment and then merge one of them with another noncircle seg-
ment into a circle segment.
Operation 3. Merge two noncircle segments into a larger non-
circle segment.

Operation
�

decreases the number of noncircle segments by
two, and Operation 8 and Operation & both decrease the number
of noncircle segments by one. Thus, the algorithm terminates
after at most

! 
 ! 	�� steps
w

B. Iterative Matching

The Iterative Matching is inspired by the approach to de-
rive the tighter lower bound in Section V. Initially we have! 
 ! segments, with each segment consisting of one lightpath.
At each step, at each node

�
we construct a bipartite graph! � � � � ���
# �&�&% ��� , where? � � is the set of segments ending at node

�
;? # � is the set of segments starting from node
�
;? for any @ . � � and A . # � , � @ � A � . % � if and only if @ and A

do not overlap with each other.
We find the maximum matching of ! � . Then we pick the

node at which the size of the maximum matching is the largest,
and merge the segments according to the maximum matching at
this node. This procedure is repeated until no matching can be
found any more. It’s obvious that this algorithm has polynomial
run-time.



C. Eulerian Circuit Decomposition

We first show that - � � . � at any node
�

if and only if 
 is
uniform. The sufficient part is intuitice and thus we only need
to show the necessary part. Suppose that - � � . � at any node�
. construct a directed multigraph ! � as follows: ! � has the

same node set as the ring and corresponds to a lightpath
��� �����

,
there is a link from

�
to
�

in ! � . Then ! � is an Eulerian digraph
and each of its connected component is also Eulerian. Accord-
ing to Euler’s Theorem, each connected component contains an
Eulerian circuit. Let 
 � � 
�� ������� � 
�� be the partition of 
 cor-
responding to the connected components of ! � . Then each 
��
is uniform and so is 
 � 
 � ( 
���( ����� ( 
�� .

Now let 
 be any uniform set of lightpaths and

 � � 
m� ������� � 
�� be the partition of 
 corresponding to the con-
nected components of ! � . If a 
�� is

�
-uniform, then the total

number of ADMs used required by 
	� is exactly
! 
�� ! . Now

we assume that 
 � is
�

-uniform for some
��
 �

. An Eulerian
circuit over 
�� can be found in polynomial time. This Eulerian
circuit can be further decomposed into a number of segments by
walking from an arbitrary node in this circuit and generating a
segment when there is an overlap. To minimize the number of
noncircle segments, we can find the best starting point by enu-
merating all possible starting points. If all lightpaths in 

� are
short in the sense that no ��� of them cover the entire ring, then
any Eulerian circuit over 
 � can be decomposed into at most��� ��� �� ��� segments, and thus we have the following bound on the

total number of ADMs used.
Lemma 2: Suppose that 
 is uniform. Let 
 � � 
 � ������� � 
 �

be the partition of 
 corresponding to the connected compo-
nents of ! � and let� � � � ��� � � � 
�� is not

�
-uniform

# w
Suppose that for any

� . � , no set of � � lightpaths in 
 � cover
the entire ring. Then the total number of ADMs used by the
Eulerian circuit decomposition heuristic is at most

! 
 !�� ^ � ���
� ! 
 � !��� � w

If 
 is not uniform, we can add

�
8 5F7

�^ � e�9
! - � 	 . � !

lightpaths to 
 to form a uniform set of lightpaths, denoted by

�! . Then

! 
 ! ! � ! 
 !G� �
8 5F7

�^
� eG9

! - � 	 . � !

� 5F7 �^
� e�9

:<; = � - �&� . � # � 0 143 w
The Euler Cycle Decomposition heuristic can then be applied
to 
�! .

VIII. SIMULATION OF HEURISTICS

It is hard to obtain the tight performance analysis of the pro-
posed heuristics. Even though we have provided some upper

bounds on the number of ADMs by some heuristics in the worst
case, their practical and average behaviors are still unknown. In
this section, we compare their performance through simulation
studies. The underlying ring network consists of

� � � �
node

(
� �

is recommended to be the maximal number of nodes for
SONET rings). The number of lightpaths,

! 
 ! , is randomly gen-
erated between

� �
and 8#" � . The origin of each lightpath is also

randomly generated between � and
� �

, and so is the termination
of each lightpath. For each instance, we run all three heuristics:
Modified Assign First (MAF), Iterative Matching (IMat) and
Iterative Merging (IMer). Table I lists the

� �
outputs of ran-

domly generated non-trivial experiments. The last row in Table
I summarizes the cumulative ADM sharings of the 200 experi-
ments we conducted.

MAF IMat IMer
30 37 43
13 16 18
25 29 35
43 54 67
39 45 54
27 33 35
15 19 19
10 10 11
48 67 74
39 48 60
31 38 44
26 34 30
48 66 74
47 60 63
16 22 21
35 39 49
44 61 70
35 41 49

4950 6184 6922

TABLE I

ADM SAVINGS IN 18 EXPERIMENTS.

As demonstrated by Table I, in general, Iterative Merging
(IMer) outperforms Iterative Matching which further outper-
forms Modified Assign First. However this is not always true.
For each heuristic, there does exist some instance in which it
outperforms the other two.

IX. CONCLUSION

We studied the minimum ADM problem which addresses
wavelength assignment for lightpaths over WDM rings to min-
imize the SONET ADMs. We first proved its NP-completeness
and gave a randomized solution. We then present tighter lower
bounds on the minimum number of ADMs required by any in-
stance of lightpaths. After that, we modified the approach As-
sign First, which is originally presented in [6]. We also pro-
posed three new heuristics. Their performances are compared
through extensive simulation studies.



Recently we found the technique to prove: (1) Iterative
Merging gives approximating ratio 1.75; (2)Iterative Match-
ing gives ratio

�

� ; (3) The Circle Segment First, modified from
iterative matching, in which we greedily find any possible circle
segment by depth-first or width-first searching, gives ratio

� w " .
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