
Integrating Structured Data and Text:

A relational approach

David A. Grossman

O�ce of Information Technology

Washington, DC 20505

Email: dgrossm1@osf1.gmu.edu

Ophir Frieder�

Department of Computer Science

George Mason University

Fairfax, VA

Email: ophir@cs.gmu.edu

David O. Holmes

AT&T Global Information Systems

Rockville, Maryland 20850

David C. Roberts

O�ce of Information Technology

Washington, DC 20505

Email: droberts@seas.gwu.edu

Abstract

We integrate structured data and text using the unchanged, standard relational model. We
started with the premise that a relational system could be used to implement an Information
Retrieval (IR) system. After implementing a prototype to verify that premise, we then began
to investigate the performance of a parallel relational database system for this application.

We also tested the e�ect of query reduction on accuracy and found that queries can be
reduced prior to their implementation without incurring a signi�cant loss in precision/recall.
This reduction also serves to improve run-time performance. After comparing our results to a
special purpose IR system, we conclude that the relational model o�ers scalable performance
and includes the ability to integrate structured data and text in a portable fashion.

1 Introduction

Increasingly, applications integrate structured and unstructured data, responding to requests such

as \Find articles containing vehicle and sales published in journals with over 5,000,000 subscribers."

Identifying articles containing speci�ed terms requires a search of unstructured data, while circu-

lation data are often stored as structured data in a relational database. We have developed a

prototype to integrate structured data and text using combined resources from government, indus-

try, and academia. Key aspects of the described prototype are currently deployed to real users as

part of a larger system at the Internal Revenue Service.

�This work supported in part by the National Science Foundation under contract number IRI-9357785 and The

Telephone Connection.



Our approach uses a relational database system for both structured data and text. This pro-

tects the large investment in relational systems while avoiding the need to purchase special purpose

text search systems and integrate them with relational systems. Additionally, because versions of

major relational database systems optimized for parallel machines are available, developers who

employ the described approach can achieve the bene�ts of parallel processing without special pur-

pose software. While parallel implementations of relational database systems are common, parallel

implementations of information retrieval (IR) systems are rare. Implementing information retrieval

as a relational database application provides a portable, parallel means of implementing information

retrieval algorithms.

We show that the use of a relational system for IR incurs greater overhead than special pur-

pose IR systems or object-oriented database systems. We have observed an average overhead

ratio of 1.45:1 (index �le to document collection) for a full text application; special purpose sys-

tems typically have a 0.47:1 ratio. Clearly, for some applications, the overhead of the relational

model is excessive; however, we have found that for many applications, the described approach is

cost-e�ective. Additionally, with the constantly increasing availability of lower cost storage and

increasing computational resources, the cost of storage is becoming a much smaller portion of total

system cost.

To evaluate this approach, we implemented a prototype on a sequential database system and

a parallel database machine with four processors. We implemented tests using the TIPSTER

document collection and the queries associated with the colleciton. These are the only standard set

of queries that are currently available for benchmarking information retrieval systems. [3]. We are

encouraged by our performance measurements; using a Pentium 90Mhz processor, most queries on

a standard 280 megabyte text collection of Wall Street Journal articles obtained a result within �ve

seconds. On the same machine, we compared the relational approach to an information retrieval

system that also accesses structured data: Lotus Notes. For the majority of the test queries, the

relational approach provided superior performance to the special purpose commercial system.

On a parallel machine, we typically observed that processor workloads were within ten percent

of each other. Thus, we believe that the use of parallel processing provides a scalable method to

2



achieve run-time performance.

The idea of using the relational model to implement traditional IR functionality is not new.

Essentially, prior e�orts have suggested changes to SQL which make these approaches unavailable

to users of present database systems and reduce the portability of applications written for these

systems. Additionally, a change to SQL removes the developer's ability to leverage investments in

legacy applications. Some previous work using unchanged SQL has been reported, but this work

focused solely on bibliographic document collections [6]; that work is a direct predecessor to these

e�orts.

2 A Working Example

Since we are concerned with integration of structured data and text, we illustrate this discussion

with two documents similar to those found in the TIPSTER document collection used to test our

queries [8].

The e�ectiveness of relational systems with structured data is well established so we did not

test performance with structured data. Thus, our example includes relatively little structured

data. We show only that we can integrate some structured data; it follows that substantially more

complicated structured data can be integrated using conventional techniques.

The relations used to represent a document are shown below. DOC contains structured

information about a document. DOC TERM models a traditional inverted index found in most

commercial information retrieval systems. DOC TERM PROX is used for proximity searches.

IDF refers to an automatically assigned weight, the inverse document frequency, assigned to each

term in the document collection. The standard de�nition of IDF is used [16]. QUERY contains

all terms in a sample query. Finally, STOP TERM contains frequently occurring terms excluded

from the DOC TERM and DOC TERM PROX relation on the basis that they are \noise"

terms.

Section 4 provides more details for each of these relations as well as descriptions of their use.

3



The following two documents are similar were taken from the TIPSTER collection. They were modi�ed

slightly to improve clarity:

<DOC> <DOCNO> WSJ870323-0180 </DOCNO>
<HL> Italy's Commercial Vehicle Sales </HL>
<DD> 03/23/87 </DD>
<DATELINE> TURIN, Italy </DATELINE>
<TEXT>
Commercial-vehicle sales in Italy rose 11.4% in February from a year earlier, to 8,848 units, according to
provisional �gures from the Italian Association of Auto Makers. Sales for the Association are expected to
rise an additional 2% in July.
</TEXT>
</DOC>

<DOC> <DOCNO> WSJ870323-0181 </DOCNO>
<HL> Ford Discontinues Taurus SHO Five-Speed Vehicle </HL>
<DD> 01/21/95 </DD>
<DATELINE> George, Atlanta </DATELINE>
<TEXT>
Ford Motor Company announced that beginning in 1996, the Taurus SHO will no longer include a �ve-speed
vehicle.
</TEXT>
</DOC>

DOC:

doc id doc name date dateline

1 WSJ870323-0180 3/23/87 Turin, Italy

2 WSJ870323-0181 1/21/95 Georgia, Atlanta

DOC TERM: DOC TERM PROX IDF

doc id term tf

1 commercial 1
1 vehicle 1

1 sales 2
1 italy 1
1 rose 1

1 11.4% 1
1 february 1

1 year 1
1 earlier 1

1 8,848 1
1 according 1
1 provisional 1

1 �gures 1
1 italian 1

1 association 2
1 auto 1

1 makers 1
1 expected 1

1 additional 1
1 2% 1
1 July 1

... ... ...
2 vehicle 1

... ... ...

doc id term o�set

1 commercial 1
1 vehicle 2

1 sales 3
1 italy 4
1 rose 5

1 11.4% 6
1 february 7

1 year 8
1 earlier 9

1 8,848 10
1 according 11
1 provisional 12

1 �gures 13
1 italian 14

1 association 15
1 auto 16

1 makers 17
1 sales 18

1 association 19
1 expected 20
1 rise 21

1 additional 22
1 2% 23

1 July 24
... ... ...

2 vehicle 14
... ... ...

term idf

11.4% 2.9595
2% 1.5911

8848 4.3936
according 0.7782
additional 1.0792

association 1.0792
auto 1.2788

commercial 1.0000
earlier 0.6021

expected 0.6990
february 1.3222
�gures 1.2553

italian 1.8451
italy 1.6721

July 1.0414
makers 1.3010

provisional 2.5172
rose 0.7782

sales 0.6990
vehicle 1.7709
year 0.0000

QUERY STOP TERM

term tf

vehicle 1

sales 1

term

a

an

and

...

the

...

4



Both structured data and text are found in our example. DOC contains structured data

such as date and dateline; DOC TERM and DOC TERM PROX contain unstructured data.

A query with both structured and unstructured data, \List all documents that contain the terms

vehicle or sales written on January 21, 1995," is implemented with the following SQL:

Ex: 1 SELECT d.doc id
FROM DOC d, DOC TERM t

WHERE t.term IN (\vehicle",\sales") AND
d.date = \1/21/95" AND
d.doc id = t.doc id

3 Information Retrieval and Relational Database Systems:

A Historical Progression

Prior work in this area can be described in terms of extensions to the Structured Query Language

(SQL) and the proposed use of user-de�ned operators.

3.1 Extensions to SQL

The use of relational systems for text processing began with some of the original implementations of

the relational model. An unpublished manuscript written in 1975 by Blair discusses the use of the

SEQUEL research language (a precursor to SQL) [5]. In this work, SEQUEL was used to perform

boolean keyword retrievals such as \Find all documents that contain the word vehicle." The �rst

published work in this area was by Macleod and Crawford [10]. This paper presented SEQUEL

queries to perform keyword searches and described SEQUEL extensions that could accomplish

relevance ranking of a set of documents to a query.

Extensions to the relational model to assist an IR application were proposed in Macleod [11].

A RELEVANCE function assigning a measure of relevance between a document and a query was

discussed. The RELEVANCE function used an attribute with an appropriate weight for each

term in the query and the document. In weighted retrieval, the higher the weight assigned to a

given term, the more signi�cant the document is to the query. For a discussion of weighted boolean

5



retrieval, see Salton [14]. The tf attribute found in our example DOC TERM and QUERY relations

could serve as a simplistically assigned weight.

Other work that requires extensions to the relational model includes work done with NF 2

relational extensions [7, 17, 12]. In these systems, relations may be nested so that the data are in

non-�rst normal form. Previous work has shown that embedded relations may be used to model

inverted indexes [7, 17]. Embedded relations were intended to reduce the syntactic complexity of

some SQL queries that required normalized relations. More recently, [12] illustrates that embedded

relations assist with representation of hierarchical constructs found in text. Additionally, a new

simpli�ed query language is proposed. Although the use of embedded relations provides an inter-

esting solution to the problem of integrating structured data and text, non-standard extensions

to the standard relational model are required, and it is not clear how query optimization of these

nested relational queries is implemented.

3.2 User-de�ned Operators

Interest in text applications of strictly commercial relational database systems diminished when

user-de�ned operators were proposed for \application speci�c" operations [4]. Such operators could

be used to provide any function required by an application that was not provided within the

database system. Stonebraker, et. al., examined the utility of user-de�ned operators for a text

editing application [18]. A thesis described the use of user-de�ned operators for typical information

retrieval functionality such as keyword searches and proximity searches [9]. Additionally, database

optimizer enhancements for query optimization of these user-de�ned operators were analyzed. The

process for adding the proposed user-de�ned operators, however, required access to the entire

address space of the DBMS [18]; thus such an operator could impact database integrity and security.

Additionally, an operator implemented at one site might not be implemented at another, thereby

reducing application portability.

6



4 Advanced IR Functionality using unchanged SQL

Today, attention is once again being given to using standard SQL for IR processing. Thus, for

the remainder of this paper, we describe more advanced IR processing using strictly unchanged

standard SQL.

Prior work has included extensions in which multiple joins are required to perform a Boolean

search [10]. Each of the queries we have developed are of �xed syntactic length and do not require

an increasing number of joins. Although it is theoretically possible to execute a join of n relations,

many implementations impose limits on the number of relations in a join that fall much below those

necessary to execute this query [2, 13].

We now describe SQL queries using standard SQL that are of �xed syntactic length that

compute Boolean searches, Proximity searches, and Relevance ranking. Each of our queries depends

upon the structures found in our working example. Essentially, each query is developed to perform

well because of the construction of a relation that models an inverted index. The DOC TERM

relation models an inverted index without proximity information. The DOC TERM PROX relation

models an inverted index that contains proximity data.

4.1 Boolean Retrieval

The following query computes a Boolean AND using standard syntatically �xed SQL:

Ex: 2 SELECT d.doc id
FROM DOC TERM d,QUERY q

WHERE d.term = q.term
GROUP BY d.doc id
HAVING COUNT(d.term) = (SELECT COUNT(*) FROM QUERY)

The query given in Example 2 works by eliminating all terms from DOC TERM that are

not found in QUERY. The WHERE clause �lters all terms in DOC TERM that are not found in

QUERY. This ensures that we consider only documents that have the terms found in QUERY. For

a document di that contains k terms (t1; t2; : : : ; tk) in QUERY, the following tuples are found in

the result set:

7



RESULT SET:
doc id term

di t1

di t2

... ...

di tk

This result set is actually constructed for every document. The GROUP BY found in the

query partitions the result set into separate subsets that are of the form found in the example

above. Each group contains only terms that are found in the query. However, we wish to return

only documents that contain all of the terms found in the query. The HAVING clause eliminates all

groups with a cardinality di�erent from that of QUERY. This ensures that all of the terms found

in the query are found in a group that corresponds to a particular document.

To this point, we have assumed that QUERY does not contain duplicate terms and that

DOC TERM does not contain duplicate terms for the same document. This is somewhat unre-

alistic especially when considering the need for proximity searches. However, at least up to now,

we assumed that the text preprocessor that created the relations removed duplicates found in

documents or queries. In the next section, we present a proximity search method for multiple

occurrences of the same term in a document. To account for the possibility of duplicates, it is nec-

essary to modify the HAVING clause found in the Example 2 to: HAVING COUNT(DISTINCT

DOC TERM.term). The DISTINCT causes duplicate terms in a document to be removed. The

new query is:

Ex: 3 SELECT d.doc id
FROM DOC TERM d, QUERY q

WHERE d.term = q.term
GROUP BY d.doc id
HAVING COUNT(DISTINCT(d.term)) = (SELECT COUNT(*) FROM QUERY)

We note that a Boolean OR can be constructed by removing the HAVING clause in Example

2. Finally the SQL to compute a TAND (threshold AND which retrieves documents that contain

at least k speci�ed terms) condition is obtained by modifying the HAVING clause:

8



Ex: 4 SELECT d.doc id
FROM DOC TERM d,QUERY q

WHERE d.term = q.term
GROUP BY d.doc id
HAVING COUNT(DISTINCT(d.term)) � k

4.2 Proximity Searches

Several IR systems provide proximity searching as a basic capability [15]. A slight modi�cation to

DOC TERM facilitates such searches. A proximity is a request for all documents that contain n

terms within a term window of size width. A term window of size width begins at the ith term in

the document and continues to the (i+width � 1) term.

To implement proximity searches, DOC TERM PROX is used. This relation is similar to

DOC TERM with the addition of a new attribute, o�set. DOC TERM PROX has a tuple for each

term in the original text, excluding doc terms �ltered out by the preprocessor.

We again require the user to place search terms in QUERY. Once the relations DOC TERM PROX

and QUERY are established, the query in Example 5 can be used to �nd the documents that con-

tain a term window of size width that includes all of the terms found in QUERY. We choose this

de�nition as simpler forms of proximity searches (show all documents that contain term1 and term2

within two words of one another) can be viewed as a subset of this query. The term window may

be thought of as a sliding window starting at the �rst term in the document. The query insists

that not only must all terms found in QUERY be contained in a given document, but at least one

occurrence of each term in QUERY must fall within a term window of size width.

For document number one in our example, the terms \vehicle" and \italy" occur in positions

two and four, respectively. Hence, a query requiring these terms within a window of size greater

than or equal to three would retrieve this document. Specifying a width greater than the maximum

document length eliminates all proximity constraints and results in a query equivalent to the query

found in Example 2. The following query uses unchanged SQL and only a single join to perform

the proximity search:

9



Ex: 5 SELECT a.doc id
FROM DOC TERM PROX a, DOC TERM PROX b

WHERE a.term IN (SELECT q.term FROM QUERY q) AND
b.term IN (SELECT q.term FROM QUERY q) AND
a.doc id = b.doc id AND
(b.o�set - a.o�set) BETWEEN 0 AND (width� 1)

GROUP BY a.doc id, a.term, a.o�set
HAVING COUNT(DISTINCT(b.term)) = (SELECT COUNT(*) FROM QUERY)

The query of Example 5 eliminates all terms from DOC TERM PROX that are not found

in QUERY. This is done via the �rst two conditions in the WHERE clause. It is necessary to

join DOC TERM PROX on itself since we must evaluate the distance between a given term in a

document and all other terms. The third WHERE clause condition ensures that we do not compare

the distance between terms found in distinct documents. For a document di that contains k terms

(t1; t2; : : : ; tk) in corresponding term positions (o1; o2; : : : ; ok), the following tuples make the �rst

three conditions in the WHERE clause evaluate TRUE:

a.doc id a.term a.o�set b.doc id b.term b.o�set

di t1 o1 di t1 o1

di t1 o1 di t2 o2

di t1 o1 di tk ok
di t2 o2 di t1 o1

di t2 o2 di t2 o2

di t2 o2 di tk ok
di tk ok di t1 o1

di tk ok di t2 o2

di tk ok di tk ok

The fourth condition in the WHERE clause removes all tuples not within the size of width.

This condition enforces the proximity constraint. The rest of the query is similar to Example 2.

GROUP BY partitions the result into sets corresponding to each doc id, term and o�set. HAVING

eliminates groups with cardinality not equivalent to the cardinality of QUERY. It is necessary to

use DISTINCT in the HAVING clause to ensure that a term window does not contain repeated

occurrences of any terms.

Consider a request to �nd all documents containing the terms \vehicle" and \sales" within

a term window of size 4. First a QUERY relation is constructed, with a tuple for each of these

two terms. Using DOC TERM PROX as above, we now consider execution of the query given

10



in Example 5. The �rst three conditions of the WHERE clause eliminate all terms not found in

QUERY. These three conditions are TRUE for these tuples:

a.doc id a.term a.o�set b.doc id b.term b.o�set

1 vehicle 2 1 vehicle 2

1 vehicle 2 1 sales 3

1 vehicle 2 1 sales 18

1 sales 3 1 vehicle 2

1 sales 3 1 sales 3

1 sales 3 1 sales 18

1 sales 18 1 vehicle 2

1 sales 18 1 sales 3

1 sales 18 1 sales 18

2 vehicle 14 2 vehicle 14

The fourth condition uses the di�erence between a.o�set and b.o�set and eliminates all tuples

that result in either a negative di�erence or fall outside of the term window. The following tuples

make the entire WHERE clause evaluate TRUE:

a.doc id a.term a.o�set b.doc id b.term b.o�set

1 vehicle 2 1 vehicle 2

1 vehicle 2 1 sales 3

1 sales 3 1 sales 3

1 sales 18 1 sales 18

2 vehicle 14 2 vehicle 14

GROUP BY partitions the result set based on document id, term, and o�set. Double lines

illustrate this partitioning which �xes a starting point of a term window and then places all terms

within the window in a particular group.

a.doc id a.term a.o�set b.doc id b.term b.o�set

1 vehicle 2 1 vehicle 2

1 vehicle 2 1 sales 3

1 sales 3 1 sales 3

1 sales 18 1 sales 18

2 vehicle 14 2 vehicle 14

The HAVING removes all groups that do not contain a term window with a cardinality equal

to that of QUERY (two for the example). In the example, only the group that starts at o�set two

in document one contains two tuples. DISTINCT ensures that duplicate terms within the term

window are not counted. Hence, only document number one is returned by the query.

11



It should be noted that the execution of the WHERE clause and the GROUP BY may be

intertwined, so the actual sequence of operations may not correspond to the steps described above.

To explain the logic of the query, we have presented the query as if the entire WHERE clause were

�rst evaluated, followed by GROUP BY and HAVING.

Syntactically, the query in Example 5 is complex, but it is important to note that it is invariant

regardless of the number of query terms. Additionally, only a single join of DOC TERM PROX is

required regardless of the size of QUERY.

4.3 Computing Relevance Using Unchanged SQL

Boolean and proximity searches are often used in commercial IR systems. Since the vector-space

model [16] is widely used, we have chosen to implement unchanged SQL to rank documents based

on the vector-space model.

Boolean searches simply retrieve all documents that match a particular condition. A relevance

ranking algorithm ranks all documents that are retrieved so that they may be examined by the

user in the order of their computed \relevance" to the query. For a su�ciently large answer set, it

is unlikely that the user will be able to examine all of the documents returned. The vector space

model is frequently used to compute a measure of relevance between a query and a document.

The vector space model works by representing each document and a query with a term oc-

currence vector. The cartesian distance between the query and each document vector is used to

rank the documents. The idea is that those documents \closest" to the query will be the most

relevant. The vector for each document is of size n. It contains an entry for each term in the

entire document collection. Each component of the vector contains a weight computed for each

term in the document collection. For each document, each term is assigned a weight based on how

frequently it occurs in the entire collection and how often it appears in the document. The weight

of a term in a document increases the more often it appears in a document, and the less often it

appears in all other documents.

The key addition to the database schema required by relevance ranking is the IDF relation.

This relation stores the inverse document frequency (idf) for each distinct term in the document

12



collection. This is computed as:

idft = log
N

dft

where N is the number of documents in the collection and dft is the number of documents that

contain term t. More details on this de�nition may be found in [16]. The following query provides

a vector space ranking of all documents for the query composed of the terms found in the QUERY

relation. The query given below is a simple dot product computation. Other variations on the dot

product including Dice, Cosine, and Jaccard can be computed with variations on this query.

Our example assumes the QUERY relation has been extended to include two attributes, term

and tf, that are used to store the terms found in the query and the number of occurrences for each

term.

Ex: 6 SELECT d.doc id, SUM(q.tf * i.idf * d.tf * i.idf)
FROM QUERY q, DOC TERM d, IDF i

WHERE q.term = i.term AND
d.term = i.term

GROUP BY d.doc id
ORDER BY 2 DESC

Once again, the query in Example 6 is of �xed length and need only be developed once.

Practical experimentation shows that this query performs well on a variety of relational systems.

Results presented below provide further details on performance of this query.

5 Sequential Results

To study the performance of our approach, we measured run time and accuracy using a relational

database system: Microsoft SQL Server V4.2 running on a 90Mhz Dell Pentium with 64 megabytes

of RAM using Windows NT V3.1. We evaluated queries 150-200 over the Wall Street Journal

portion (1987, 1988, and 1989) of the collection comprising over 280 megabytes of text. These

queries were required for the TREC-3 conference. Our results were obtained using default system

parameters and were meant to provide an initial overview of actual performance. Additional tuning

could improve response time.

13



For all of our relational results we used a text preprocessor that accepts the SGML marked

TIPSTER documents and outputs at �les in the form of our relations. The preprocessor removes

stop terms, numbers, and special characters. Additionally, all upper case letters are translated to

lower case. Subsequently, a DBMS vendor-supplied load utility was used to move the data from

the at �les into the DBMS.

For comparison, we also implemented the queries using Lotus Notes. We chose Notes as our

product for comparison because it o�ers integration of both structured data and text, and it uses

the search engine found in Topic (from Verity Inc.) to improve search performance.

Performance of our approach is dramatically a�ected by the selectivity of query terms. Fre-

quently occurring terms result in degraded performance due to the I/O required to obtain all

occurrences. To measure the impact of term selectivity on the query, we use a measure of term

selectivity to vary the original query. First, the terms in a query are sorted by their frequency

across the entire document collection. Subsequently, query variations are developed by including

only the x least frequent terms in the original query where x varies based on the size of the query.

We refer to x as a query threshold. A threshold of ten percent when applied to an original query of

one hundred terms results in the ten least frequent terms being applied to a reduced query.

Execution time is not the only performance measurement; the number of relevant documents

retrieved is also important. A system that misses relevant documents is useless regardless of

execution speed.

Our hypothesis is that query reduction based on varying thresholds improves run time perfor-

mance without a�ecting accuracy. Our premise is that queries contain many terms which occur so

frequently that they serve only to degrade run time performance and possibly degrade accuracy as

well. Reducing the query to remove such terms should improve both run time and accuracy.

Two variations of DOC TERM for SQL Server were implemented. We used full length terms

as described in the preceding sections as well as numerical term identi�ers. Term identi�ers use

numerical values to represent character terms. On average, the term length for our collection was

six characters, so the use of a four byte term identi�er instead of full-length terms reduces the

length of each tuple by two bytes. It was our hypothesis that the use of term identi�ers would

14



improve run time performance. However, maintenance of term identi�ers is complicated since it

requires the generation of a term dictionary that must be updated when new documents are added

to the collection.

We tested two di�erent inverted indices constructed by Lotus Notes. The product allows users

to optionally choose stemming (the removal of frequently used pre�xes and su�xes from a term) as

a means of building an index. Intuitively, stemming should improve accuracy since queries searching

for the term running will match documents that contain run. However, some stemming reduces

accuracy since terms such as sting can be stemmed to meaningless syllables that may falsely match

with non-related terms.

Run time results for SQL Server and Lotus Notes are presented in Figure 1. We tested query

thresholds of 10%, 20%, 25%, 33%, 50%, and 100% for all of our experiments. A known bug in

Lotus Notes made it impossible to implement queries that produce a large result set, so we were

unable to obtain results for a threshold of 100. It can be seen that as the query threshold increases,

performance for all systems degrades. Note, however, that once a threshold of 33% is reached, the

rate of increase of the number of relevant documents retrieved signi�cantly decreases (see Figure

2). Given the dramatic increase in run time (shown in Figure 1) when using a threshold greater

than 33%, depending on the application, the merits of using high (greater than 33%) thresholds

may be questionable.

For lower thresholds, few terms are found in the query and performance of SQL Server is supe-

rior to Lotus Notes. After a threshold of 50%, the SQL Server performance degrades dramatically.

We suspect based on the fact that Lotus Notes uses a more e�cient inverted index that Lotus Notes

would provide better performance at thresholds higher than 50.

Overhead costs of modeling an inverted index as a relation increase dramatically as the term

selectivity increases. A term that occurs many times in an inverted index requires more overhead

than an infrequent term, but with the relational implementation the cost skyrockets. This is because

the DOC TERM relation is so large and a term that occurs many times in this relation requires

large amounts of I/O to obtain that term. Hence, performance for the relational model is good

only for query thresholds lower than 50%.

15



0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

S
e
c
o
n
d
s

Threshold (percent)

SQL Server (termid) 3

3 3 3 3
3

3

SQL Server (term) +

+ + + +
+

+

Notes (nostem) 2

2

2
2

2
2

Notes (stem) �

�

� � �
�

Figure 1: Average Response Time for Varying Query Thresholds

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

10 15 20 25 30 35 40 45 50

R
e
l
e
v
a
n
t
r
e
t
r
i
e
v
e
d

Threshold (percent)

SQL Server 3

3

3

3

3

3

Notes (stem) +

+

+

+

+
+

Notes (nostem) 2

2

2

2

2

2

Figure 2: Number of Relevant Documents Retrieved

16



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

P
r
e
c
i
s
i
o
n

Recall

10% 3

3

3

3

3

3 3
3

3 3 3 3

20% +

+

+

+
+

+
+

+
+ +

+ +

25% 2

2

2

2

2

2
2

2

2
2

2
2

33% �
�

�

�

�

�
�

�

�
�

�
�

50% 4

4

4

4

4

4
4

4

4
4

4
4

100% ?

?

?

?
?

?
?

?
?

?
?

?

Figure 3: Precision/Recall for SQL Server for Varying Query Thresholds

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

P
r
e
c
i
s
i
o
n

Recall

10% 3

3

3

3

3

3
3

3 3 3 3 3

20% ++

+

+
+

+
+

+
+ + + +

25% 2

2

2

2

2

2
2

2

2
2

2
2

33% �

�

�

�

�

�
�

�

�
�

�
�

50% 4

4

4

4

4

4

4

4

4
4

4
4

Figure 4: Precision/Recall for Lotus Notes for Varying Query Thresholds

17



Our evaluation of retrieval accuracy is summarized in Figures 2, 3, and 4. Figure 2 indicates the

number of relevant documents obtained for all �fty queries. For low query thresholds, the number

of relevant documents is low for all systems. As we increase the query threshold, the number

of documents retrieved increases dramatically. This reects the additional accuracy obtained by

adding relatively infrequently occurring terms to the query. We believe that these terms assist in

�nding relevant documents as they are relatively infrequent and therefore are probably not noise

words. As the threshold increases, it is reasonable to suspect that progressively less useful terms

are added to the query and, interestingly, the number of relevant documents does not increase.

Hence, despite dramatically increased I/O required to compute higher thresholds, they do not yield

signi�cantly more relevant documents.

In �gures 3 and 4, we present results using standard information retrieval measures, precision

and recall, to measure accuracy. Precision refers to the ratio of retrieved documents that are

relevant, while recall refers to the ratio of relevant documents that are retrieved [14]. Since term

identi�ers result in the same accuracy as terms (the same documents are retrieved), accuracy

results for only one implementation of SQL Server are provided in Figure 3. Figure 4 provides

precision and recall values for the Notes experiment without stemming, as this was the superior

result for Lotus Notes. Each line in these �gures indicates a separate threshold. Again, for low

thresholds, precision and recall are relatively low, as the infrequent terms are added, precision and

recall increase, and �nally, at high thresholds noise terms are added and precision and recall does

not continue to increase.

We have noted that the relational approach yields good performance at thresholds below 33%.

Now it can be seen that accuracy does not improve when thresholds are increased above 33%.

Hence, the relational approach may be viable as our experiments have shown that it may not be

necessary to implement thresholds above 33%.

6 Parallel Results

To study the applicability of parallel processing to our approach we measured run time using a four

processor AT&T DBC-1012. The DBC-1012 is a commercial database machine that implements a

18



relational database system using multiple processors and I/O units. By spreading computational

requirements over the number of processors, the goal is to provide a scalable approach to large

relational database problems. Our hypothesis is that the SQL used to implement relevance ranking

would result in a balanced workload across the processors.

Parallel Information Retrieval is not a mature technology. Some initial e�orts are discussed

in a special issue of Information Processing and Management [1]. The use of the relational model

for relevance ranking makes it possible to use mature technology. As with the sequential approach,

runtime performance is dramatically a�ected by the selectivity of the terms in the query. Running

all �fty queries at a threshold of 50% required about an hour while running all �fty queries at a

threshold of 100% required a day.

We implemented the same �fty queries used to obtain the sequential results on roughly two

gigabytes of the TIPSTER collection. At present, this is the largest portion of the collection that

contains known relevance results. After collecting results for each query, the sum of the CPU time

and disk I/O for each of the four processors was computed. The highest sum is the largest factor

in response time as the query cannot complete until all processing is completed. Figure 5 contains

the maximum CPU obtained for all �fty queries.

0

5000

10000

15000

20000

25000

30000

35000

10 20 30 40 50 60 70 80 90 100

M
a
x

C
P
U

Threshold (percent)

AT&T DBC-1012 3

3 3 3 3

3

3

3

Figure 5: Max CPU Time for Varying Query Thresholds

19



Accuracy results for the two gigabyte collection are summarized in Figures 6 and 7. Figure 6

indicates the number of relevant documents obtained for all �fty queries at retrieval cuto�s of 1000

documents. As we increase the threshold from 10 to 20 a large number of relevant documents are

found. This continues as we increase the threshold to 33. Once we move to 50, we again observe

a dropo� in the number of relevant documents to a level even below a threshold of 20. Figure 7

gives precision and recall for a cuto� of 1000.

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

10 15 20 25 30 35 40 45 50

R
e
l
e
v
a
n
t
r
e
t
r
i
e
v
e
d

Threshold (percent)

AT&T DBC-1012 3

3

3

3

3

3

Figure 6: Number of Relevant Documents Retrieved (2GB)

Our hypothesis for the parallel approach was that the queries would run in a balanced fashion;

that is, the workload for each processor would be approximately equal. This balance is critical

if the approach is to be truly scalable. The table below indicates the amount of Processor Load

Imbalance (PLIB) for CPU time and DISK I/O:
�
max�min

min

�
measured at each query threshold.

It can be seen that for all workloads, the processors are �fteen percent or less out of balance.

Given that the workload is balanced evenly among the existing processors, if processors are added,

response time will be reduced. Due to resource limitations, we were unable to empirically validate

this scalability hypothesis.

Percent of Processor Imbalance :

20



0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

P
r
e
c
i
s
i
o
n

Recall

10% 3
3

3

3
3

3
3

3 3
3 3 3

20% +

+

+

+
+

+
+ +

+ + + +

25% 2
2

2

2

2

2
2

2
2 2 2 2

33% �
�

�

�

�

�
�

�
� � � �

50% 4

4

4

4

4

4
4

4
4 4 4 4

75% ?

?

?

?

?

?
?

?
? ? ? ?

100% b

b

b

b

b

b

b

b

b b b b

Figure 7: Precision/Recall for AT&T DBC-1012. (2 GB)

threshold CPU Time Disk I/O)

10 15.0 1.5

20 12.0 1.5

25 10.4 1.2

33 9.4 0.9

50 2.0 0.7

Finally, we note that data loading was improved when using the DBC-1012 because the DBC-

1012 FASTLOAD utility makes use of all the processors and ensures that data are distributed

to each processor in the fashion prescribed by indexes. We typically found that the FASTLOAD

was able to load our largest relation at a speed of 857 rows per second. By comparison, in our

experience, an Intel Pentium processor running Microsoft SQL Server on Windows NT typically

loads data with the Bulk Copy facility at a rate of 381 rows per second.

7 Overhead

Typically, storage overhead has been viewed as the primary disadvantage of relational IR imple-

mentations. Given that the document identi�er and the term must be replicated numerous times

in DOC TERM, it would appear that storage requirements would be substantial.

21



The observed storage overhead required by the SQL Server and the Lotus Notes implementa-

tions for the 280 megabyte data is given below:

Storage Overhead (Lotus Notes vs SQL Server)

System Megabytes Overhead Ratio

Lotus Notes (stemming) 133 0.48 : 1

Lotus Notes (no stemming) 130 0.46 : 1

SQL Server (termid) 246 0.88 : 1

SQL Server (terms) 377 1.35 : 1

The inverted index used by Lotus Notes is clearly the most e�cient in terms of storage.

However, the additional overhead for SQL Server may still be acceptable given the additional func-

tionality provided by this approach. The use of term identi�ers reduces storage overhead by 35%;

however, surprisingly, response time does not dramatically improve. Therefore, the computational

overhead of updating a separate term dictionary in order to assign term identi�ers appears to be

too large to justify the associated savings in storage.

The following table indicates the storage requirements for each of the relations used on the

parallel machine. To simplify the data loading operation, and to allow us to easily run experiments

on di�erent portions of the collection, we constructed DOC TERM relations for each of the nine

di�erent portions of the TIPSTER collection. To obtain �nal results, we implemented the same

SQL given in Section 4.3 with a UNION to merge all of the results.

Since the DBC-1012 uses hash-based indices, there is no extra storage required for each index;

rather, a �xed thirteen byte overhead is assigned for each tuple to maintain an internal hash

identi�er. The observed storage overhead for each of the nine sections is given below:

Storage Overhead (AT&T DBC-1012)

22



Section DBMS (MB) Original (MB) Avg. Terms / Doc. Overhead Ratio

AP (disk 1) 466 266 375 1.75 : 1

AP (disk 2) 441 248 370 1.77 : 1

DOE (disk 1) 400 190 89 2.10 : 1

FR (disk 1) 223 258 1017 0.86 : 1

FR (disk 2) 180 211 1073 0.85 : 1

WSJ (disk 1) 475 295 329 1.61 : 1

WSJ (disk 2) 334 255 377 1.31 : 1

ZIFF (disk 1) 347 251 412 1.38 : 1

ZIFF (disk 2) 260 188 394 1.38 : 1

Total 3126 2162 493 1.45 : 1

For the 2.1 gigabytes of text, the relational structures to implement it required 3.1 Gigabytes

of storage for an overall storage ratio of 1.45:1. The key to the amount of relational storage is the

number of terms in a document. As the number of terms increases, the likelihood for repetition

increases. When a term is repeated in a document, the cnt attribute is updated, but a new tuple

is not added to DOC TERM. Hence, the portion of the collection with large documents (over 1000

terms per document), the Federal Register, had the lowest storage overhead ratios. The portion of

the collection with the smallest documents was the Department of Energy Abstracts, and it had a

storage overhead ratio of 2.1:1.

Although the storage overhead for a relational system is higher than for an inverted index,

the trend in industry is towards dramatic reductions in the cost of disk space. Given the potential

for reduced software development time, the ability to implement new functionality with standard

SQL, and the peformance potential given by a parallel machine, this overhead may be acceptable

for many applications.

8 Conclusions and Future Work

We described unchanged SQL that is capable of performing a variety of Boolean keyword searches,

proximity searches, and relevance ranking. Each of the queries requires only a �xed number of joins

regardless of the number of terms in the query. This makes it possible to consider the use of the

relational model as a tool for IR even for queries with many terms.

We presented implementation details of an experimental prototype and compared it with a

popular commercial product. We found that run time results were comparable for query thresh-

23



olds between 25 and 33 percent and that our approach provides additional functionality in that

unchanged SQL may be used to integrate structured data and text.

The relational approach lends itself to parallel processing as relational DBMS have been im-

plemented on many parallel machines. Our results indicate that the approach is scalable, and we

believe it is feasible to implement our approach for large document collections (in the Terabyte

range) using a parallel DBMS approach. We are currently working to test our approach for larger

document collections.

We have measured the secondary storage overhead required to implement the relational ap-

proach and have found that it is less than 1.5:1, or roughly a factor of three as compared to

traditional IR systems. Such an overhead may be acceptable given the functional advantages of

our approach. A simplistic term identi�er approach has yielded a 35% storage improvement. It is

reasonable to expect that more sophisticated storage reduction techniques could be used to further

reduce storage requirements.

Additionally, we have only shown term based Information Retrieval algorithms in SQL. Other

approaches such as n-grams, thesauri, and passage-based retrieval can be implemented in a straight-

forward manner; however, in the latest results from the Text Retrieval and Evaluation Conference,

it is not clear that these approaches improve precision/recall. In terms of run-time performance, ad-

ditional processing results in substantially higher run-time. Therefore, we did not degrade run-time

performance to obtain unsubstantiated improvements to the accuracy of our prototype. However,

in the future, we will explore the relational implementation of approaches that have been shown to

yield improvements to precision/recall.

24



References

[1] Special Issue on Parallel Processing, Information Processing and Management, Volume 27,

Number 4, 1991.

[2] Sql/ds systems programming manual. 1992.

[3] Proceedings of the Fourth Text REtrieval and Evaluation Conference, 1995.

[4] M. Stonebraker Je� Anton and Eric Hanson. Extending a database system with procedures.
ACM Transactions on Database Systems, 12(3):350{376, September 1987.

[5] D. Blair. Square (specifying queries as relational expressions) as a document retrieval language.
Unpublished working paper, University of California, Berkeley., 1974.

[6] D. Blair. An extended relational retrieval model. Information Processing and Management,
1988.

[7] P. Goyal, B.C. Desai, and F. Sadri. Non-�rst normal form universal relations: An application
to information retrieval systems. Information Systems, 12(1):49{55, 1987.

[8] Donna Harman. Overview of the third text retrieval conference. Proceedings of the Third Text

REtrieval Conference, 1995.

[9] C. Lynch and M. Stonebraker. Extended user-de�ned indexing with application to textual
databases. Proceedings of the 14th VLDB Conference, pages 306{317, 1988.

[10] I. Macleod. A relational approach to modular information retrieval systems design. Proceedings
of the ASIS Annual Meeting, 15:83{85, 1978.

[11] I. Macleod. Sequel as a language for document retrieval. Journal of the American Society for

Information Science, pages 243{249, September 1979.

[12] T. Niemi and K. Jarvelin. A straightforward nf2 relational interface with applications in
information retrieval. Information Processing and Management, 31(2):215{231, 1995.

[13] Informix-OnLine Dynamic Server, Performance Guide, May 1995.

[14] G. Salton. Parallel text search methods. Communications of the ACM, pages 202{214, Febru-
ary 1988.

[15] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[16] G. Salton, C.S. Yang, and A. Wong. A vector-space model for information retrieval. Commu-
nications of the ACM, 18, 1975.

[17] H.J. Schek and P.Pistor. Data structures for an integrated data base management and infor-
mation retrieval system. In Proceedings of the Eighth International Conference on Very Large

Data Bases, pages 197{207, September 1982.

[18] M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and Antonin Guttman. Document processing
in a relational database system. ACM Transactions on O�ce Information Systems, 1(2):143{
158, April 1983.

25


