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Abstract

Peer-to-peer file-sharing systems suffer from the over-
specification of query results due to the fact that queries
are conjunctive and the descriptions of shared files are
sparse. Ultimately, longer queries, which should yield
mor e accurate results, actually do the opposite. The judi-
cious masking of query terms circumvents the shortcom-
ings of conjunctive query processing, significantly im-
proving query accuracy.

1. Introduction

Peer-to-peer (P2P) file-sharing is a popular Irgern
application, with millions of users sharing petasytof
data [21]. Due to this application’s scale, itvigal that
results presented to the user are accurately ranked

Two characteristics of P2P file-sharing, howeveaken
accurate ranking difficult: sparse description bdfred
files and conjunctive query processing [11]. Seas-
scription is a consequence of the fact that maima(i)
files are described by their filenames, which aretéd to
about 200 bytes, and perhaps by a small amountetd-m
data embedded in the actual binary (e.g., ID3 &
Benefits of conjunctive query processing includesim-
plicity and its conservative use of network bandtid
Together, these characteristics conspire to deerdas
accuracy of search with longer queries. This bighds
contrary to expected behavior of most search esgine

Result setprecision (the percentage of the result set
that is desired) increases with query length inRB® file-
sharing environment, as expected.
point, the query becomes so constrained that narines
of the desired result are returned, reducing ovecu-
racy (described in more detail in Section 4). Indeed, r
cent measurement studies suggest that most P2Brketw
traffic consists of far more queries than resulg][ One
factor for this may be over-specific queries.

Consider a search for Mozart'€larinet concerto,
preferably in the key A major, by clarinetist Midhe
Zukovsky. We conducted a search for this songntéce
on the eDonkey file-sharing system with various bora-
tions of candidate query terms. This experimeneaéd
that increasing the number of query terms geneyadlygls
fewer but more precise results. However, a queryain-
ing all candidate query terms returned no resulfghe
number of results is denoted nresp in Table 1.)

However, at some

Table 1. Number of results with various queries
issued on the eDonkey P2P file-sharing system.

terms nresp /
mozart| clarinet| A | major | zukovsky query
X X 80
X X X1 X 54
X X X1 X X 0
X X X 2

It is only with an appropriate subset of termst ta
retrieve the desired result; the last combinatioiable 1
contained only relevant results. That this comiama
yields the correct results also proves that thetemgsult
set for the full query was not caused by the ddsiesult’'s
non-existence in the system but by query over-
specification. Note that issuing the full query Gonogle
resulted in better accuracy than did any sub-query.

1.1. Automatic Masking of Query Terms

We address the problem described above by haveng th
client automaticallymask out a subset of long queries be-
fore they are sent to servers. Shortening theygirer
creases the size of the result set, thereby inagdke
likelihood that it contains at least one instané¢he de-
sired result.

In our experiments, masking queries has a sigmifica
impact on accuracy, increasing it by 40%. To ustderd
these results, two questions must be addressed:

1. How should candidate query terms be chosen for
masking?
2. How many terms should be masked?

We discuss possible alternatives in answering tiese
guestions in Sections 5 and 6.

In Section 7, we differentiate a masked long queaTg
an initially short (base) query, namely by how thener
yields more accurate results.

Masking comes at a cost; longer queries that are ex
pected to return fewer results, conserving comguénd
network resources, no longer do so. In our expamis)
the number of returned results increases by arfaxdt8.
Although some may argue that the increased accusazy
worth the expense, we discuss possible cost-cdintol
measures in Section 8. Surprisingly, in some ¢dbés
possible to both increase accuracy and reduce cost.



2. Query Processing Specification

Each peer in the system shares an individually fmain
tained local repository of binary files. Files mag repli-
cated across peers, and each replica is identififeduser-
tuned descriptor, which also contains an identgykey
(e.g., an MD5 hash on the file’s bits). All replicof the
same file naturally share the same key. A cliegtisry is
routed to all reachable servers until the queriyteito-
live expires. Servers compare each query to thueall
descriptors; a quemnatches a replica if it is contained in
the replica’s descriptor. In this case, the serearns its
system identifier and the matching replica’s dgdori as
a result. This information is necessary to allbe tlient
to distinguish and download the associated file.

Formally, let O be the set of files, M be the sét o
terms, and P be the set of peers. Each {i@0O has a
key associated with it, denotegh,ksuch that k=Kk, if and
only if 0,=0,.

Each file o has a set of terms,[(1M, that validly de-
scribe it. Intuitively, T is the set of all terms an average
person might use to describe 0. Each tefff,thas a
strength of association with o, denoted soa(t,wdjere
O<soa(t, o¥1 andX-r.soa(t, 0)=1. The strength of asso-
ciation a term t has with a file o describes tHatiee like-
lihood that it is to be used to describe o, assgnail
terms are independent. The distribution of sdaegfor
a file o is called th@atural term distribution of o.

A peer P is defined as a pair, {Rf), where R is
the peer’s set of replicas (i.e., its local repmsit and ¢
is its unique identifier (e.g., its IP address)ack replica
r’,0R, is a copy of file 10, maintained by p, and has an
associated locally maintained descriptor,iitM, which
is a multiset of terms. Each descriptor’g(also contains
ko, the key of file 0. The maximum number of terimatta
descriptor can contain is fixed.

A query QOT, for file o is also a multiset of terms.
The terms in Qare expected to follow o’s natural term
distribution. When a query Q arrives at a servethp
server returngesult set U%={(d(r%), ¢ | ,0R, and
QUd(r;) and @}—membership in the result set re-
quires that a result's descriptor contain all queryns, in
accordance with the matching criterion,.

The client that issued Q receives result s&tLU®,
pOP, and groups individual results by key, forming
G={Gy, G, ...}, where G=(d(G), i, ), d(G)={0d(r}) |
(d(r'p), ¢f)0U? and k=i} is the group’s descriptor, i is the
key of G, and }={g” | (d(f,), )TU® and k=i} is the list
of servers that returned the results in @ this definition,

O denotes the multiset sum operation.

To measure the relevance of query results to tagsus
desires, the client assigns a rank score to eamipgwrith
function FOF, defined as F: "»x2Mxzxz_ R*. If

F(d(G), Q, |G, time;) > R(d(GY), Q, |G|, timesy), where

G;, G are groups, then we say that i& ranked higher
than G with respect to query Q and ranking functign F
In these definitions, |Gis the number of results contained
in G; and time; is the creation time of the; @.e., the time
when the first result in Grrived at the client).

In commercial P2P file-sharing systems, such as var
ous implementations of the Gnutella protocol or ey,
file keys are generated by the MD5 or SHA-1 crypto-
graphic hash function, and results are groupeddbase
these keys. Ranking is based gnoup size, as a large
group can better ensure a quick, successful downloa

Fe(d(G), Q, [G], timg) = |G|.

Descriptors in these systems are generally implésden
via filenames, but a small amount of descriptivierima-
tion may be embedded in the actual binary of tipdice,
as mentioned in Section 1. Furthermore, wheneaaisil
downloaded, the descriptor of this new replicanisial-
ized as a duplicate of one of the servers’ in &seilt set.

To simplify our explication, we use the term “resul
informally to describe either a group or an induatl re-
sult, and clarify the usage if necessary. We rédethe
collective set of terms contained in (individuasué or
group) descriptors as metadata.

3. TheInformation Tradeoff

If a user adds a unique term t t8 fQen s/he increases
the amount of information Qontains about his/her inter-
ests by a unit. However, due to conjunctive maighthe
addition of t to @ decreases P{Qd(")) — the probability
that @ matches df) — by a factor of at least 1-(1-
soa(t,p) "INkl where length(d®) is the number of
terms in df); as we gain information about user interests
linearly, we lose information about results expdiadly.
This is a problem because we may be excludingdke |
instance of the desired result from the resul{aghown
in the example in Table 1 of Section 1) or we mayek-
cluding information from the result set, in therfoof de-
scriptor terms, that may help us identify irrelelveasults.

Alternatively, although excluding t from °Qmay in-
clude f in the result set, a shortef @eans that the client
has less information on user interests, therebyaied the
query’s distinguishing power. This compromises the
ent's ability to effectively rank results. Theformation
tradeoff is therefore between the user and the system:
more user information leads to less result inforomatand
less user information leads to more result inforomat
Either way, query accuracy is compromised.

We address the information tradeoff caused by long
qgueries by relaxing the conjunctive matching criter
through masking. In Section 8, we demonstrate fmw
exploit the additional information existing in lcgrgque-
ries to further improve query accuracy.



4. Experimental Setup

of 2006 using modified LimeWire file-sharing softwa
(Table 2) [25]. The simulation parameters listedlable

We motivate our discussion on masking with some ex-3 gre pased on observations of real-world P2Psfiering

perimental results. We simulate the performanca B2P
file-sharing system to test the large-scale peréomre of
our methods. In accordance with the accepted nbelel
scribed in [14] and observations presented in [1:8],
include in our experimental modeaiterest categories, a
partitioning of O into sets ;0C, where @JO, and
OC=0. Interest categories are used to model consdrai
on user interests. .

Each category has popularity hwhich is skewed us-
ing a Zipf distribution, to model the fact that sinterest
categories are more popular than others. At Iiztifion,
each peer p is randomly assigned a number of Bttere
I,0C, based on'b

Each file o within each instance of an interesegaty
varies in popularity, which is also skewed usingigpf
distribution. This popularity governs the likeldb that a
peer who has interest in the category containirgyeither
initialized with a replica of o or decides to sdafor it.
Each replica,%, allocated at initialization has a randomly
initialized descriptor subject to o’'s natural tedistribu-
tions. Peer p’s interest categories also constian
searches; p only searches files froity, where LOI .

We use Web data to simulate our language model (i.e

term distributions and interest categories). Watadire a
convenient choice because they constitute a grgupin
terms into documents (we use terms’ relative freqgiss
in documents to simulate natural term distributidos
files) and a grouping of documents into domains (se
domains to simulate interest categories). Theofis&eb

data to populate P2P simulations is common practice

(e.g., [24]). Real data from P2P applications pnefer-

able, but no standard sets are known [22]. (Regeat!
data set for P2P text repositories has been deskigte
but we are considering the sharing of binary filgge are
currently investigating the creation of an appraf@idata
set using a P2P network crawling tool we recendyed-

oped [25].)

systems and are comparable to the parameters mgsld i
literature.

Table 2. Distribution of query lengths.
Length| 1 | 2| 3 | 4|5 |6 |7 |8

Prob. | .28] .30] .18 .13 .05 .0B .02 .p1

Table 3. Parameters Used in the Simulation.
Parameter Value(s)
Num. peers 1000
Num. queries 10,000
Max. descriptor size (terms) 20
Num. terms in initial descriptors 3-10
Num. categories of interest per peer 2-5
Num. data objects per peer at initializatign 10-30
Num. trials per experiment 10

Although other behavior is possible, we assume that
the user identifies and downloads the correctiith a
probability 1/rank, where raeit is its position in the
ranked set of results.

Main performance (i.e., accuracy) is measured uging
standard metric known asean reciprocal rank score
(MRR), defined as

qu 1

i=1

MRR:ikiv
N

q

where N, is the number of queries and raiskthe rank of
the desired result in query i's result set. If desired re-
sult is not in the result set, then remk. MRR is an ap-
propriate metric in applications where the usdb@king

for a single, particular result, as is generallg tase in

Our data consist of an arbitrary set of 1,000 Web P2P file-sharing systems.

documents from the TREC 2GB Web track (WT2G).

The percentage of result sets containing the desae

These documents come from 37 Web domains. Terens ar SUlt (per centage-contained, for short and denoted pctcont
stemmed, and markup and stop words are removeg. Th!n the figures) is also reported. Percentage-toathis

final data set contains approximately 800,000 tesome
37,000 of which are unique. We also conducted expe
ments using other data sets with other data digiobs,
but, due to space constraints, we only presenpresen-
tative subset of our results. The data used Ifeaxaeri-
ments can be found on our Web site [20]. The o#lxer
perimental results are available on request.

the upper bound for MRR: only if a result set corgahe
desired result can it contribute to MRR.

For reference, we also use the metrics precisidiran
call in our analyses. They have slightly differeetnan-
tics in the P2P environment than they do in tradai IR
due to the existence of data replication. Let Athmeset
of replicas of the desired file existing in thetsys, and R

Terms for a query are picked randomly based on thePe the result set of the query. Precision andlireca

desired file’s natural term distribution. The quéength
distribution was derived from observations of quirys
we collected over several days in the Spring anurer

defined as
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Because precision and recall are often inversely re
lated, they are often replaced by their linear couton
in the f-score metric:

precision recall

2x precisionxrecall
precision + recall

f —score=

Finally, because network load and the work peeve ha
to do to process a query is proportional to the lmemof
query results, we use it as our basic cost meWie re-
port the number of query results over the 10,00€rigs
(denoted nres) in units ofieesults.

5. Masking Technique

Masking a term from a query results in all instancéthe
term (if the term is repeated) being removed frdma t
query. Given a query Q and a term t with a fregyen
freq(t, Q) to mask from it, we define the followiogera-
tion using multiset notation:

mask(Q, t) = Q-(t, freq(t, Q)).

When a client masks a query, it executes the mpskae
tion on Ny<|Q]| unique terms frorhase query Q that are
chosen by anasking metric Sy. (We refer to Iy as the
degree of masking.) The result of the ) mask opera-
tions is amasked query, Q", which is sent to servers.

MaskingTechnique(s Q. Ny, {lowest | highest})
1. Setd to Q.
2. Rank Q" by masking metric &
3. Mask the min(l\,, |QJ-1) lowest (or highest)yS
ranked terms from ¥

The results of & are grouped and ranked by the client as
described in Section 2.

To reiterate, masking is a technique designed tm-co
teract the conjunctive nature of queries in P2&dharing
systems. Its simplicity makes it immediately apalile to
many P2P environments.

6. Masking Performance

The goal of masking is to increase the accuracyuefry
results by maximizing the query’s recall — speaifiig, to
increase its likelihood of yielding the desiredules The
two basic questions that must be addressed arettiow
pick terms to mask and how many terms to mask.

To maximize recall, all but one query term shouéd b
masked. By the nature of conjunctive queries,réseilt
sets of shorter queries are necessarily superkéte oe-
sult sets of longer queries. The term that is ilefthe

query should be the one least likely to disqualifg de-
sired result from being in the result set. Equéwdly, the
term(s) with the greatest strength(s) of associai® kept
in the masked query.

The problem with this technique is that the clidaes
not know a priori the terms’ strengths of assooiati We
therefore use a term’s frequency within a querst agans
of approximating it, making the assumption that tree
guency at which a term appears in the query is grop
tional to the expected frequency at which it appéara
descriptor. Referring back to the technique déscriin
Section 5, the masking metricy Sis “lowest freq(t, Q),”
where t is a term in query Q. We call this maskiech-
nigue min-qtf for “minimum query term frequency.”
Max-qtf is analogously defined.

We report the performances of the following masking
techniques, with masking degreg®¥, in Figure 1:

e nomask — no masking,

* min-qtf — mask the least frequent terms from Q,

* max-gtf — mask the most frequent terms from Q,

* min-soa — mask the lowest strength of association
terms from Q.

Max-qtf is included in the results to demonstrabevdif-
ferent masking techniques might influence the tssul
Min-soa is included how well masking would work hvit
global knowledge.

mrr

= f-score
8 pctcont
onres

NN
AT
SRR
N
LT
AN

min-soa

nomask

min-qtf max-qtf

Masking Technique

Figure 1. Performance as a function of masking
technique.

MRR is higher using masking because of the inckase
recall. This result is directly correlated wittetincrease
in f-score — the increased recall offsets the desmd pre-
cision. Percentage-contained is low without maghie-
cause queries are so selective. In Figure 2, o &x-
plicitly the impact that masking has on percentage-
contained. Without masking, it drops off with quer
length. With masking, it is sustained. In faatthis case,
it slightly rises with query length by the desigman-qtf.



The 35% increase in MRR is not as great as the 100%reflects his/her interests.

increase in percentage-contained because thermamg
more undesired results to contend with using maskin
precision decreases by nearly 50%. Undesired tsesul
reduce the expected contribution that each reseft s
makes to MRR.

Min-qtf slightly outperforms max-qtf because itlist-
ter able to retrieve the desired result, as inditdly the
increases in f-score and percentage-contained shbn-as
expected, outperforms min-qtf by 8% in terms of MRR
because the remaining query terms after min-so&intas
are better able to match desired results.

0.9 A
0.8
0.7 A
0.6
0.5
0.4 A
0.3
0.2
0.1

—e— nomask
—m— min-qtf

Percentage-contained

1 2 3 4 5 6 7
Query Length

Figure 2. Percentage of result sets containing
the desired result as a function of query length
and masking technique.

Both min-gtf and max-qtf have similar performances
because their differences are only manifested Vuitly
queries; short queries are unlikely to repeat terrBe-
cause most queries are short (see Table 2), thewrm-
ance differences are obscured. By definitionairt,fmin-
gtf and max-qtf are equivalent for queries containi
fewer than three terms. The results in Figure Rate
strate this phenomenon: min-qtf's performance igiveg
lent to that of max-qtf for shorter queries, bupestior for
longer ones. Non-masking’s MRR decreases withyquer
size and min-soa performs the best, as expected.

In spite of the similarities between min-qtf andxrugf
in these experiments, we use min-qtf as our baagking
technique for two reasons: it performs betterlfmger
queries, and yields a slightly higher f-score amdcpnt-
age-contained. The benefit of these charactesistid
become clear in later sections.

6.1. Using Local Statisticsfor Tie-Breaking

In the event of aiiequery
term frequency-based masking, we can refer tossti
kept on locally shared data for a tie-breaker.

0.35
0.3
0.25 —e— nomask
% 0.2 —@— min-qtf
= 0.15 \ —A— max-gtf
o1 \ —- min-soa
0.05 \\"\-0—0
0 T T T T

1 2 3 4 5 6 7 8
Query Length

Figure 3. MRR as a function of query length and
masking technique.

A term’s document frequency (df) is the count o th
number of documents in which it occurs. It is anomon
information retrieval metric indicating how stropgisso-
ciated a term is to a document collection. (In apiplica-
tion, a document is a descriptor and a collectothé set
of descriptors in a peer’s local repository.) Ifeam t has
a high df(t, R) over repository Rof peer s, then t is
highly relevant to s’s interests.

However, descriptor frequency is a measure that is
secondary in importance to query term frequencye- B
cause queries are short and focus on particular, d#tof
its terms are strongly associated with the desiesilt.
This is why we use local statistics as a tie-bre@ketead
of a primary masking metric. Only in the eventdie in
min-qtf, therefore, do we invoke descriptor freqeyen In
this case, we mask the term that has a higher igescr
frequency, which we denote as max-ldf for maximam |
cal descriptor frequency tie-breaking:

min-gtf/max-ldf masking: Let t1, t2 be candidates for
masking from query Q by peer s. If fraq@®) = freq(s,
Q), then if df(t, R®) > df(t,, R®), mask 1, else mask;t

Figure 4 shows the performance of using tie-bregkin
masking techniques. For reference, minimum loal d
scriptor frequency tie-breaking (min-Idf) is alseiuded.
Max-Idf tie-breaking increases MRR by about 6%.isTi&
due to the increased selectivity of the query: allede-
creases by 8%, but precision increases 6% andutnber

The query term frequency-based masking techniquesOf results decreases by 15%. In this case, maxidelf

described above have undefined behavior when threre
no repeated terms, which is likely the case witbrtgh
gueries. We propose using a characteristic of 8P
tems to address this problem: the existence ddllpc
shared data. We assume that the data shared bgra u

breaking increases accuracy and decreases cosiniver
gtf alone.

Min-Idf tie-breaking has the opposite effect. dtléss
selective, resulting in higher recall, lower prémis and
higher cost. On balance, min-Idf tie-breaking deses



MRR and f-score even though it increases percentage

contained.

@ mrr

f-score
B pctcont
0 nres

min-qtf/max-ldf min-qtf/min-Idf

min-qtf

Masking Technique

Figure 4. Performance as a function of tie-
breaking masking technique.

The use of max-Idf instead of min-Idf as a tie-tkiirg
technique may seem counter-intuitive. Max-Idf niagk
indicates that we remove from a query Q the telrasdre
more highly associated with the local repositoryhe
justification for using max-Idf is that terms thate
strongly associated with the local repository (thasth a
high descriptor frequency) are a strong indicabbmhat
the repository already contains. Leaving thesmdein
the query increases the likelihood that the cliettieves
results it already possesses, so removing them fram
query increases the likelihood of yielding new emtt
Relevant results are retrieved as we assumeathgtiery
terms are strongly associated with the desired Itresu
Max-Idf merely makes the retrieved results distifiom
local ones.

Consider the query “Mozart clarinet” by a user wo
a fan of Mozart in a P2P file-sharing network cosgm
of other Mozart fans.  “Mozart” likely has a hidgcal
descriptor frequency, but leaving it in the querstéad of
“clarinet” (Mozart composed few pieces for the tlet)
will return many irrelevant results. Although thesults
may conform to the general interests of the usey aire
the goal of the current query.

Our use of descriptor frequency to identify uniqae
sults follows standard practice in the area of rimfation
retrieval. For example, the weighting of termsthgir tf-
idf values (term frequency multiplied lyverse document
frequency) [1] is based on the premise that, atjhoa
term’s frequency signifies its relevance to theirdesre-
sult, its degree of distribution over a documertection
signifies its lack of distinguishing power. Alsel@vant
are recent attempts to yield query result sets rbgaite-
sents many diverse topics in the hope that onberhtis
desired [29].

Because the use of max-Idf tie-breaking increases
query accuracy and reduces cost, we use it asieur t
breaker in all subsequent results.

7. Combining Masking with Content-based
Ranking

So far, we have focused on improving MRR by incireas
the recall of long queries. Masking addressesptiod-
lems associated with query over-selectivity. et fanask-
ing works better with longer queries as shown buFé 3.
In this spirit, we now consider how long queries ¢z
further exploited to improve accuracy.

Masking along query results in a situation that is
unlikely to occur without masking: the co-occurreraf a
large amount of information about user interestd an
large amount of data from the servers. This “higbr-
mation” situation is ideal for the application adntent-
based ranking functions, which we use to compaee th
contents of queries to the contents of descriptors.

In the results presented so far, group size wad, e
indicated in Section 2. Although group size coessd
neither the terms in the query, nor the terms iche®-
sult's descriptor, it performs surprisingly wellyem com-
pared with content-based ranking functions.

In Figure 5 (originally presented in [18]) we compa
the performance of group size with that of ternyérency
ranking (ranking by the number of query terms Hrat in
a result’'s descriptor, denoted tf) and time ofvari(de-
noted arrive) over various query lengthishout masking.
Term frequency and time of arrival are defined as:

Fy (d(G),Q.|G | timeg) =)’ freq(t,d(G))
t0Q

Fane (d(G),Q,|G |, time,) =time, -

These experiments are meant to show how content-
based ranking in general performs compared with- non
content-based ranking. Although other content-thase
ranking functions are available (e.g., Jaccard&ffagient,
cosine similarity [1]), we use term frequency rangkifor
its simplicity. Our goal is to show the applicatyilof
content-based ranking, not to introduce new rankimg-
tions. (The results using other content-based ingnk
functions are available, but the ones presented hes
representative.) Time of arrival is meant to iadkc a
lower bound (i.e., the non-ranking case) for raglaccu-
racy.

Figure 5 gives a sense of the magnitude of accuracy
improvement yielded by applying ranking functiores t
order query results. Group size and term frequeanig-
ing outperform order-of-arrival ranking significantfor
shorter queries, but have less of an impact fogdommue-
ries.
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Figure 5. MRR as a function of query length and
ranking function without masking.

As originally explained in [18], group size workslv
in conjunction with the matching criterion: onlyef that
are strongly associated with the query terms &edylito
be returned as results. The stronger the assatigtie
greater the representation in the result set aadither
the group size score. Furthermore, group sizdsis a
measure of a file’s popularity, which many queriby,
definition, are seeking. As shown in Figure 5, graize
outperforms term frequency over all query lengths.
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Figure 6. MRR as a function of query length and
ranking function with masking.

In Figure 6, we compare the MRRs of group size and
term frequency ranking over various query lengthss
expected with the results shown in Figure 3, grsiap’s
MRR is mostly unaffected by query length. Its istig
trend upward is due to the effect of min-qtf/mak#thsk-
ing given longer queries.

Term frequency ranking, on the other hand, performs
poorly initially, but steadily increases in MRR twituery
length. As argued above, term frequency ranking, all

Term frequency does not work as well because of thecontent-based ranking functions in general, workebe

matching criterion: all results contain all quegynis, ob-
scuring the results. Furthermore, given shortiggeterm
frequency is highly vulnerable to skewed term disir
tions in the result set — single term frequenci@s cary
substantially from descriptor to descriptor and r@lated
to files’ replication degrees as well. Longer degrare
more effective as they put additional requirememtse-
sults to achieve high ranks. Indeed, term frequegrey
forms better with queries with two terms than vdtie.

As query lengths increase, however, all rankingcfun
tions perform poorly, at near order-of-arrival Isve This
happens due to the selectivity of the longer gsenéx-
plained above.
matching criterion.

With masking, however, content-based ranking should

perform better. Longer queries contain more infion
on user interests, and the result sets of maskedy qe-
sults are large enough to contain:

1. At least one instance of the desired result, and
2. Information necessary to identify it.

We reiterate that group size ranking considersctre
tent of neither the query, nor the results’ degorig and
should therefore have relatively worse performawita
longer queries than does term frequency ranking.

Query accuracy is dominated by the

with longer queries.

The fact that one graph is flat and the other graph
trends upwards with query length indicates the ingwe
of content-based ranking. High information states be
exploited for better search accuracy.

Term frequency works so well in an environment with
high information that it exceeds the performancegroup
size when the query length is three or greater. uilfice
this bit of information by having the client dynamally
switch between a low information (non-content-based
and a high information (content-based) ranking fiamc
based on query length:

If length(Q)> T, then rank with & else rank with £

If the query length is greater than or equal teshold
T9=3, then rank the results with the high information
ranking function, F=F;. Otherwise, rank the results with
the low information ranking function,'#Fs. The per-
formance of the dynamic ranking technique is shamvn
Figure 7, denoted gsize/tf. Dynamic ranking inse=sa
overall MRR by approximately 3%. Overall accuracy
improvement is tempered by the fact that most ggeaire
short (i.e., of the low information variety).

8. Contralling Cost

Up to this point, our goal has been to maximize MRR
We have been successful, increasing it by over 40%.
However, the cost of masking, as shown in Figur@s}



well as the example in Table 1), is quite highe tlumber
of results returned to the client increases by ciofaof
three. We consider two ways of reacting to the aos
crease: reducing the masking degree and retrieviam-
dom subset of results from the server.

Note, however, that the cost of masking is, in soee
spects, overstated. It can be argued that a userpwts
in the effort to add more terms to a query is Edito
higher accuracy and the same system load as amger
issues a short query. The true benefits of aceurétial
query results are not reflected in our experimergallts:
users who yield accurate query results likely istaveer
subsequent queries for the same file and likelyrdoad
fewer files “on impulse.”

Besides being more accurate, long masked querges ar
similar, and in some cases lower, in cost compavitd
short, unmasked queries. As shown in Figure 7 ctss
of a masked query of length one varies dependinthen
masking technique. Min-qtf cost is greater becaitse
goal is to maximize recall. However, by adding seéec-
tivity-improving  tie-breaker  (min-qtf/max-ldf  and
gsize/tf), the cost per single-term query is atyulmwer
than in the non-masking case by 10%.
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Figure 7. Number of results per query as a func-

tion of masking technique. Nomask refers to a
single term base query.

8.1. Varying Masking Degree

Query cost is directly related to masking degree as
shown in Figure 8. The percentage increase in bost-
ever, is much greater than the percentage incirdd®R
with query length. A reasonable way to reduce ,cost
therefore, is to reduce masking degree.

One way of manipulating masking degree is based on
network load. During the day, for instance, théwoek
load is likely high, and during the night, it ikély low
[15]. Correspondingly, the degree of masking caridw
during the day and high during the evening to reduet-
work contention. Because of the random connegtivit
P2P file-sharing overlay networks, however, neighigp
peers may be in different time zones or differeattp of

the world. This makes time-based masking degreelitin
able. Another way of measuring network load isréy
cording the number of incoming queries. A highwoé
of incoming queries indicates high load and sharidgyer
a low masking degree. Techniques for varying nmagki
degree to control cost are the subject of futurekwo
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Figure 8. MRR and total number of results as a
function of masking degree.

8.2. Sampling Resultsfrom Servers

Another way of addressing query cost is by having t
server return a random subset of matching res@i$. [
We propose Bernoulli sampling as a means of reducin
this cost: for each query Q that arrives at sesyend for
each replicallRs,

If QUd(r®), return d(r) with probability P

Sampling should reduce the size of the result ged b
factor P", yet preserve the overall distribution of query
results (e.g., precision). The question is how Eeg
affects accuracy.

mrr

S nres

8 pctcont

nomask

100pct 75pct 50pct 25pct 10pct

Sampling Rate

Figure 9. Performance as a function of sampling
rate.

Figure 9 shows the changes in performance with de-
creasing sampling rates. Predictably, cost deeschy
75% with a 25% sampling rate, but MRR decreases by



only less than 20%, which makes it still 20% mocela
rate than the non-masking case. Moreover, cosedses

no assumptions about the relative capabilitiehefeers.
Specifically, other solutions are architectural riature,

by more than 35% compared with the non-masking.case designating some peers are designated for spexaliz

By combining masking with result sampling, therefowe
are able tdoth increase accuracy and decrease cost.

To match the MRR of the non-masking case, we get th
sampling rate to P=0.1. At this rate, the number of re-
sults decreases by 90% making its cost over 75%rlow
than in the non-masking case.

The reason for the lower cost is obvious; it isirect
consequence of sampling. The reason that MRReés pr
served, however, is due to the fact that more quesyit
sets contain more instances of the desired resu#nw
using masking as suggested in Figure 2. The sagpli
rate can decrease with an increase in the numbecaoi-
rences of the desired result in the average restilt

For example, assume a result set contaipamd N,
desired and undesired results, respectively. fthetion,
(Ng-1)/Ng, of them is randomly sampling away, then:

1. By expectation, the result set still contains one
instance of the desired result,
2. The size of the result set is reduced by a factor 1

(Ng-1)/Nq.

roles. Our work, in contrast, makes no distinciéonong
the functionality of the peers. One benefit of madel is
that our work is more applicable to ad-hoc envirents.
Secondly, many of these works perform retrievaltext
documents. We assume much sparser descriptors.

Our work also bears many similarities to that oftane
search engines [5]. The problems related to systemss
include source selection, merging of results fromder
pendent sources, and query dispatching (the promess
translating a query for each server's particuléerface).
Solutions include source sampling to determine exnt
and the use of ontologies for result ranking [2}leta-
search engines, however, operate in a highly stabte
centralized environment that is not typical of PlE-
sharing systems.

Some P2P systems use past results to bias peer-beha
ior in the network. Positive feedback from a péer
creases the priority of its future results [15]he§e sys-
tems require that peers maintain statistics on hieigs,
which may not be scalable in a large system andaotp
cal, given system unreliability.

Some systems employ distributed hash tables, oe mor

Moreover, combining conditions 1 and 2 means that recently, trees, to reduce search cost in dis&ibwnvi-

the worst-case rank of the desired result, whicNsl,

ronments [16][27]. Because these search methoels ar

improves because Necreases. This has a positive effect based on exact key matching, multi-term queriegidfie

on the contribution this result set has on MRRisTene-
fit is particularly pronounced with longer queres empty
result sets contribute nothing to MRR.

cult to implement (e.g., semi-join-like techniqueser
multiple inverted lists have been proposed [10]asking
facilitates the use of the proposed search strestie-

For example, in our case, with masking, the averagecause it can reduce a query to a single term, rgalkay

number of query results is approximately 140. Vde c
approximate Wy as the product of average precision and
size of the result set. Because precision is 18%\er-
age (not shown), &(0.19)(1403»27 and N=113 in an
average result set. With a sampling rate &f@R25, there
should still be YP™=7 instances of the desired result in
the sampled result set even though 75% of thetselsale
been removed. The minimum contribution of thisutes
set to MRR increases from 1/114 #N13 plus one
unique desired result) to 1/29 P8 with sampling plus
one unique desired result). In theory, dduld as low as
1-(Ng-1)/Ng=0.04 and still contain an instance of the de-
sired result. However, due to expected variancessult
set sizes, such d"Rs not advisable.

9. Related Work

Much of today's work in P2P information retrieviR)
research focuses on identifying highly reliable rpesnd
giving them specialized roles in statistics maiatere,
indexing, and routing [3][17][24][28]. The perfoamces
of such systems are impressive; however, the aijaic
domain is different than the one we consider. Waken

indices immediately applicable. In a similar wmasking
can also relieve the “word-mismatch” problem iroimha-
tion retrieval — when two people independently diker-
ent word sets to describe the same data [26].

One alternative to masking is to use of query esjmam
to improve query performance in P2P file-sharingtesms
[6]. This work attempts to build a distributed sartic
network of terms, revealing generalizations andosyn
nyms, which can be used to increase the recallopfesy.
Besides the difficulty of maintaining the semantiet-
work, a problem of this technique is that it magdeo a
“drift” in the original semantics of the query. A& know
of no experimental validation of this techniquedlifficult
to accurately gauge its performance.

Finally, masking is similar to the practice of racd-
ing “failed” database queries — queries that reempty
results [8]. Reconciling failed queries requirémmging
of eliminating selection conditions, changing iM&n-
tics. Masking, in contrast, aims to retrieve thigioally
desired result.



10. Conclusions and Future Work

Masking works by increasing the recall of queri@&sy
keeping only the most relevant terms in the maskesty,
accuracy is improved by over 40%.

Masking cost is manageable by tuning the masking de
gree or randomly sampling the result sets returbgd
servers. Ideally, 100NNg1)% of the results can be
sampled away. By sampling, we were able to redosg c
by over 35% compared with the non-masking caselewnhi
preserving an improvement in accuracy of 20%.

The masking techniques presented here are busta fir
step of a general process and are subject to natipio
zations. One area of optimization we are workingi®
server-side masking. As servers contain a diftevesw
of the system, it is possible that they can givieelnénints
on improving masking performance in terms of codd a
benefit. Second, the use of server-side maskinddco
avoid the conservative technique of maximizing Heoga
masking out all but one term at the client. Thsdrver-
side masking could make time-zone based maskingedeg
(see Section 8.1) simpler to implement. Anotheaare
are considering is the collection of statisticstenms of
network load and replication degrees [9] to detaama
good dynamic ranking threshold value and samplate. r
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