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Minimizing Electronic Line Terminals for Automatic
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Abstract—Automatic ring protection provides simple and rapid
fault protection and restoration in telecommunication networks.
To implement the automatic ring protection in general wavelength-
division multiplexing (WDM) optical networks, the lightpaths are
partitioned into groups each of which can be carried in a simple
cycle of the underlying network. As the electronic line terminals are
the dominant cost factor in the deployment of WDM optical net-
works, we study how to generate these partitions with minimum
electronic line terminals. This optimization problem is NP-hard.
We develop two polynomial-time approximation algorithms, with
performance guarantees between 1.5 and 1.6 and between 1.5 and
1 5 + , respectively. The second algorithm can be adapted, with
the same performance guarantees, to the problem in which light-
paths are not prespecified and only the endpoints of each connec-
tion are given. Both algorithms can be easily adapted, with the
same performance guarantees, to the problem in which only link
protection is desired, and each group must be carried in a closed
trail. The first algorithm matches and the second algorithm im-
proves the approximation ratio obtained independently by Eilam
et al. (2000).

Index Terms—Approximation algorithm, automatic ring protec-
tion, lightpath, traffic grooming.

I. INTRODUCTION

W ITH THE advent of dense wavelength-division multi-
plexing (DWDM) and its increasing deployment in fiber

optical networks, the risk of losing vast volumes of data due to a
span cut or node failure has escalated [1], [2]. Because of fierce
competition among service providers and customers’ intoler-
ance of disruption of service, survivability of an optical network
has assumed great importance. Survivability refers to the ability
of a network to provide continuity of service with no disruption,
no matter how much the network may be damaged due to events
such as fiber cable cuts or node failures (due to equipment break-
down at a central office or other events such as fires, flooding,
etc.). Consequently, optical network designers are beginning to
incorporate provisioning of services over disjoint lightpaths, so
that if the primary lightpath fails due to a link or node failure, the
secondary lightpath can carry the traffic to its destination. We
study the survivability provisioning in the general mesh topolo-
gies, which are typically deployed in the wide-area networking
environment. In addition, we assume no wavelength conversion,
and thus each lightpath is carried in a single wavelength.

Among the many fault protection mechanisms, automatic
ring protection is very attractive due to its easy implementation
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and rapid fault restoration [9]. In automatic ring protection, the
lightpaths are partitioned into groups of lightpaths belonging
to a simple cycle of the optical network, and in case of a
failure, the impaired lightpath(s) is reversed backward along
the cycle(s) to circumvent the failure. A partition of a set of
lightpaths is said to beproper if the lightpaths in each group
of this partition belong to a simple cycle. To implement the
automatic ring protection, all lightpaths in each group are
assigned with the same wavelength to form alogical ring, and
the logical rings, instead of individual lightpaths, become the
basic entities for wavelength assignment under the constraint
that two logical rings can share the same wavelength if and
only if they do not share any common link. However, we do
not intend to minimize the total number of wavelengths, as the
number of wavelengths is no longer a bottleneck with hundreds
wavelengths to be carried in a single fiber link enabled by a
recent advance in DWDM technology. Instead, we will try to
minimize the total number of electronic line terminals, which
are a dominant cost factor [7], [8]. Note that the number of line
terminals required by a logical ring is the number of different
nodes which are the endpoints of lightpaths in this logical ring,
and the number of line terminals required by a proper partition
is the total number of line terminals required by all logical rings
in this proper partition. In this paper, we refer to the problem
of finding a proper partition with minimum number of line
terminals as theminimum ring generationproblem.

The minimum ring generation problem in ring topologies is
studied in [7] and [10] in the context of wavelength assignment
to lightpaths in WDM/SONET ring networks to minimize the
SONET add–drop multiplexers (ADMs). The NP-hardness of
the minimum ring generation problem in ring topologies proven
in [10] implies the same hardness of the minimum ring gen-
eration problem in general topologies. Thus, the objective is
to develop provably good polynomial-time approximation al-
gorithms for the minimum ring generation problem in general
topologies. We observe that most of the constant approxima-
tion algorithms proposed in [3] and [12] cannot be extended to
general topologies and the rest of them need substantial mod-
ifications in both design and analysis to be applicable in gen-
eral topologies. The minimum ring generation problem in gen-
eral topologies was recently studied by Eilamet al. [5] inde-
pendently of us. The main result of their paper [5] is an algo-
rithm whose output is guaranteed to be at most ,
where opt is the cost of the optimum solution, andis the set
of lightpaths. In this paper, we propose a 1.6-approximation al-
gorithm and a -approximation algorithm for an arbi-
trarily small number . The 1.6-approximation algorithm
does in fact guarantee a solution of cost at most ,
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thus matching the algorithm of Eilamet al. Though not faster,
our 1.6-approximation algorithm is conceptually simpler, and it
does have a much shorter proof. The -approximation
algorithm guarantees a solution of cost at most

, thus improving the bounds of
Eilamet al.Both algorithms can also be easily adapted, with the
same performance guarantees, to the problem in which only link
protection is desired, and each group must be carried in a closed
trail. In addition, we extend the second algorithm with the same
performance guarantees for the case in which the lightpaths are
not prespecified and only the endpoints of each connection are
given.

The rest of this paper is laid out as follows. In Section II, we
introduce some basic terminology and problem formulations. In
Section III, we derive a lower bound on the minimum number
of line terminals required by a set of lightpaths. In Section IV,
we present a general and trivial upper bound on the performance
guarantees of all nontrivial algorithms. In Sections V and VI, we
propose two approximation algorithms with performance guar-
antees 1.6 and , respectively. In Section VII, we discuss
how to extend the algorithm design and analysis to the case in
which no routing is prespecified. Finally, we conclude this paper
in Section VIII.

II. TERMINOLOGY AND FORMULATION

Let be any set of lightpaths in a graph satis-
fying that each path in is contained in some simple cycle of.
We construct a multigraph graph as follows. The vertex
set of is . For any path in with endpoints and ,
add an edge betweenand in . A walk in is also
referred to as awalk of lightpathsin . A walk is said to be
closedif the endpoints of the walk are identical andopenother-
wise. Thelengthof a walk , denoted by , is the number of
lightpaths contained in this walk. A walk of lengthis called an
-walk. Thecostof an open walk is one plus its length, and the

costof a closed walk is equal to its length. A walk is said to be
achain of lightpathsif all its lightpaths lie in some simple cycle
of . When it is clear from the context, we identify a chain con-
sisting of one lightpath with the lightpath itself. Two lightpaths
overlapif they share one vertex which is not an endpoint of both
lightpaths. More generally, two chains of lightpathsoverlap if
there is a vertex of which appears in lightpaths in both chains
and is not an endpoint of both chains.

For the link-protection problem, we define alink-valid-chain
as a walk in with its lightpaths lying in a closed trail of

. A trail can repeat vertices but cannot use the same edge
twice. Similarly, two link-valid-chainsoverlap if there is an
edge which appears in lightpaths in both chains. Every bound,
example, or theorem in this paper can be extended to the link-
protection problem by simply replacing chains by link-valid-
chains and using the appropriate notion of overlapping light-
paths and chains.

The following small examples illustrate how bad groupings
will cause nonoptimal results.

Example 1: Let be the ring with four vertices la-
beled by 0, 1, 2, 3. Assume four lightpaths are given:

, and
. An optimum grouping will put and in a chain, and

Fig. 1. Grouping a pair of lightpaths (p andq ) into a closed chain may lead
to nonoptimal solution.

and in a second one, for a cost of 4. A bad grouping will
put and in a chain, while and will each make a
chain by itself, at a cost of 7. Note that no two chains in the bad
groupings can be merged into a larger chain.

Note that we can restrict the solutions of the minimum
ring generation to partitions into chains without sacrificing
the optimum cost, although such restrictions may require a
larger number of wavelengths. Therefore, we will focus on
the chain generations from a set of lightpaths. As the cost
of chains produced by a chain generation is the number of
lightpaths plus the number of open chains, an optimal solution
to minimum ring generation corresponds to a chain generation
with a minimum number of open chains.

Clearly, the heuristic proposed in [7] and [10] based on a
cut-and-merge approach in ring topologies cannot be extended
to general topologies. There are two fundamental differences
between ring and general topologies, which will affect applica-
bility of the design and analysis of other algorithms proposed
in [3] and [12]. The first difference is the computational com-
plexity of the following decision problem: whether a given a set
of lightpaths contains a subset of lightpaths that form a closed
chain. While this decision problem in ring topologies is solvable
in polynomial time, this decision problem in general topologies
is NP-complete (the proof for this NP-completeness is omitted
in this paper). The second difference is the impact of forming a
closed chain from two lightpaths on the optimality of the solu-
tion. While one can always take an arbitrary pair of complemen-
tary lightpaths in a ring topology to form a closed chain without
changing the optimality, it is no longer true in general topolo-
gies. This can be illustrated by the following instance.

Example 2: Let and be two lightpaths that can form a
closed chain, and let and be two lightpaths sharing one
interior node such that both and can form a closed
chain, respectively (see Fig. 1). The optimal solution for these
four paths is the two closed chains formed by and ,
respectively. However, if we put and in a closed chain,
then and must each form an open chain by itself.

Throughout the paper, we use OPT to denote an optimal chain
generation from and use opt to denote the cost of OPT.

III. L OWER BOUNDS

A trivial lower bound on opt is . We derive two other im-
proved lower bounds. The second one will be used by the algo-
rithm of Section V.
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For any node of the network, let denote the degree
of the node in the graph , i.e., the number of lightpaths
in that contain node as one endpoint. It is well known that
the number of nodes with odd degree in any graph is even. The
deficiencyof , denoted by , is defined as the half of the
number of nodes with odd degree. Since each noderequires
at least line terminals, the total cost required by

is at least

So is a lower bound on opt. This lower bound holds
whether lightpaths are prespecified or not. It also holds when
groups can be carried by closed trails instead of simple cycles.

The second lower bound is based on the concept of circuit
cover. Recall that acircuit coverof a graph is a collection of
vertex-disjoint circuits which together cover all the vertices. If
the graph is weighted, then the weight of a circuit cover of is the
sum of the weights of all edges in this circuit cover. It is well
known that a minimum-weighted circuit cover of a graph can be
found in polynomial time by a reduction to minimum-weighted
perfect bipartite matching.

We define a weighted graph over as follows.

• For each path with endpoints and , we add three ver-
tices: and . Thus, consists of vertices.

• For each path with endpoints and , we add three
edges and and assign them with
the weights 2, 0, and 0, respectively.

• For any pair of nonoverlapping lightpaths and be-
tween the same two endpoints, sayand , we add two
edges and of weight 1.

• For any pair of lightpaths and which share one end-
point, say , and lie in some simple cycle of , we add
two edges as follows: let and be the other endpoints
of and , respectively, and add two edges
with weight 2 and with weight 1.

• For any pair of node-disjoint lightpaths with endpoints
and , and with endpoints and , we add four

edges and , all
of weight 2.

The total number of edges in is

Note that has a trivial circuit cover

In addition, any chain generation induces naturally a circuit
cover of whose weight is equal to the cost of this chain
generation. Thus, the weight of a minimum-weighted circuit
cover of is a lower bound of opt.

IV. UPPERBOUNDS

A trivial upper bound on the cost of any chain generation is
, which is at most , as the number of open chains

is at most . A slightly better upper bound of 1.75 can be
obtained on the cost of any chain generation in which no pair of
chains can be merged into a larger chain. Letbe any collection
of chains in which every lightpath of appears exactly in one
chain of .

Lemma 3: If any pair of chains in cannot be merged into a
larger chain, the cost of is at most .

Proof: We call a lightpathunmatchedin if it forms a
1-chain in . Then out of any two consecutive lightpaths in any
chain of OPT at most one is unmatched in. Let be any chain
in OPT. If is closed, then at most lightpaths in are
unmatched in . If is open, then at most lightpaths
in are unmatched in. Let denote the unmatched lightpaths
in and denote the number of odd open chains in OPT. Then,

. Thus, the total number of chains inis at most

So the cost of , being equal to the number of lightpaths plus
the number of open chains, is at most

By repeatedly merging, if possible, two chains into a larger
chain, one can convert any chain generation into one in which
any pair of chains cannot be merged into a larger chain. Lemma
3 implies that any algorithm followed by this postprocessing
will have an approximation ratio of at most . As shown in
Example 1 given in Section II, postprocessing does not guar-
antee anything better than . Next, we present several algo-
rithms whose approximation ratios beat .

V. WALK SPLITTING

We propose a three-phased algorithm, referred to as minimum
circuit cover—walk splitting (MCC-WS). The first phase, re-
ferred to as walk generation phase, generates a set of walks with
cost at most opt. We find a minimum-weighted circuit cover of

in polynomial time. Removing all edges of weight two
from the minimum-weighted circuit cover, we obtain a collec-
tion of paths and circuits in . Note that in any circuit cover
of , for any the three nodes are in the same
circuit with adjacent to and . By replacing the three nodes

and with , each path (circuit respectively) induces an
open (closed, respectively) walk in the graph . Then the
total cost of the obtained walks is exactly equal to the weight of
the minimum-weighted circuit cover of . In addition, any
two consecutive lightpaths in each walk lie in a simple cycle of

.
The second phase, referred to as walk splitting phase, splits

the walks obtained in the first phase into chains. Specifically,
an open walk is split into chains by traversing along this open
walk from the first lightpath and generating a chain whenever an
overlap occurs; a closed walk is split into chains by traversing
along this closed walk from an arbitrary lightpath and gener-
ating a chain whenever overlap occurs.
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The third phase, referred to as the chain merging phase, re-
peatedly merges any pair of open chains into a larger chain until
no more merging can occur.

As an example, consider five lightpaths over a ringwith
five vertices, labeled 0, 1, 2, 3, 4. Assume five lightpaths are
given:

, and . The walk generation phase pro-
duces just one walk: , of cost 5. The walk
splitting phase first produces the chain , to which is
not added since an overlap occurs. Then the algorithm produces
a second chain, . is left as a chain by itself. No merging
is possible during the chain merging phase. On this particular
example, the algorithm produces an optimum solution.

The following lemma gives an upper bound on the cost of the
obtained chains.

Lemma 4: MCC-WS produces a chain generation with cost
at most .

Proof: Let denote the weight of a minimum-weighted
circuit cover of . Then, the total cost of the walks gener-
ated by the first phase is exactly. The splitting of walks into
chains in the second phase may increase the cost. Letbe any
walk that is not a chain andbe the number of chains split from

. Then the splitting of into chains increases the cost by
if is open or if is closed. From the construction

of the graph , the lengths of all chains obtained from,
except the last one, are at least two. Thus

So splitting creates an additional cost of at most
if is open, at most if is closed and is even,
and at most if is closed and is odd. Let be
the number of closed walks of odd length generated by the first
phase that are not chains. Then the cost of the chains generated
by the second phase is at most . As the length
of any odd closed walk generated by the first phase that is not
a chain is at least five, . So the cost of the chains
produced by the second phase is at most

as is a lower bounds of opt. This completes the proof of the
lemma.

The above lemma and the fact that imply an
upper bound of 1.6 on the approximation ratio of the algorithm
MCC-WS. A lower bound of 1.5 can be obtained from Example
13 given in [3], which is included for the sake of completeness.
We use to denote a ring of nodes labeled by
clockwise. A path (i.e., arc)

is represented by . Let be with for
some , and let consist of the following paths:

as illustrated in Fig. 2(a). Note that for any , the three
paths form a closed chain. So .
On the other hand, MCC-WS may produce in the first phase two
circuits

and

Each circuit induces a closed walk which is not a closed chain.
In the second phase, the first closed walk is split intoopen
2-chains

and one open 1-chain . Since the arcs

are pairwise overlapping, at least open chains must be
used by the second closed walk. One solution is the following:

In the third phase, the two open chains and are
merged into a closed chain . So totally chains
are obtained, among which are open [see Fig. 2(b)]. The total
cost of all these chains is

Thus the approximation ratio of MCC-WS is at least .
In summary, we have the following theorem.
Theorem 5: The approximation ratio ofMCC-WS is be-

tween 1.5 and 1.6.

VI. I TERATIVE MATCHING

Let be a collection of chains. Thefit graph of , denoted
by , is a weighted undirected graph in which the vertex set
is , and there is an edge between two chainsand if and
only if and can be merged into a larger chain, and the
weight of the edge between and is equal to the number
of endpoints shared by and .
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Fig. 2. An instance used for obtaining the 1.5 lower bound: (a) the optimal solution and (b) the solution produced by the algorithm MCC-WS.

We start by introducing a simple algorithm referred to as It-
erative Matching (IM) proposed in [3]. This algorithm main-
tains a set of chains of lightpathsthroughout its execution.
Initially consists of 1-chains each of which is a lightpath in.
While the fit graph of has nonempty edge set, we find a
maximum-weighted matching in and then merge each
matched pair of chains in into a larger chain. When has
empty edge set, is output as the chain generation.

It is obvious that the algorithm IM has polynomial run-time.
Next, we show that its approximation ratio is at most 5/3.

Lemma 6: The approximation ratio of IM is at most 5/3.
Proof: From any chain in OPT, a matching of cardi-

nality can be obtained. Let be the number of odd
open chains in OPT, andbe the number of odd closed chains
in OPT. Then from the chains in OPT, we can obtain a matching
of cardinality . Thus the cardinality of any max-
imum-weighted matching obtained in the first iteration is at least

, and consequently after the first iteration, the
total number of chains is at most

Note that any odd closed chain must contain at least three light-
paths. Thus . So after the first iteration, the total
cost is at most

Therefore, the approximation ratio of IM is at most 5/3.
We propose the preprocessed iterative matching with anodd

parameter ( -PIM) algorithm, which runs in two phases.

1) Preprocessing Phase: for to , repeatedly take
closed -chains out of the remaining lightpaths until no
more closed -chain can be obtained from the remaining
lightpaths. This is done by trying all combinations of

lightpaths and checking if a combination results in a
closed -chain.

2) Matching Phase: apply the algorithm IM to the remaining
lightpaths.

It is obvious that for any fixed constant, the algorithm has
polynomial run-time. A straightforward implementation of the
first phase has time . Next, we show that its ap-
proximation ratio of is at most .

Lemma 7: -PIM produces a chain generation with cost at
most .

Proof: We call the lightpaths appearing in the closed
chains obtained in the preprocessing phaseblue lightpaths, and
the others arered lightpaths. We use and to denote the set
of blue lightpaths and the set of red lightpaths, respectively.
Then in any closed chain of length at mostin OPT, at least one
lightpath is blue. From OPT, we remove all blue lightpaths and
obtain a collection of red chains. Note that the number of red
chains obtained from a closed chainis at most the number of
blue lightpaths in ; the number of red chains obtained from
an open chain is at most the number of blue lightpaths in
plus one. Thus the total number of red open chains is at most

plus the total number of open chains, which is
and consequently is at most

In addition, all red closed chains have length at least , and
using the fact is odd, all odd red closed chains have length at
least . Let be the number ofoddred chains, open or closed.
Then
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As each red chain can contribute a matching of cardinality
, the red lightpaths admit a matching of

pairs. Thus, the first iteration in the matching phase generates a
maximum matching of at least pairs. So after this
first iteration, the total number of red open chains is at most

At this moment, the total cost is at most

thus completing the proof of the lemma.
The above lemma and imply an upper bound of

on the approximation ratio of the algorithm
-PIM. Thus when , the approximation ratio is at most

1.6. By increasing the parameter, the approximation ratio can
be arbitrarily close to 3/2, although at the cost of more running
time. However, the approximation ratio can not be less than 3/2
no matter how large is. This can be illustrated by Example 2.
As the algorithm does not specify exactly which chain will be
picked first during the preprocessing step, we assume it picks
the closed chain . Iterative matching cannot merge any two
chains, and the output is a solution of cost 6, but optimum has
cost 4.

In summary, we have the following theorem.
Theorem 8: The approximation ratio of-PIM is between 3/2

and .

VII. CHAIN GENERATION WITHOUT PRESPECIFIEDROUTING

Now we drop the assumption that the routing is prespecified.
Instead, the input is a set of pairs of nodes in a two-vertex-con-
nected graph . We call these pairsrequests. Routing a request
means selecting a lightpath in between the two endpoints of a re-
quest. The solution should provide a lightpath for each request in
the input and a partition of these lightpaths into chains. Finding
an optimal solution in general topologies is NP-hard as this op-
timization problem is NP-hard even in ring topologies [3]. In
the following, we discuss the extension of our results obtained
earlier in this paper.

-PIM for nonprespecified routing is adapted from-PIM, and
has the same two phases.

1) Preprocessing Phase: for to , repeatedly select,
route, and remove a set of requests such that they can be
routed to form a closed-chain, as long as possible.

2) Matching Phase: Let be the set of remaining requests
and be the empty set of chains of lightpaths. While the
fit graph has nonempty edge set, find a max-
imum-weighted matching in and then merge
each matched pair (routing, if necessary, the requests of

) into a larger chain. The two matched vertices are re-
moved from and the larger chain resulting from
their merge is added to. When has empty
edge set, arbitrarily route the remaining requests inand
output the resulting chains.

Both phases require additional explanations. Checking if a
set of requests can be routed to form a closed-chain can be
done in polynomial time for fixed [11]. The same algorithm
of Robertson and Seymour can check if two given requests can
be routed on one ring—thus being joined by an edge in the fit
graph . Checking if a chain of lightpaths and a re-
quest can routed on one ring can done by an application of the
Fan lemma (see, for example, [6, p. 146]), as follows. Construct
the subgraph of obtained by removing all the interior ver-
tices of the chain. If the endpoints of the request coincide with
the endpoints of the chain, then just checking if the endpoints
are connected in is enough. If the endpoints of the request
are disjoint from the endpoints of the chain, there is no point in
adding this edge to . If the request and the chain share
exactly one endpoint, say, then, if we denote by the other
endpoint of the chain and bythe other endpoint of the request,
the problem becomes finding two paths in from to ,
and from to , which intersect only in. The Fan lemma as-
sures the existence of these two paths (and its proof finds them)
if and only if there is no vertex in whose removal
disconnects from either or . This condition can be easily
checked in time.

Following the argument in Lemma 7, we can prove that the
approximation ratio of the algorithm above is at most

.

VIII. C ONCLUSION

Motivated by support of automatic ring protection in optical
networks with minimum line terminal cost, we studied the
Minimum Ring Generation problem. We developed several
gradually improved lower bounds on the minimum cost and
upper bounds on the cost of nontrivial solutions. We also
proposed two approximation algorithms MCC-WS based
on minimum-weighted circuit cover, and-PIM based on
maximum-weighted matching. We proved that the perfor-
mance guarantee of MCC-WS is between 1.5 and 1.6, and
the performance guarantee of-PIM is between 3/2 and

.
An important variation of the Minimum Ring Generation

problem is allowing the splitting of lightpaths to achieve lower
cost [4], [7]. Such a splitable version has been studied in ring
topologies [4], [7]. It would be interesting to develop provably
good algorithms for this splitable version in general topologies.
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