
J Supercomput (2008) 45: 255–276
DOI 10.1007/s11227-007-0171-z

Lexicon randomization for near-duplicate detection
with I-Match

A. Kołcz · A. Chowdhury

Published online: 26 January 2008
© Springer Science+Business Media, LLC 2008

Abstract Detection of near duplicate documents is an important problem in many
data mining and information filtering applications. When faced with massive quan-
tities of data, traditional techniques relying on direct inter-document similarity com-
putation are often not feasible given the time and memory performance constraints.
On the other hand, fingerprint-based methods, such as I-Match, while very attrac-
tive computationally, can be unstable even to small perturbations of document con-
tent, which causes signature fragmentation. We focus on I-Match and present a
randomization-based technique of increasing its signature stability, with the proposed
method consistently outperforming traditional I-Match by as high as 40–60% in terms
of the relative improvement in near-duplicate recall. Importantly, the large gains in
detection accuracy are offset by only small increases in computational requirements.
We also address the complimentary problem of spurious matches, which is particu-
larly important for I-Match when fingerprinting long documents. Our discussion is
supported by experiments involving large web-page and email datasets.

Keywords Information retrieval efficiency · Spam detection

1 Introduction

In recent years, large dynamic document repositories have become commonplace,
owing to the Internet phenomenon and to rapid advances in the storage technol-
ogy. Due to a variety of factors, including redundancy/mirroring, spam and plagia-
rism, such repositories may contain more than one copy of some documents, where

A. Kołcz
Microsoft Live Labs, 1 Microsoft Way, Redmonnd, WA 98052, USA

A. Chowdhury (�)
University of Bremen TZI, Bremen, Germany
e-mail: abdur@ir.iit.edu

mailto:abdur@ir.iit.edu

256 A. Kołcz, A. Chowdhury

sometimes the multiple copies are not exactly identical, but are similar enough to
be considered as near duplicates. Near-duplicate proliferation is often undesirable,
with potential problems including increased storage requirements, decrease in the
quality of search engine performance and spam. Large concentrations of duplicate
documents may also skew the content distribution statistics with potentially harmful
consequences to machine learning applications [27]. Aside from identifying near-
duplicates within document repositories, a related important problem is to verify if
an outside document may have a near-duplicate in a repository. For example, in email
spam filtering, a system may want to examine the stream of incoming messages and
verify that none of them can be considered a variation of already known spam.

A number of duplicate-detection schemes have been proposed in the literature
(e.g., [5, 6, 9]). Their focus varies from providing high detection rates to minimizing
the amounts of computational and storage resources needed by the detection process.
With massive document repositories, run-time performance tends to be critical, which
makes relatively simple single-hash techniques such as I-Match [9], particularly at-
tractive. Unfortunately, document signatures produced by such techniques are poten-
tially unstable in the presence of even small changes to document content. In appli-
cations such as spam filtering, where the adversary often purposely randomizes the
content of individual messages to avoid detection [16, 17], such instability is clearly
undesirable.

In this work, we propose an extension of the I-Match technique (but also applica-
ble to other single-signature schemes) that significantly increases its robustness to
small document changes. Our approach is based on randomization of the I-Match
lexicon. The improvements in detection accuracy come at the cost of increased sig-
nature count, with an easily controllable trade-off. In a number of experiments, we
show consistent superiority of our approach over the original scheme and demon-
strate its attractiveness for the target applications of information retrieval and spam
filtering.

In addition to tackling the problem of I-Match stability, we also address certain
deficiencies of the standard algorithm which may result in spurious matches, particu-
larly for longer document. We suggest an extension that forces the algorithm to either
abstain from producing a signature or create a more precise one whenever there is an
indication that a regular signature might be unreliable.

The paper is organized as follows: Sect. 2 provides an overview of prior work
in the area of near duplicate document detection. Section 3 focuses on the I-Match
algorithm and suggests a modification improving its reliability for long documents.
Section 4 introduces the randomized lexicon technique and provides a rationale for
its effectiveness. In Sect. 5, we discuss applications of near-duplicate detection in fil-
tering of spam and in preprocessing web-page collections prior to retrieval. In Sect. 6,
the experimental setup is outlined with the results presented in Sect. 7. The paper is
concluded in Sect. 8.

2 Near-duplicate detection: prior and related work

The problem of finding duplicate, albeit nonidentical documents has been the subject
of research in the text-retrieval and web-search communities, with application focus

Lexicon randomization for near-duplicate detection with I-Match 257

ranging from plagiarism detection in web publishing to redundancy reduction in web
search and database storage. Generally, one distinguishes between the problems of as-
sessing the resemblance and containment of documents [6], although the techniques
used to address them are often closely related [6, 35]. In particular, in plagiarism-
detection applications, it is often of interest if one document contains the whole or
at least the major components (e.g., sentences or paragraphs) of another document.
However, in the context of this work, the problem of document containment is less of
an issue.

A number of approaches to near-duplicate detection have been proposed, which
can roughly be classified as [23]:

• Similarity based: where two documents are considered identical if their distance,
according to a measure such as the cosine similarity or the Jaccard distance falls
below a certain threshold;

• Signature based: where two documents are considered identical if their projections
onto a set of attributes are the same.

Operationally, we can also distinguish between detecting near duplicates from
within the scope of a particular document collection and establishing the near-
duplicate relationship of documents between an arbitrary source and a particular doc-
ument collection. The latter view is relevant in applications such as spam filtering
or plagiarism detection, where it is desired to find out if new documents are suffi-
ciently similar to any of the existing ones. Similarity-based techniques can be fur-
ther subcategorized according to the document representation chosen. On one end of
the spectrum, the standard information-retrieval bag-of-words representation is used.
This approach was taken, for example, in [8, 23, 34]. Alternatively, document decom-
position into units larger than words (e.g., word n-grams, sentences, or paragraphs)
leads to partial retention of positional information. In particular, shingle-oriented fin-
gerprinting techniques such as COPS [5], KOALA [21], and Document Syntactic
Clustering (DSC) [6, 7] view a document as a stream of tokens (e.g., words or char-
acters), which is broken into overlapping or nonoverlapping segments referred to as
shingles. Thus, a document is represented as a bag of shingles, with the bag-of-words
representation viewed as a special case.

In principle, similarity-based techniques require that all pairs of documents are
compared, i.e., each document is compared to every other document and similarity
is calculated. For massive data sets, brute-force implementations can be computa-
tionally prohibitive, with the theoretical O(d2) runtime, where d is the number of
documents. In practice, only documents with nonzero shingle (or word) overlap need
to be considered which, depending on the actual representation, reduces the amount
of computation needed. Also, efficient data structures, such as the inverted index [29,
31, 33, 36] are typically deployed.

Several optimization techniques were proposed to reduce the number of compar-
isons made. In [11], only documents whose sizes are sufficiently close are compared
against each other. In the fingerprinting context, frequently occurring shingles may
be eliminated [21]. Also, instead of performing similarity computation over the com-
plete sets of shingles, random sampling (e.g., implemented deterministically via min-
wise independent hashing [6]) retains only a small subset of shingles per document.

258 A. Kołcz, A. Chowdhury

Such simplifications, however, do hinder the accuracy. Since no semantic premise
is used to reduce the volume of data, a random degree of fuzziness is introduced to
the matching process increasing the rate of false positives, i.e., resulting in relatively
nonsimilar documents being identified as potential duplicates.

Even with computational shortcuts, however, similarity based approaches to dupli-
cate detection in large datasets tend to be computationally expensive. For example,
with the performance-improving technique of removing shingles occurring in over
1,000 documents and keeping only every twenty-fifth shingle, the implementation
of the DSC algorithm is still O(s · d), where s is the average number of shingles
per document and d is the number of documents [7]. A more efficient alternative,
DSC Super Shingles (DSC-SS), uses concatenations of several shingles called super
shingles. Here, instead of measuring resemblance as a ratio of matching shingles, re-
semblance is defined as matching a single super shingle in two documents, which is
much more efficient because it no longer requires the calculation of shingle overlap.
A similar approach is used in [18], under the name of Locality Sensitive Hashing
(LSH). Here, instead of shingles, a number of k-tuples of words are selected from
each document via min-wise independent hashing and if two documents have at least
one such tuple in common they are considered to be near duplicates.

The super-shingle approach to document comparison is close to the one taken by
I-Match [9], where each document is characterized as a filtered set of terms con-
veniently mapped into a single hash value, with two documents considered as near
duplicates if their sets of terms are the same. I-Match overcomes the short-document
reliability problem of DSC-SS and is very efficient to implement since document
comparison involves just a single hash-table lookup. It does suffer, however, from
potential instability of the generated signatures to even small changes in document
content [28]. The shortcomings of the super-shingling technique were also addressed
in [14] under the name of mega-shingling, which can be interpreted as a special case
of LSH.

Lastly, we note the similarity between the problem of near-duplicate detection of
text documents and the problems of database deduplication/cleaning [22] and record
linkage [38] addressed by the data mining community. The main difference lies in
the fact that database records represent structured or semistructured information and
are typically much shorter than text documents. Also, the notions of similarity may
be data specific (e.g., matching street addresses vs. matching of citations or refer-
ences [30]), which encourages development of specialized distance metrics [3].

3 I-Match and its extensions

Similarity-based duplicate detection approaches inherently map each document to
one or more clusters of possible duplicates, depending on the choice of the similarity
threshold. While that is appropriate when detecting the similarity of documents or
detecting plagiarism, such techniques produce high overhead when large collections
are evaluated. The I-Match [9] approach produces a single hash representation of a
document, thus guaranteeing that any document will map to one and only one cluster,

Lexicon randomization for near-duplicate detection with I-Match 259

while still providing fuzziness of nonexact matching. An I-Match signature is deter-
mined by the set of unique terms shared by a document and the I-Match lexicon. The
signature generation process can be described as follows:

(1) The collection statistics of a large document corpus are used to define an I-Match
lexicon, L, to be used in signature generation.

(2) For each document, d , the set of unique terms U contained in d is identified.
(3) I-Match signature is defined as a hashed representation of the intersection S =

(L ∩ U), where the signature is rejected if is |S| below a user-defined threshold.

The effectiveness of I-Match relies on the appropriate choice of lexicon L. Exper-
imental data suggest that one effective strategy of lexicon selection is to impose an
upper and lower limit on the inverted document frequency (idf) for words in the doc-
ument collection (i.e., a variant of Zipfian filtering), since terms that are very frequent
(i.e., with very low idf), and terms which are very infrequent (i.e., with very high idf),
tend to be less useful in duplicate detection than terms with mid-range idf values [9].
Note that high-idf terms may be very effective in pinpointing a particular document,
but they also capture misspelled words and other spurious strings, which reduce their
value in identifying near rather than exact duplicates. This is especially important
in applications such as spam filtering, where much of the document randomization is
created on purpose, precisely to make copy detection more difficult. There are no firm
guidelines with regards to the choice of idf cutoff points, so the selection of a lexicon
typically involves a degree of trial and error. Also, criteria not strictly idf -based have
been suggested. In [11], the idf information is combined with in-document term fre-
quency and other statistics to arrive at an importance score called IQ, which is then
used in term ranking. In another scheme [24], it was proposed to estimate the stability
of each candidate word to small changes in document content and to retain the top-N
candidates that are most stable and, at the same time, are relatively frequent in the
collection. The description provided in [24] provides few details, however.

I-Match may result in false positives matches if a large document has a very small
intersection with L. In other words, I-Match signature of a document may become
unreliable when |S|

|U | becomes too small, which is illustrated in Fig. 1. Here, the al-
gorithm is applied to two different email messages containing the same banner. Al-
though the relevant content of these messages is contained not in the banner itself,
the I-Match signatures for the two messages are identical since the main contents fail
to intersect with the I-Match lexicon. In the example shown, the failure is caused by
the foreign language of the message payloads in the context of the I-Match lexicon
being derived from a corpus of primarily English documents.

Here, we propose an extension of the I-Match technique that addresses the small-
intersection problem. Note that the collection statistics define an ordering over the
set of all possible lexicon terms, with term idf used to determine the sorting order.
Assuming that the primary lexicon, L, corresponds to a range of idf values, we reject
all terms with lower idf values and define a secondary lexicon, B , as one containing
the remaining terms ranked according to their increasing idf values.

In the modified I-Match procedure, whenever the primary lexicon fails to intersect
with sufficiently many terms in U , the secondary lexicon is used to supply extra
terms, until the number of elements in S exceeds a user-defined threshold. Since the

260 A. Kołcz, A. Chowdhury

secondary I-Match lexicon may be much bigger than the primary one, and since it
may contain many potentially “noisy” terms, the extra terms are added according
to their rank order, i.e., the more frequent terms are considered first. This insures
that the auxiliary terms contributing to the signature will have idf values as close
as possible to the primary ones and thus, assuming that the idf -ranking of terms is
indeed meaningful, the signature will consist of the most relevant terms. In other
words, lexicon L defines a [idf min, idf max] window in the document frequency range
for terms present in the collection. The terms for which idf < idf min correspond to
stop-words and very frequent words, which are not likely to correlate with the gist
of any particular document. These ones remain ignored, but we turn our attention to
terms for which idf > idf max. These words are less frequent than those found in L

and the higher their idf value, the more likely they are to result in a uniqueness of a
signature to which they contribute. Therefore, to the extent that these terms need to
be used to address the problem of the intersection of a document with L being too
small, the more frequent ones are considered first to decrease the likelihood of the
resulting signature being exact.

The steps involved in signature generation according to the modified I-Match pro-
cedure are given below:

(1) The collection statistics of a large document corpus are used to define the pri-
mary lexicon, L, and the secondary lexicon, B , to be used in signature genera-
tion; e.g., if L is derived using Zipfian filtering contains terms for which inverse
document frequencies are in [idf min, idf max],B would contains terms for which
idf > idf max (the size B is controlled by a practical limit the maximum size of a
lexicon) ranked according to their idf values, with the more frequent ones con-
sidered more relevant.

(2) For each document, d , the set of unique terms U in d is found.
(3) I-Match signature is defined as a hashed representation of the intersection S =

(L ∩ U).
(4) If |S|

|U | falls below a user-defined threshold, S is expanded by the minimum num-

ber of top-ranking terms (L ∩ U) necessary to satisfy the |S|
|U | threshold require-

ment. The threshold values are determined empirically and may be domain spe-
cific (e.g., different for emails and Web documents).

(5) The signature is rejected if either |S| or |S|
|U | fall below their respective thresholds.

In the example provided in Fig. 1, the signatures of the two documents would be
either null, or different, provided sufficient vocabulary existed in the secondary lexi-
con. It is usually more useful to provide an exact signature than none. For example, in
the spam filtering application, a spammer may split a single campaign into a number
of discrete versions but then send multiple copies of each version, which could be
identified by an exact match. To insure that few NULL signatures are generated, the
size of the secondary lexicon might have to be very large. In practice, one is likely
to be faced with memory constraint limitation. The choice of size of the secondary
lexicon is, therefore, likely to represent a trade-off between the available resources
(RAM) and the desire to avoid generating NULL signatures.

The proposed modification to I-Match is different from one of the I-Match variants
investigated in [9], where a fixed fraction of high-idf terms per document was used

Lexicon randomization for near-duplicate detection with I-Match 261

Fig. 1 Example of failure in the original I-Match to account for longer documents with insufficient overlap
with the I-Match lexicons. For a lexicon derived from a predominantly English corpus, the signature will
be formed based on the identical English banner in the bottom of the messages. The signatures will thus be
identical (assuming that words such as hat, cpu, cool are not part of the lexicon) even though they do not
account for the actual relevant content of the messages at all. Note that in this case, the German messages
are actually related, but we cannot attribute detection of this correspondence to the strength of the I-Match
algorithm itself

in signature generation. Although the other scheme also insures adequate representa-
tion of large documents, it may lead to under-representation of short documents, for
which the signatures tend to be more brittle than ones based on selecting all terms in-
tersecting with the primary lexicon [9]. Our modification addresses the reliability of
the algorithm in terms of avoiding spurious matches. In the next section, we approach
the complementary problem of increasing the stability of signatures to document per-
turbations.

4 Decreasing the fragility of I-Match signatures

Ideally, the signature of a document should be insensitive to small changes in docu-
ment content. For example, in the context of the spam-filtering application, these in-
clude changing the order of words in the document, as well as inserting or removing a
small number of words. Unlike signature-generation algorithms relying on positional
information of words, I-Match is inherently insensitive to changes in the word order,
but inserting or deleting a word from the active lexicon will change the value of the
signature. Signature brittleness is particularly undesirable given the adversarial na-
ture of spam filtering, where an attacker might attempt to guess the composition of
the lexicon and purposely randomize messages with respect to the lexicon’s vocabu-
lary.

Let us reverse the roles of the document and the lexicon, however. We can reason-
ably expect that if a lexicon is modified by small number of additions/deletions, this is
unlikely to significantly change the stability of I-Match signatures with respect to the
modified lexicon. Moreover, as experimental data suggest [9], similar levels of dupli-
cate detection accuracy can often be obtained by largely nonoverlapping lexicons. A
small modification to document content may thus change an I-Match signature due
to a particular lexicon, but at the same time, there may exist a number of alterna-

262 A. Kołcz, A. Chowdhury

tive lexicons for which I-Match performs with equivalent accuracy and for which the
signatures may be unaffected by such a change.

The latter observation suggests the benefits of creating multiple signatures per doc-
ument, which seems to require the presence of multiple different lexicons, selection
of which could be nontrivial. We note, however, that such lexicons can be related to
one another. In particular, let us consider a setup where a suitable lexicon is chosen
and then K different copies of the original lexicon are derived by randomly eliminat-
ing a fraction p of terms in the original, i.e., the K extra lexicons are proper subsets of
the original. Assuming that p is small, we expect the quality of signatures due to the
additional lexicons to be similar to the original. Using the arguments presented above,
an extended I-Match signature of a document in the randomized lexicon scheme is
defined as a (K + 1)-tuple, consisting of I-Match signatures due to the original lexi-
con and its K perturbations. Any two documents are considered to be near duplicates
if their extended signatures overlap on at least one of the K + 1 coordinates.

Let us take a document and modify it by randomly removing or adding a word
from the original lexicon, with n such changes in total (note that changes involving
vocabulary outside of the original lexicon cannot affect the extended I-Match signa-
ture). Each such change will necessarily alter the signature according to the original
lexicon, whereas the probability that at least one of the K additional signatures will
be unaffected by such a change can be estimated as:

1 − (
1 − pn

)K
. (1)

This is derived as follows: For a particular perturbation of the original lexicon, a
change to the document contents will not affect the signature as long as the change
occurs within the subset of the original lexicon that is missing in the perturbation,
which occurs with the probability of p. Assuming that n is much smaller than the size
of the missing subset, the probability that n such changes will preserve the signature
can be approximated as pn. Since the K additional lexicons were generated indepen-
dently from one another, the process in which a number of the signatures is changed
in response to modifications to the document can be modeled as K Bernoulli trials.
Accordingly, the probability that all K signatures will change is equal to (1 − pn)K

and, conversely, the probability that at least one of them will be unaffected is given
by (1).

Equation (1) can be seen as the stability of the extended I-Match signature to
changes that are guaranteed to affect the I-Match signature according to the original
lexicon alone. As illustrated in Fig. 2, at the cost of using a few extra lexicons, the
stability of I-Match signatures can be increased significantly. Equation (1) guides the
process of choosing the value of K is practice, and there is a natural trade-off between
the increase in reliability and the extra computational resources needed to maintain
additional lexicons and to compute multiple signatures instead of just one.

Our approach is related to the supershingling technique of [6] and the locality
sensitive hashing (LSH) [15, 18]. As in those techniques, a number of signatures
is generated per document and if a pair of documents has at least one of them in
common, the documents are considered to be near-duplicates. The differences lie
in how the individual signatures are generated. The supershingle approach is based
explicitly on the concept of syntactic similarity using word n-grams as the basic unit

Lexicon randomization for near-duplicate detection with I-Match 263

Fig. 2 Stability of bagged
I-Match signatures under
random insertion/deletion of
words in the original document
for the case of p = 0.33. The
y-axis corresponds to the
probability that the extended
I-Match signature will not be
affected by a change to the
document contents. Bag-n
signified that n randomized
lexicons were used

and is thus more vulnerable to radical changes to word ordering (e.g., not uncommon
in spam). Unlike lexicon randomization and LSH, the number of signatures (i.e.,
supershingles) generated per document depends on document size, and as noted in
[6], the supershingle approach tends to lose reliability in the case of short documents,
which was one of the factors motivating the development of I-Match [9].

Locality sensitive hashing creates a fixed number of signatures per document,
where each signature can be seen as the result of a specific randomization of word
order. The LSH approach does not explicitly rely on a lexicon, so any word can poten-
tially contribute, although very frequent words are typically ignored. The technique
is based on the use of a number of different hash functions, where a particular hash
function imposes a random ordering over the set of all possible words, and the top
k words1 from the intersection between the document and the ordered word list are
concatenated and hashed to produce a signature. To generate alternative signatures,
a number of different hash functions from the same family are used, which leads
to different random word orderings. LSH explicitly mandates the number of terms
that constitute a document signature. Given that little word filtering is applied and
that the ranking of words is random, the choice of k may be critical, especially for
longer documents, where a small subset of k words may be insufficient to guaran-
tee reasonable signature uniqueness. The megashingling technique of [14] is similar
to LSH, but it selects subsets of k shingles instead of k words. It can be seen that
unlike our scheme, the stability of LSH signatures to random additions/deletions of
words depends on document length, with longer documents being more immune and
shorter ones being more vulnerable. In the web-clustering experiments described in
[18], 125 signatures were generated per document to ensure adequate near-duplicate
recall. Also, in order to limit the number of false-positive matches, a two-phase setup

1Alternatively, one could use k different hash functions to generate a single signature. In such a case,
the intersection of a random word ranking with a document is done k times, each time with the topmost
element being appended to the buffer, which is eventually used to produce the signature hash.

264 A. Kołcz, A. Chowdhury

was deployed, whereby once potential duplicate clusters were identified; their ele-
ments were filtered using an explicit word-overlap distance metric.

Lastly, we note a degree of similarity between lexicon randomization and the use
of bagging [4] in machine learning. For learners sensitive to small perturbations of
the training set, the variance component of the prediction error can be reduced when
instead of a single model, an ensemble of multiple models is learned, each based on
a bagged version of the original training data. Similarly, I-Match can be viewed as
being sensitive to changes to the contents of a lexicon, as well as to the contents of a
document. By using multiple perturbed versions of the original lexicon, obtained by
bagging or a similar randomization process (as described above), the stability of the
extended signature (which can be viewed as an ensemble of individual signatures)
with respect to random changes to a document is increased. The process of extended
signature matching can be seen as a special case of voting, but where instead of
the usual majority vote used in bagging of classifiers, the decision-making process
is asymmetric, as it takes just one member of the voting ensemble to say yes for a
match decision to be made.

The multiple signature method presented in this section addresses the problem of
signature fragmentation, or signature stability, resulting from document perturbation.
This problem is complementary to one of reliability, where two unrelated documents
receive the same signature, which was addressed by the usage a secondary lexicon
proposed in Sect. 3. Note that if lexicon randomization is applied to a version of I-
Match employing a secondary lexicon B , sampling with replacement is applied to
both the primary lexicon, L, and the secondary lexicon, B .

5 Applications

5.1 Web search

From the usability perspective, it is important that results of web search queries do
not contain multiple references to the same information source. Unfortunately, due to
mirroring and free copying, it is fairly common that the same web-page content may
be available in multiple locations and under different names. Such documents often
differ slightly, but the changes tend to be irrelevant. Another example is given by news
stories, where often the same news article with minor modifications is posted multi-
ple times and in different locations. Apart from contributing to information clutter,
duplicates and near-duplicates increase the size of the document index, with negative
consequences to indexing and retrieval performance. For example, it has been re-
ported that by deduplicating the results of a typical web crawl, the size of an inverted
index can be reduced by as much as 1/3 [7, 14]. Finding near replicas of web-pages
has been one of the key motivations for researching scalable deduplication techniques
[7, 9, 18, 24], and given the exponential growth of the web, it continues to be an im-
portant application.

5.2 Spam filtering

Duplicate detection systems often operate in a batch mode, where the objective is
to find all duplicates in a large existing collection. Alternatively, given a duplicate

Lexicon randomization for near-duplicate detection with I-Match 265

free collection and a stream of documents, one may wish to filter all documents in
the stream that can be considered as near duplicates of some elements in the col-
lection. This latter on-line view is of particular interest to spam filtering, where the
document collection might correspond to exemplars of known spam, while the docu-
ment stream might correspond to incoming messages of unknown category. Recently,
there has been growing interest in applications of machine learning and data mining
techniques to the problem of filtering Unsolicited Commercial Email (UCE) [13].
Although the unsolicited nature of an email message cannot always be determined
from the contents of the message alone, content based approaches have been by far
the most widely used [1, 12, 32]. In particular, since an email can be seen as semi-
structured text (with the possibility of multimedia extensions), text categorization
techniques are readily applicable. Unlike many other text-classification problems,
spam filtering tends to be challenging due to its adversarial nature. Spammers ac-
tively deploy techniques designed to confuse filtering techniques, thus making the
characteristics of spam very dynamic. This complicates feature selection and often
leads to sample selection bias, where the statistics of the data used to train a classifier
are different from the ones the classifier will encounter in practice. One also needs
to consider the asymmetric nature of the misclassification costs [26], whereby mis-
classifying a legitimate message as spam is potentially much more expensive than the
opposite error.

Nevertheless, many filtering systems (e.g., Distributed Checksum Clearinghouse
(DCC) or Vipul’s razor2) try to exploit one key characteristic of spam, i.e., its ten-
dency to be sent in high volume. Following the blanket-marketing approach, many
spammers send essentially the same message to as many users as possible. The
messages are rarely identical, however, precisely to avoid template-based detection
schemes. Strategies employed to foil detection schemes include appending random
character strings to the subject line of the message, inserting neutral text passages
into the body of a message, changing the order of paragraphs and randomizing the
nonalphanumeric content just to name a few [16]. As pointed out in [17], spammers
may easily produce a number of alternative campaign messages and send them out
in such as way so as to reduce the volume of each campaign handled by any par-
ticular filter (i.e., list splitting). It is also true, however, that spam campaigns tend
to be quite repetitive and oriented about largely the same topics, e.g., pornography
or certain pharmaceuticals, which limits their expressiveness to some extent. Also,
many commercial and public systems affect (and rely on feedback from) very large
communities of users, which reduces the effectiveness of list-splitting and content-
randomization spamming tactics.

6 Experimental setup

In the following, we evaluate the near-duplicate detection accuracy of the modified
and extended I-Match using web-page and email document collections, where detec-
tion using single and multiple randomized signatures is compared.

2http://razor.sourceforge.net/.

266 A. Kołcz, A. Chowdhury

6.1 Web page data

The WT10G [19, 20] dataset from NIST was used for our web page similarity exper-
iments. While this 10 GB 1.7 million document collection is synthetic in nature, it
was developed to possess characteristics of the larger web for text retrieval effective-
ness research [2]. Additionally, the WT10G corpus has been examined for similarity
of the collection to the web as a whole (e.g., using metrics such as link connectivity)
and was found to be representative [37]. These factors make it attractive for use in
duplicate similarity experiments in which web pages are being examined.

6.2 Email data

We considered the following datasets:

• The Legitimate email collection consisted of 18,555 messages collected from 4,607
volunteers as examples of nonspam. To account for the possibility of class noise,
the messages were hand-labeled and confirmed to be legitimate, with questionable
messages removed from the set. The data was considered duplicate free. In our ex-
periments, this dataset was used primarily in evaluation to assess if near-duplicate
detection of spam may lead to any false-positives among legitimate emails.

• The Honeypot-Spam collection consisted of 10,039 messages collected by accounts
set up to attract spam (i.e., they should not be receiving any email at all). These
data were known to contain many highly similar messages.

• The Cluster-Spam collection consisted of spam messages grouped in 28 clusters.
These data were obtained by interactively querying a large database of verified
spam messages with the explicit goal of finding near duplicates or highly simi-
lar/related messages. A cluster contained messages extracted via queries employ-
ing a few different combinations of keywords. During the collection processes,
efforts were made to focus on messages likely to be difficult to identify via content
matching, i.e., showing clear attempts at randomization.

6.3 Document preprocessing

After removing HTML markup, each document was mapped onto the set of unique
words, where a word was defined as a sequence of alphanumeric characters delim-
ited by white space. In the case of email messages, only the text contained in the
subject line and the message body was considered. Words were converted to lower
case and the ones containing more than one digit as well as those having fewer than
four characters were removed. Additionally, email messages having fewer than five
unique word features were considered as too short and were ignored.

In the case of the email data, trivial duplicates were removed. For the Honeypot
and Cluster spam datasets, this resulted in a reduction in the number of documents
from 10,039 to 5,328 and from 8,703 to 6,389, respectively. Note the high dupli-
cate rate in the Honeypot dataset. The message-count statistics of the preprocessed
datasets are shown in Table 1.

Lexicon randomization for near-duplicate detection with I-Match 267

Table 1 Message count
statistics of the email datasets
used in the experiments

Dataset Message count

Legitimate 18,555

Honeypot-spam 5,328

Cluster-spam 6,389

6.4 The evaluation process

The exact point at which two documents cease to be near-duplicates and become just
highly similar is difficult to define, which is related to the general difficulty of com-
paring the quality of different clusterings of the same data. To avoid the ambiguity in
the near-duplicate judgments, we chose the traditional cosine similarity measure as a
benchmark metric against which the accuracy of the signature-based techniques was
compared. For documents i and j , their cosine similarity is defined as

cosine(i, j) = |common unique features(i, j)|√
d(i)d(j)

, (2)

where d(j) is the number of unique features in document j . The definition ignores
in-document term frequency often used with the cosine-similarity measure. This is
due to the interpretation of near-sameness used by I-Match, i.e., order independent
sufficient overlap of unique terms between any two documents. Our experience sug-
gested that two documents can safely be considered as near-duplicates if their cosine
similarity is greater than 0.9. In the presence of severe randomization, this does not
guarantee that all duplicates of a particular template document will be recovered, but
it is desired that a good duplicate-detection technique identify a large fraction of the
same documents as the cosine-similarity approach.

Given a query i, and a document collection, we define the recall of a signature-
based detection technique as the ratio of the number of documents flagged as dupli-
cates of i to the corresponding number identified by the cosine measure, when using
i as a template,

recall(i) = |duplicates found for i|
|documents j such that cosine(i, j) ≥ 0.9| . (3)

Similarly, precision is defined as

precision(i) = |duplicates found for i| ∩ |documentsj such that cosine(i, j) ≥ 0.9|
|duplicates found for i| .

(4)
Note that from the spam-filtering perspective, we often do not care if the copy-
detection systems flags just similar spam messages as near-duplicates of the template
set, as long as there are no false-positive errors in which legitimate messages are
classified as spam, which makes the use of precision less relevant. To account for
the performance of a copy-detection technique from the classification standpoint, we
define a utility function, such that when using a spam message i as a query the utility

268 A. Kołcz, A. Chowdhury

is given by

utility(i) = |spam(i)| − cos t · |legit(i)| (5)

where the |spam(i)| and legit(i)| are the numbers of spam and nonspam messaged
extracted, with cos t defined as the relative cost of misclassifying a legitimate mes-
sage as spam. The values of cos t reported in the literature typically vary between 1
and 1,000 [1, 32]. In our experiments, we used the setting of cos t = 100. The utility
function combines the benefit due to elimination of spam with the significant cost of
false positives.

6.5 I-Match signature algorithm settings

In applying I-Match and its extensions, one important question is the choice of the
I-Match lexicon. In previous studies, the collection statistics of a large document set
were used to find near-duplicates within that same collection, but it was also sug-
gested that a large diverse training collection could be effective in detecting dupli-
cates in a different collection. This is of particular importance, since the content dis-
tribution may be constantly changing [25], and as is the case for email data in our
experiments, one often does not have a large enough target document collection to
derive a stable lexicon. As recently shown in [10], there might be disadvantages to
constantly updating the collection statistics to track the target distribution of content
since it tends to reduce the time-validity of signatures while adding little in terms
of deduplication accuracy. To evaluate the effect a lexicon choice might have, in the
experiments with the web-page collection, we considered two lexicons: one derived
from the WT10G dataset itself and one derived from a large collection of news stories
(here referred to as SGML), which was also used in [9]. In the case of the email data,
just the SGML-based lexicon was applied. The SGML dataset corresponded to TREC
disks [4, 5],3 which is a compilation of Financial Times, LA Times, and other news
collections. This dataset provides good statistics for the English language because it
has high quality data, in terms of formatting noise and use of the language.

6.5.1 WT10G lexicon

The WG10G collection contained 1,679,076 documents and 5.8 million unique terms,
out of which 411 thousand terms were selected by retaining those words for which
normalized idf (nidf) resided in the interval nidf ∈ [0.2,0.8]. The choice of this par-
ticular interval was motivated by our past experience with I-Match applied to web
data and the results reported in [9].

6.5.2 SGML lexicon

The SGML collection contained 556,000 documents, with an average length of 662
terms and a total number of unique terms of 488,000. The interval nidf ∈ [0.2,0.8]
contained the lexicon terms used in our experiments with the web data. For experi-
ments with the email data, cross-validation suggested a different choice of the nidf
range: [0.2,0.3].

3http://trec.nist.gov/data/qa/T8_QAdata/disks4_5.html.

Lexicon randomization for near-duplicate detection with I-Match 269

6.6 Lexicon bagging

In experiments with lexicon randomization, the original copy of the lexicon was aug-
mented with K copies (with K in {1, . . . ,10}, i.e., we considered experiment runs
using original + 1, original + 2, . . . lexicons) obtained by bootstrap sampling from
the original and ensuring that each term was selected at most once. Thus, each ran-
domized lexicon shared approximately 67% of terms with the original.

7 Results

7.1 Web-page data

We used a random sample of 115,342 documents (approximately 7% of the total)
as queries against the full WT10G collection. For each query, a set of documents
for which the cosine similarity exceeded the 0.9 threshold was identified to be used
for measuring the recall of hash-based techniques. Only 26,491 of the queries had
a cosine neighborhood containing documents other than themselves and only those
were used in the evaluation of I-Match. Note that computation of cosine similarity is
quite expensive and would generally be unsuitable in operational settings.

I-Match with the WT10G and SGML lexicon choices was then applied to the
document corpus and for the near-duplicate clusters containing the documents from
the query set; the recall of the I-Match technique was measured. The recall results
are shown in Fig. 3. The use of lexicon randomization clearly provides a dramatic
increase in the near-duplicate recall, although there is a saturation effect and beyond
a certain point there is little benefit of introducing additional perturbed lexicons.4

Interestingly, the SGML lexicon led to higher detection accuracy than the lexicon
derived from the target collection. We suspect this is because the SGML collection
was much cleaner (it contained professionally edited articles), and thus more rep-
resentative of the content on which we usually wish to focus when deduplicating.
Conversely, the WT10G collection contained both proper and misspelled versions of
words, as well as various types of formatting noise (even with a good parser, noise
due to formatting, and logic, such as javascript, still exists), which would contribute
to signature brittleness.

This seems to strengthen the arguments advanced in [10] that deriving a lexicon
from large stable document collection may be preferred. Of course, in practice, this
might depend on other factors, such as the language in which the target documents
are written.

Figure 4 shows the dependence of the precision on the number of I-Match lexi-
cons used when using the SGML lexicon. Interestingly, the precision obtained with

4We have not performed rigorous comparison of the different variants of I-Match with alternative single
signature algorithms. However, to give the reader some idea of the comparative performance, a run of the
megashingling algorithm with its own document parsing and other settings have led to the recall of 0.668
and precision of 0.758, which was roughly equivalent to I-Match utilizing the SGML collection with 5 ran-
domized lexicons. The megashingling code used was corresponded to “Shingleprinting code for estimating
document similarity” available at: http://research.microsoft.com/research/downloads/default.aspx.

270 A. Kołcz, A. Chowdhury

Fig. 3 Near-duplicate
web-page recall of I-Match as a
function of the number of
randomized lexicons used.
Usage of multiple randomized
lexicons is generally beneficial,
but I-Match appears to perform
best with lexicons derived from
the SGML corpus.
Near-duplicate spam recall of
I-Match as a function of the
number of randomized lexicons
used. The absolute values of
recall depend on the dataset (i.e.,
true amount of duplication
present), but the benefits of
using multiple lexicons are clear

Fig. 4 Fraction of pure clusters
for the two lexicon choices.
Note that with more randomized
lexicons the fraction decreases
only slightly for one lexicon
choice (sgml) and actually
increases for the other (w10g)

a native lexicon, i.e., one derived from the same collection, appears to be higher. We
suspect this is because many of the low frequency terms can be specific to a particular
collection and much harder to find in other collections.

7.1.1 Formatting artifacts

Exact measurements of precision and recall in near-duplicate detection are impossi-
ble due to the vague definition of “near-sameness.” Our choice of cosine-similarity
threshold is reasonable, but arguably a slightly lower or slightly higher value could be
used as well. In particular, documents with lower cosine similarity values can often be
considered as near duplicates and are correctly identified as such by I-Match, but this
leads to the lowering of precision as defined by (3). As such, the current definitions
of precision and recall can be loosely interpreted as their lower bounds.

Lexicon randomization for near-duplicate detection with I-Match 271

Fig. 5 An example of a spurious match within the WT10G collection. The two documents are almost
identical from the pure word overlap point of view. However, due to their nature (help pages corresponding
to distinct functions) they might be considered as different

There are also situations, however, where matches produced by I-Match are truly
spurious. In particular, the WT10G collection contains numerous software manual
pages, where the same template is used to describe the functionality of different rou-
tines. Figure 5 provides an example. In such cases, most of the content between any
two help pages is actually the same. However, the differentiating content uses special-
ized vocabulary, which is unlikely to be selected as part of the I-Match lexicon. Note
that even the cosine-similarity definition of near-sameness can lead to such a mistake
if the fraction of template-induced formatting text is large enough. This again points
at the inherent ambiguity in the definition of a near-duplicate. The nature of help
pages forces us to ignore the template-induced similarities and focus instead on the
small differences, i.e., function names. However, for different types of content (e.g.,
news) such small differences may be irrelevant.

When the number of randomized lexicons is increased, the precision of I-Match
decreases as shown in Fig. 4. However, when the number of “pure” clusters for which
I-Match achieves 100% precision is accounted for, it is apparent that this fraction is
quite stable or actually shows an increasing trend, depending on the choice of the
lexicon. This is indicative of the effect of template-induced clusters accumulating
more and more “spurious” matches, accounting for a large number of documents,
while at the same time randomization leads to the discovery of new correct clusters
that had been missed when using fewer lexicons.

7.2 Honeypot-spam vs. legitimate email

In this experiment, a random 10% of the Honeypot-spam data was used as queries
against the Honeypot-spam and the legitimate-email datasets. The resulting average
values of the recall and utility metrics are given in Table 2. None of the near-duplicate
detection configurations produced any false-positive matches against the legitimate
email collection. Lexicon randomization provided a clear benefit, both in terms of
duplicate detection and spam detection metrics.

272 A. Kołcz, A. Chowdhury

Fig. 6 Near-duplicate spam
recall of I-Match as a function
of the number of randomized
lexicons used. The absolute
values of recall depend on the
dataset (i.e., true amount of
duplication present), but the
benefits of using multiple
lexicons are clear

Table 2 Duplicate detection
accuracy (reported as recall,
relative increase in recall and
utility) in the Honeypot-spam
vs. legitimate-email experiment.
K-bag signifies that K auxiliary
lexicons were used

Lexicon count I-Match

Recall Relative Increase Utility

1 0.66 0% 30.17

1 + 2-bag 0.72 9% 36.32

1 + 5-bag 0.76 15% 43.34

1 + 10-bag 0.80 21% 56.93

Table 3 Duplicate detection
accuracy (reported as recall,
relative increase in recall and
utility) in the Cluster-spam vs.
legitimate-email experiment,
where the original SGML-based
I-Match lexicon was extended
by its random perturbations
(K-bag signifies that K

auxiliary lexicons were used)

Lexicon count I-Match

Recall Relative Increase Utility

1 0.40 0% 46.34

1 + 2-bag 0.49 23% 81.25

1 + 5-bag 0.55 38% 96.24

1 + 10-bag 0.61 52% 113.38

7.3 Cluster-spam vs. legitimate email

In this experiment a random 10% of the cluster-spam was used as queries against
the cluster-spam and legitimate-email datasets. The average values of the recall and
utility metrics are given in Table 3. As in the Honeypot experiment, there were no
false-positive matches against the legitimate email collection. Figure 6 illustrates the
benefit of lexicon randomized for both email datasets.

7.4 Discussion

Given that the SGML lexicon was derived using a large collection of news articles,
it is interesting to observe its good generalization performance in the application

Lexicon randomization for near-duplicate detection with I-Match 273

considered, since web-page and email documents are generally different from news
stories. This supports the claim that once a large diverse document collection is used,
little in terms of copy-detection accuracy can be gained by tracking the changes to
content distribution to fine tune the algorithm to the collection to which it is actually
applied.

The results shown in Figs. 3 and 6, and in Tables 2 and 3 indicate that by using even
a few extra-randomized lexicons, both the recall and utility (in the case of email) met-
rics can be improved significantly. Given that the computational cost of computing
each additional signature is bounded by the cost of computing the original one (since
it involves a subset of the same words) and considering that the memory/storage re-
quirements grow linearly with the number of lexicons, one can argue that a practical
system should be able to benefit from incorporating a small number of randomized
lexicons without compromising its computational resources. A precise cost-benefit
analysis would of course need to consider, among other things, the amount of RAM
consumed by the original lexicon vis a vis the total amount of RAM available to the
system.

One interesting question is whether perfect spam recall is possible with enough
lexicons and, if so, how many lexicons are needed to satisfy this requirement. Let
M = p · L be the number of terms that are eliminated from the original lexicon to
create an auxiliary one. Assuming that the perturbation of the original spam message
involves n lexicon terms, it will alter both the original and the secondary signature
if n > M . In such a case, perfect recall will not be possible for any number of addi-
tional lexicons, but this situation is unlikely since in most cases M is expected to be
much larger than the number of words in any email message. If perfect recall is possi-
ble, the probability that the signature due to any particular auxiliary lexicon remains
unchanged is:

q =
(
L−n
M

)

(
L
M

) = (L − n)M

LM
≈

(
1 − M

L

)n

(6)

i.e., to the ratio of the number of times an auxiliary lexicon can be selected such
that it excludes the perturbation words to the overall number of possibilities. One can
then envision generating auxiliary lexicons till one is found for which the success
defined as unaltered signature is achieved. The probability that the number of trials
till success is K is governed by the geometric distribution, i.e.,

P (K) = (1 − q)K−1q (7)

with the expected number of trials till success of 1/q . Table 4 tabulates P(K) for
several values of L and n, assuming that M = 0.33 · L, which is the case for lexicon
bagging.

It can be seen that as indicated by (6), the expected number of trials depends
primarily on the size of the perturbation and not the absolute lexicon size. Due to
the exponential dependence of q on the amount of perturbation, the expectation of
perfect recall becomes unrealistic for large perturbations, although one has to keep in
mind that given the selectivity of an I-Match lexicon, the value of n will be typically
smaller than the actual alternation to the original message in terms of the number of
words added/inserted.

274 A. Kołcz, A. Chowdhury

Table 4 The expected number of auxiliary lexicons required to achieve perfect recall for the specified
amount of perturbation, n. Different rows show the dependence on the absolute size of the original lexi-
con, L

n = 2 n = 5 n = 10 n = 20 n = 50

L = 1000 2.23 7.44 56.10 3,309.92 932,403,182.29

L = 10,000 2.23 7.41 54.98 3,037.91 527,924,300.92

L = 100,000 2.23 7.41 54.87 3,012.39 499,897,879.50

8 Conclusions

We considered the problem of improving the stability of I-Match signatures with re-
spect to small modifications to document content. The proposed solution involves
the use of several I-Match signatures, rather than just one, all derived from ran-
domized versions of the original lexicon. Despite utilizing multiple fingerprints, the
proposed scheme does not involve direct computation of document overlap, which
makes signature comparison only marginally slower than in the case of single-valued
fingerprints. Additionally, clear improvements in signature stability can be seen when
adding just one extra signature component, with more gains to be made as more are
added.

The original I-Match algorithm was modified to improve its reliability for very
long documents by insisting that a certain fraction of terms need participate in the
creation of a signature. This decreases the chance of any two markedly different doc-
uments being projected onto the same signature. Also, we demonstrated that lexicons
for I-Match can be successfully derived from a collection different from the target
one, which in fact may be preferable if the target collection is noisy.

The proposed extended I-Match signature scheme does indeed provide greater
robustness to term additions and deletions. Its effectiveness as a countermeasure
to word substitutions is smaller, however, since a substitution is equivalent to an
addition-deletion combination. In future work, we intend to investigate ways to im-
prove signature stability in the presence of term substitutions.

References

1. Androutsopoulos I, Koutsias J, Chandrinos K, Paliouras G, Spyropoulos C (2000) An evaluation of
Naive Bayesian anti-spam filtering. In: Potamias, G, Moustakis, V, van Someren, M (eds) Proceed-
ings of the workshop on machine learning in the new information age: 11th European conference on
machine learning (ECML2000), pp 9–17

2. Bailey P, Craswell N, Hawking D (2003) Engineering a multi-purpose test collection for web retrieval
experiments. Inf Process Manag 39:853–871

3. Bilenko M, Mooney RJ (2002) Learning to combine trained distance metrics for duplicate detection
in databases. Technical report AI 02-296, Artificial Intelligence Lab, University of Texas at Austin

4. Breiman L (1996) Bagging predictors. Mach Lear 24:123–140
5. Brin S, Davis J, Garcia-Molina H (1995) Copy detection mechanisms for digital documents. In: Pro-

ceeding of SIGMOD, pp 398–409
6. Broder A (1997) On the resemblance and containment of documents. In: Proceedings of complexity

and compression of sequences (SEQUENCES ’97), pp 21–29

Lexicon randomization for near-duplicate detection with I-Match 275

7. Broder A, Glassman S, Manasse M, Zweig G (1997) Syntactic clustering of the Web. In: Proceedings
of the sixth international world wide web conference

8. Buckley C, Cardie C, Mardisa S, Mitra M, Pierce D, Wagsta K, Walz J (2000) The smart/empire
tipster IR system. In: TIPSTER phase III proceedings. Morgan Kaufmann

9. Chowdhury A, Frieder O, Grossman DA, McCabe MC (2002) Collection statistics for fast duplicate
document detection. ACM Trans Inf Syst 20(2):171–191

10. Conrad J, Guo X, Schriber C (2003) Online duplicate document detection: signature reliability in a
dynamic retrieval environment. In: CIKM, pp 443–452

11. Cooper J, Coden A, Brown E (2002) A novel method for detecting similar documents. In: Proceedings
of the 35th Hawaii international conference on system sciences

12. Drucker H, Wu D, Vapnik V (1999) Support vector machines for spam categorization. IEEE Trans
Neur Netw 10(5):1048–1054

13. Fawcett T (2003) “In vivo” spam filtering: a challenge problem for data mining. KDD Explor
5(2):203–231

14. Fetterly D, Manasse M, Najork M (2003) On the evolution of clusters of near-duplicate web pages.
In: Proceedings of the 1st Latin American web congress, pp 37–45

15. Gionis A, Indyk P, Motwani R (1997) Similarity search in high dimensions via hashing. In: Proceed-
ings of the 25th international conference on very large databases (VLDB)

16. Graham-Cummings J (2003) The spammers’ compendium. In: Proceedings of the spam conference
17. Hall RJ (1999) A countermeasure to duplicate-detecting anti-spam techniques. Technical report

99.9.1, AT&T Labs Research
18. Haveliwala T, Gionis A, Indyk P (2000) Scalable techniques for clustering the web. In: Proceedings

of WebDB-2000
19. Hawking D (2000) Overview of the TREC-9 web track. In: TREC-9 NIST
20. Hawking D, Craswell N (2001) Overview of the TREC-2001 web track. In: TREC-10 NIST
21. Heintze N (1996) Scalable document fingerprinting. In: 1996 USENIX workshop on electronic com-

merce, November 1996
22. Hernandez M, Stolfo S (1995) The merge/purge problem for large databases. In: Proceedings of the

SIGMOD conference
23. Hoad TC, Zobel J (2002) Methods for identifying versioned and plagiarised documents. J Am Soc Inf

Sci Technol
24. Ilyinsky S, Kuzmin M, Melkov A, Segalovich I (2002) An efficient method to detect duplicates of

web documents with the use of inverted index. In: Proceedings of the eleventh international world
wide web conference

25. Kleinberg J (2002) Bursty and hierarchical structure in streams. In: Proceedings of the eighth ACM
SIGKDD international conference on knowledge discovery and data mining (KDD-2002)

26. Kołcz A, Alspector J (2001) SVM-based filtering of e-mail spam with content-specific misclassifica-
tion costs. In: Proceedings of the workshop on text mining (TextDM’2001)

27. Kołcz A, Chowdhury A, Alspector J (2003) Data duplication: an imbalance problem? In: Proceedings
of the ICML’2003 workshop on learning from imbalanced datasets (II)

28. Kołcz A, Chowdhury A, Alspector J (2004) Improved robustness of signature-based near-replica de-
tection via lexicon randomization. In: Proceedings of the tenth ACM SIGKDD international confer-
ence on knowledge discovery and data mining (KDD-2004)

29. Kwok K (1996) Relevance feedback in information retrieval. In: Proceedings of the nineteenth annual
international ACM SIGIR conference on research and development in information retrieval

30. McCallum A, Nigam K, Ungar L (2000) Efficient clustering of high-dimensional data sets with ap-
plication to reference matching. In: Proceedings of the sixth ACM SIGKDD international conference
on knowledge discovery and data mining (KDD-2000)

31. Robertson S, Walker S, Beaulieu M (1998) Okapi at TREC-7: automatic ad hoc, filtering, VLC and
interactive. In: Proceedings of the 7th text retrieval conference

32. Sahami M, Dumais S, Heckerman D, Horvitz E (1998) A Bayesian approach to filtering junk e-mail.
In: Proceedings of the AAAI-98 workshop on learning for text categorization

33. Salton G, Yang C, Wong A (1975) A vector-space model for information retrieval. Commun ACM
18

34. Sanderson M (1997) Duplicate detection in the Reuters collection. Technical report TR-1997-5, De-
partment of Computing Science, University of Glasgow

35. Shivakumar N, Garcia-Molina H (1999) Finding near-replicas of documents on the web. In: WEBDB:
international workshop on the world wide web and databases, WebDB. LNCS

276 A. Kołcz, A. Chowdhury

36. Singhal A, Buckley C, Mitra M (1996) Pivoted document length normalization. In: Proceedings of the
nineteenth annual international ACM SIGIR conference on research and development in information
retrieval

37. Soboroff I (2002) Does wt10g look like the web? In: SIGIR 2002, pp 423–424
38. Winkler WE (1999) The state of record linkage and current research problems. Technical report,

Statistical Research Division, US Bureau of Census, Washington, DC, 1999

	Lexicon randomization for near-duplicate detection with I-Match
	Abstract
	Introduction
	Near-duplicate detection: prior and related work
	I-Match and its extensions
	Decreasing the fragility of I-Match signatures
	Applications
	Web search
	Spam filtering

	Experimental setup
	Web page data
	Email data
	Document preprocessing
	The evaluation process
	I-Match signature algorithm settings
	WT10G lexicon
	SGML lexicon

	Lexicon bagging

	Results
	Web-page data
	Formatting artifacts

	Honeypot-spam vs. legitimate email
	Cluster-spam vs. legitimate email
	Discussion

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

