
Distributed Construction of Connected Dominating
Set in Wireless Ad Hoc Networks

Peng-Jun Wan� Khaled M. Alzoubi� Ophir Frieder�

Abstract—Connected dominating set (CDS) has been proposed as virtual
backbone or spine of wireless ad hoc networks. Three distributed approxi-
mation algorithms have been proposed in the literature for minimum CDS.
In this paper, we first reinvestigate their performances. None of these al-
gorithms have constant approximation factors. Thus these algorithms can
not guarantee to generate a CDS of small size. Their message complexities
can be as high asO

�
n2

�
, and their time complexities may also be as large

as O
�
n2

�
and O

�
n3

�
. We then present our own distributed algorithm

that outperforms the existing algorithms. This algorithm has an approxi-
mation factor of at most 8,O (n) time complexity andO (n log n) message
complexity. By establishing the
 (n log n) lower bound on the message
complexity of any distributed algorithm for nontrivial CDS, our algorithm
is thus message-optimal.

I. INTRODUCTION

Wireless ad hoc networks can be flexibly and quickly de-
ployed for many applications such as automated battlefield,
search and rescue, and disaster relief. Unlike wired networks
or cellular networks, no physical backbone infrastructure is in-
stalled in wireless ad hoc networks. A communication session
is achieved either through a single-hop radio transmission if the
communication parties are close enough, or through relaying by
intermediate nodes otherwise. In this paper, we assume that all
nodes in a wireless ad hoc network are distributed in a two-
dimensional plane and have an equal maximum transmission
range of one unit. The topology of such wireless ad hoc net-
work can be modeled as a unit-disk graph [6], a geometric graph
in which there is an edge between two nodes if and only if their
distance is at most one (see Figure 1).

Fig. 1. Model the topology of wireless ad hoc networks by unit-disk graphs.

Although a wireless ad hoc network has no physical backbone
infrastructure, a virtual backbone can be formed by nodes in a
connected dominating set of the corresponding unit-disk graph

�Department of Computer Science, Illinois Institute of Technology, Chicago,
IL 60616. Email: fwan, alzoubi, ophir g@cs.iit.edu.

[1][7][10]. Such virtual backbone, also referred to as spine,
plays a very important role in routing, broadcasting and con-
nectivity management in wireless ad hoc networks [1]. In gen-
eral, a dominating set (DS) of a graph G = (V;E) is a subset
V 0 � V such that each node in V �V 0 is adjacent to some node
in V 0, and a connected dominating set (CDS) is a dominating
set which also induces a connected subgraph. A (connected)
dominating set of a wireless ad hoc network is a (connected)
dominating set of the corresponding unit-disk graph. To sim-
plify the connectivity management, it is desirable to find a mini-
mum connected dominating set (MCDS) of a given set of nodes.
However, finding an MCDS in unit-disk graphs is NP-hard [6],
and thus only distributed approximation algorithms in polyno-
mial time are practical for wireless ad hoc networks. In this
paper, we further show that any distributed algorithm for non-
trivial CDS requires at least O (n logn) messages, where n is
the number of nodes and the message length has the same order
of the number of bits representing the node IDs.

Since the networking nodes in wireless ad hoc networks are
very limited in resources, a virtual backbone should not only be
“thinner”, but should also be constructed with low communi-
cation and computation costs. In addition, the communication
and computation costs should be scalable as the wireless ad hoc
networks are typically deployed with large network size. In this
paper, we first reinvestigate the performance of the three known
distributed approximation algorithms for MCDS, proposed by
Das et al in [1][7][10], by Wu and Li in [12] and by Stojmen-
ovic et al in [11], respectively. After that we propose a new
distributed algorithm. We show that our algorithm outperforms
significantly the existing algorithms. A remark is that this paper
focuses on the generation of a CDS. The maintenance of CDS is
not discussed in this paper.

II. LOWER BOUND ON MESSAGE COMPLEXITY

In this section, we establish the
 (n logn) lower bound on
the message complexity for distributed algorithms for leader
election, spanning tree and nontrivial CDS in wireless ad hoc
networks. The reduction is made from the following well-
known bound on the message complexity of distributed leader
election in asynchronous ring networks with point-to-point
transmission.

Theorem 1: [2] In asynchronous rings with point-to-point
transmission, any distributed algorithm for leader election in
sends at least
 (n logn) messages.

Theorem 2: In asynchronous wireless ad hoc networks whose
unit-disk graph is a ring, any distributed algorithm for leader
election sends at least
 (n logn) messages.

Proof: Let A be any distributed algorithm for leader elec-
tion in wireless ad hoc networks whose unit-disk graph is a ring.
Let A� be the algorithm by replacing each wireless transmission
by two point-to-point transmissions. Then A� is a distributed
algorithm for leader election in asynchronous rings with point-
to-point transmission. Note that the algorithm A� sends twice
messages of that sent by A. Thus from Theorem 1, A must also
send at least
 (n logn) messages.

Theorem 3: In asynchronous wireless ad hoc networks whose
unit-disk graph is a ring, any distributed algorithm for spanning
tree sends at least
 (n logn) messages.

Proof: Let A be any distributed algorithm for spanning
tree in wireless ad hoc networks whose unit-disk graph is a ring.
Note that any spanning tree of a ring consists of all edges in the
ring except one. Thus it has exactly two leaves which are also
neighbors. Thus after an spanning tree is completed, the two
leaves can exchange a message to select the leader between them
according to some symmetry-breaking criterion, for example by
their IDs. After the leader is identified, it then notifies all other
nodes in linear number of message. Thus from algorithm A,
we can derive a distributed algorithm for leader election whose
message complexity is �(n) more than the number of messages
sent by A. From Theorem 2, the message complexity of A is at
least
 (n logn) :

A distributed algorithm for leader election in wireless ad hoc
networks has been proposed in [5]. This algorithm has message
complexity O (n logn) and therefore is message-efficient. Its
actual implementation also constructs a spanning tree rooted at
the leader.

Theorem 4: In asynchronous wireless ad hoc networks whose
unit-disk graph is a ring, any distributed algorithm for nontrivial
CDS sends at least
 (n logn) messages.

Proof: Let A be any distributed algorithm for CDS in
wireless ad hoc networks whose unit-disk graph is a ring. Note
that for any nontrivial CDS of a ring consists of all nodes except
either a unique node or two neighboring nodes. So after an non-
trivial CDS is completed, the leader can be elected as follows. A
dominatee declares itself as the leader if both its neighbors are
dominators, or one of its neighbor is a dominatee but has larger
ID. The leader then notifies all other nodes in linear number of
message. Thus from algorithmA, we can derive a distributed al-
gorithm for leader election whose message complexity is �(n)
more than the number of messages sent by A. From Theorem 2,
the message complexity of A is at least
 (n logn) :

III. DAS ET AL’S ALGORITHM

The centralized version of the distributed algorithm proposed
by Das et al consists of three stages. The first stage finds an
approximation to Minimum Dominating Set, which is essen-
tially the well-studied Set Cover problem. Not surprisingly, the
heuristic proposed by das et al in [1][7][10] is a translation of
Chvatal’s greedy algorithm [4] for Set Cover, and thus guaran-
tees an approximation factor of H (�), where � is the maxi-
mum degree and H is the harmonic function. Let U denote the
dominatg set output in this stage. The second stage constructs a
spanning forest F . Each tree component in F is a union of stars
centered at the nodes in U . The stars are generated by letting
each dominatee node pick up an arbitrary neightbor in U . The
thrid stage expands the spanning forest F to a spanning tree T
. All internal nodes in T form a CDS. It is easy to show that
the CDS generated in this way contains at most 3 jU j nodes, and
therefore is a 3H (�)-approximation of MCDS.

2

u

u2

v2
vkv1

1

k-120 21

20 2k-121

of nodes

of nodes

Fig. 2. Instance for which the size of the solution computed by the greedy al-
gorithm, fv1; v2; � � � ; vkg, is larger than the optimum solution, fu1; u2g,
by a logarithm factor.

Figure 2 shows a family of instances for which the size of the
solution computed by the above greedy algorithm is larger than
the optimum solution by a logarithm factor. All points lie in a
rectangle whose horizontal side has length one and whose ver-

tical side has length 2

r
1�

�
1

2(k�1)

�2
. The two nodes v1and

vk are the centers of the left and right vertical sides respectively.
The k � 2 nodes v2; v3; � � � ; vk�1 are evenly distributed within
the line segment between v1and vk from left to right. The two
nodes u1and u2 are the centers of the two sub-rectangles above
and below the segment between v1and vk respectively. The rest
points lie in the two horizontal sides. In each horizontal side,

20 = 1 node lies to the left of (and excluding) the perpendicular
bisector of v1v2, 2k�1 nodes lie to the right of (and excluding)
the perpendicular bisector of vk�1vk , and 2i�1 nodes lie be-
tween (and excluding) the perpendicular bisector of vi�1vi and
the perpendicular bisector of vivi+1. Thus, the total number of
nodes is

n = k + 2 + 2

kX
i=1

2i�1 = k + 2k+1:

Note that u1 is adjacent to all nodes lying in the top sub-
rectangle, u2 is adjacent to all nodes lying in the bottom sub-
rectangle, and they are adjacent to each other. Thus, fu1; u2g
forms an MCDS. On the other hand, the above greedy algorithm
would add vk; vk�1; � � � ; v1 sequentially to the dominating set
in the first stage and output the set fv1; v2; � � � ; vkg as the CDS
at the end of the second stage. This can be proven by induction
as follows.

Initially, the degree of node vi is

2 � 2i�1 + (k � 1) + 2 = 2i + k + 1;

the degrees of the node u1 and u2 are both

kX
i=1

2i�1 + k + 1 = 2k + k;

and the degree of any other node is

kX
i=1

2i�1 � 1 + 1 + 1 = 2k:

So vk is the first node to be selected. Now we assume that the
nodes vk; vk�1; � � � ; vj have been added to the dominating set.
For any node vi with i < j, the number of its neighbors that
have not been dominated yet is 2 � 2i�1 = 2i; for the node u1
or u2, the number of its neighbors that have not been dominated
yet is

j�1X
i=1

2i�1 = 2j�1 � 1;

and for any other rest node, the number of its neighbors that
have not been dominated yet is

j�1X
i=1

2i�1 � 1 = 2j�1 � 2:

So the node vj�1 is then added to the dominating set. Therefore,
by induction, the nodes vk; vk�1; � � � ; v1 are added sequentially
to the dominating set. Note that fv1; v2; � � � ; vkg is a CDS. The
first stage will stop after v1 is added, and the second stage would
add no more nodes.

Since n = k + 2k+1 and � = 2k + k + 1, we have k >

logn� 2 and k > log �� 1. Therefore, the instance shown in
Figure 2 implies the lower bounds logn

2 � 1 and log�
2 � 1

2 on
the approximation factor of the greed algorithm.

The distributed implementation of the above greedy algorithm
proposed in [1][7][10] has very high time complexity and mes-
sage complexity. Indeed, both time complexity and message
complexity can be as high as �

�
n2
�
. We also notice that such

distributed implementation is technically incomplete. For exam-
ple, the distributed implementation consists of multiple stages,
but the implementation lacks lack mechanisms to bridge two
consecutive stages. Thus, individual nodes have no way to tell
when the next stage should begin. While these technical incom-
pleteness are possibly to be fixed, we will not take such effort
here as the approximation factor of the greedy algorithm is in-
trinsically poor.

In summary, we have the following performance results of the
distributed algorithm in [1][7][10].

Theorem 5: The approximation factor of the distributed algo-
rithm proposed by Das et al in [1][7][10] is between log �

2 � 1
2

and 3H (�). Both its message complexity and time complexity
are O

�
n2
�
.

IV. WU AND LI’S ALGORITHM

While the algorithm proposed by Das et al first finds a DS
and then grow this DS into a CDS, the algorithm proposed by
Wu and Li in [12] takes an opposite approach. The algorithm
in [12] first finds a CDS and then prune certain redundant nodes
from the CDS. The initial CDS U consists of all nodes which
have at least two non-adjacent neighbors. A node u in U is con-
sidered as locally redundant if it has either a neighbor in U with
larger ID which dominates all other neighbors of u, or two ad-
jacent neighbors with larger IDs which together dominates all
other neighbors of u. The algorithm then removes all locally re-
dundant nodes from U . This algorithm applies only to wireless
ad hoc networks whose unit-disk graph is not a complete graph.
As indicated in [12], the approximation factor of this algorithm
remains unspecified. Obviously, the MCDS of any wireless ad
hoc network whose unit-disk graph is not complete graph con-
sists of at least two nodes. On the other hand, any CDS contains
at most n nodes. Thus, the approximation factor of the above
algorithm is at most n

2 where n is the number of nodes. Next,
we show that the approximation factor of the above algorithm
is exactly n

2 : This means that the above algorithm does perform
extremely poorly over certain instances.

When n is even, we consider the instance illustrated in Figure
3(a). These nodes are evenly distributed over the two horizon-
tal sides of a unit-square. Each node has exactly m neighbors,
one in the opposite horizontal side and the rest in the same hor-
izontal side. Any MCDS consists of a pair of nodes lying in a
vertical segment. However, the CDS output by the algorithm in
[12] consists of all nodes. Indeed, for each node u, the unique
neighbor lying in the opposite horizontal side is not adjacent to
all other neighbors of u. Thus, the initial CDS U consists of all
nodes. In addition, no single neighbor of a node u can dominate
all other neighbors of u. Furthermore, if a pair of neighbors of
u are adjacent, they must lie in the same horizontal side as u;

and therefore neither of them is adjacent to the unique neigh-
bor of u lying in the opposite horizontal side. So no node is
locally redundant. Consequently the output CDS still consists
of all nodes.

*

(b)(a)

u

Fig. 3. Instance for which the CDS computed by Wu and Li’s algorithm consists
of all nodes but the MCDS consists of only two nodes.

When n is odd, we consider the instance illustrated in Figure
3(b). The node with the largest ID, denoted by u�, is the center
of the left vertical side of a unit-square, and all other n � 1
nodes are evenly distributed over the two horizontal sides of the
unit-square. The two nodes at the left two corners of the unit-
square forms an MCDS. On the other hand, the CDS output by
the algorithm in [12] also consists of all nodes. In fact, following
the same argument as in the even case, all nodes other than u�

are in the initial CDS U . The node u� is also in the initial CDS
U as well. Since u� is not adjacent to the two nodes at the right
corners of the unit-square, all nodes other than u� are not locally
redundant. The u� itself is also not locally redundant as it has
the maximum ID. Therefore, the output CDS still consists of all
nodes.

The distributed implementation of the above algorithm given
in [12] runs in two phases. In the first phase, each node first
broadcasts to its neighbors the entire set of its neighbors, and
after receiving this adjacency information from all neighbors it
declares itself as dominator if and only if it has two nonadjacent
neighbors. These dominators form the initial CDS. In the second
phase, a dominator declares itself as a dominatee if it is locally
redundant. Note a dominator can find whether it is locally re-
dundant from the adjacency information of all its neighbors. It is
claimed in [12] that the total message complexity is O (n�) and
the time complexity at each node is O

�
�2
�
. A more accurate

message complexity is �(m) where m is the number of edges
in the unit-disk graph, as each edge contributes two messages
in the first phase. The O

�
�2
�

time complexity, however, is not
correct. In fact, in order to decide whether it is locally redun-
dant in the second phase, a node u in the initial CDS may have
to examine as many as O

�
�2
�

pairs of neighbors, and for each
pair of neighbors, as much as O (�) time may be taken to find
out whether such pair of neighbors together dominates all other
neighbors of u. Therefore, the time complexity at each node
may be as high as O

�
�3
�
, instead of O

�
�2
�
. Note that m and

� can be as many as O
�
n2
�

and O (n) respectively. Thus, the

message complexity and the time complexity of the distributed
algorithm in [12] are O

�
n2
�

and O
�
n3
�

respectively. The in-
stances shown in Figure 3 do require such complexities.

In summary, we have the following performance results of the
distributed algorithm in [12].

Theorem 6: The approximation factor of the distributed algo-
rithm proposed by Wu and Li in [12] is exactly n

2 . Its message
complexity is �(m) and its time complexity is O

�
�3
�
.

V. STOJMENOVIC ET AL’S ALGORITHM

In the context of clustering and broadcasting, Stojmenovic
et al [11] presented a distributed construction of CDS. The
CDS consists of two types of nodes: the cluster-heads and the
border-nodes. The cluster-heads form a maximal independent
set (MIS), i.e., a dominating set in which any pair nodes are non-
adjacent. Several algorithms for MIS were described in [11],
which can be generalized to the following framework:
� Each node has a unique rank parameter such as the ID only
[8][9], an ordered pair of degree and ID [3], an order pair of
degree and location [11]. The ranks of all nodes give rise to a
total ordering of all nodes.
� Initially, each node which has the lowest rank among all
neighbors broadcasts a message declaring itself as a cluster-
head. Note that such node does exist.
� Whenever a node receives a message for the first time from a
cluster-head, it broadcasts a message giving up the opportunity
as a cluster-head.
� Whenever a node has received the giving-up messages from
all of its neighbors with lower ranks, if there is any, it broadcasts
a message declaring itself as a cluster-head.

After a node learns the status of all neighbors, it joins the
cluster centered at the neighboring cluster-head with the lowest
rank by broadcasting the rank of such cluster head. The border-
nodes are those which are adjacent to some node from a different
cluster. Then all cluster-heads and all border-nodes form a CDS.

Regardless of the choice of the rank, the algorithm in [11]
have an �(n)approximation factor. Such inefficiency stems
from the non-selective inclusion of all border-nodes. In fact, if
the rank is ID only, Figure 4 shows a family of instances which
would imply the approximation factor to be exactly n. In these
instances, the node with the largest ID is located at the center
of a unit-disk and all other nodes are evenly distributed in the
boundary of the unit-disk. After the cluster-heads are selected,
all other nodes become border-nodes. Thus the CDS would con-
sist of all nodes. On the other hand, the node at the center domi-
nates all other nodes. If the rank is an ordered pair of degree and
ID or an order pair of degree and location, the instances shown
in Figure 3 imply that their approximation factors are at least n

2 .
If the rank is ID only, it is easy to construct an instance to show
that the approximation factor is exactly n, the worst possible.

Fig. 4. Instance for which the CDS output by Stojmenovic et al’s algorithm
consists of all nodes but the MCDS consists of only one node.

The implementation cost of these algorithms given in [11] de-
pends on the choice of the rank. If the rank is ID only, which
remains unchanged throughout the process, both the time com-
plexity and the message complexity of this algorithm are �(n).
This does not contradict to Theorem 4, as it may output a trivial
CDS. If the rank involves the degree, which would change dy-
namically throughout the process, a significant amount of time
and messages have to be devoted to rank updating and synchro-
nization. The algorithms in [11] didn’t provide these implemen-
tation details. But at least O

�
n2
�

messages and time may be
required for rank updating and synchronization.

In summary, we have the following performance results of the
distributed algorithm in [11].

Theorem 7: If the rank is ID only, the distributed algorithm
proposed by Stojmenovic et al in [11] has an approximation
factor of n and linear message and time complexities. If the
rank involves the degree, the distributed algorithm proposed by
Stojmenovic et al in [11] has an approximation factor of n

2 and
O
�
n2
�

message and time complexities.

VI. A BETTER DISTRIBUTED ALGORITHM

A. Algorithm Description

Our distributed algorithm for CDS consists of three phases:
the Leader Election Phase, the Level Calculation Phase, and the
Color Marking Phase. The Leader Election Phase elects a leader
v and constructs a spanning tree T rooted at the leader. The
distributed algorithm in [5] for leader election can be adopted.
Note that any criteria can be used to define the leadership, such
as ID or the combination of degree and ID. This algorithm has
O (n) time complexity and O (n logn) message complexity. At
the end of the first phase, each node knows its parent and its
children in T .

In the Level Calculation Phase, each node identifies its level
in T . It starts with the root announcing its level 0. Each node,
upon receiving the level announcement message from its parent
in T , obtains its own level by increasing the level of its parent by
one, and then announce this own level. Each node also records

the levels of its neighbors in the unit-disk graph. If we need to
report the completion of the tree, a report process has to be per-
formed upwards along the T . When a leaf node has determined
its level, it transmits a COMPLETE message to its parent. Each
internal node will wait till it receives this COMPLETE message
from each of its children and then forward it up the tree toward
the root. When the root receives the COMPLETE message from
all its children, then it starts the third phase. Obviously, the total
number of messages sent in this phase is O (n). At this moment,
each node knows the levels and IDs of its own and its neighbors.
The pair (level, ID) of a node defines the rank of this node. The
ranks of all nodes are sorted in the lexicographic order. Thus the
leader, which is at level 0, has the lowest rank.

In the Color Marking Phase, all nodes are initially unmarked
(white), and will eventually get marked either black or gray.
Two types of messages are used by the nodes during this phase,
the DOMINATOR message and the DOMINATEE message.
The DOMINATOR message is sent by a node after it marks it-
self black, and the DOMINATEE message is sent by a node after
it marks itself gray. Both messages contains the sender’s ID. The
third phase is initiated by the root which marks itself black, and
then broadcasts to its neighbors a DOMINATOR message. All
other nodes act according to the following principles.
� Whenever a white node receives a DOMINATOR message for
the first time, it marks itself gray and broadcasts the DOMINA-
TEE message.
� When a white node has received a DOMINATEE message
from each of its neighbors of lower rank, it marks itself black
and broadcasts the DOMINATOR message. It will then choose
its parent in T as its own dominator.
� When a gray node receives a DOMINATOR message for the
first time from some child in T which has never sent a DOM-
INATEE message, it remarks itself black and broadcasts the
DOMINATOR message.
� If a black node has rank higher than all its neighbors and all
its neighbors are all black, it remarks itself gray and broadcasts
the DOMINATOR message.

and have lower ranks

from a white child

white

All neighbors are black

DOMINATOR msg

DOMINATOR msg

from a neighbor

DOMINATEE msgs
from all low-ranked

neighbors

gray black

Fig. 5. The state transition diagram of the Color Marking Phase.

Figure 5 shows the state transition diagram of this phase.
Eventually each node will be either black (a dominator) or gray

(dominatee). A reporting process as in the second phase, if nec-
essary, can be performed to notify the root of the completion.

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

(a) (b)

(c) (d)

(e) (f)

Fig. 6. An example of the algorithm for color marking.

Figure 6 illustrates the algorithm for color marking in this
phase. In the graph, the IDs of the nodes are labelled beside
the nodes, and node 0 is the leader elected in the first phase.
The solid lines represent the edges in the spanning tree output
at the first phase, and the dashed lines represents other edges in
the unit-disk graph. The ordering of the nodes by rank is given
by 0, 4, 12, 2, 5, 8, 10, 3, 6, 9, 11, 1, 7. A possible execution
scenario is shown in Figure 6(a)–(f), which is explained below.
1. Node 0 marks itself black and sends out a DOMINATOR
message (see Figure 6(a)).
2. Upon receiving the DOMINATOR message from node 0,
nodes 2, 4 and12 mark themselves gray, and then send out the
DOMINATEE messages (see Figure 6(b)).
3. Upon receiving the DOMINATEE message from node 2,
node 3 has to wait for node 8. Upon receiving the DOMINATEE
message from node 4, node 8 has to wait for node 5. Upon re-
ceiving the DOMINATEE message from node 12, node 5 marks
it black as all its low-ranked neighbors (node 12 only) have been
marked gray; node 7 has to wait for nodes 6, 9, 11; and node 10
has to wait for node 5 (see Figure 6(c)).
4. Upon receiving the DOMINATOR message from node 5,
nodes 8, 9, 10 and 11 mark themselves gray and send out DOM-

INATEE messages; node 12 remarks itself black and sends out
a DOMINATOR message (see Figure 6(d)).
5. Upon receiving the DOMINATOR message from node 12,
node 7 marks itself gray and sends out a DOMINATEE message.
Upon receiving the DOMINATEE message from node 8, node
3 marks itself black as all its low-ranked neighbors (nodes 2,
8) have been marked gray; node 6 has to wait for node 3 (see
Figure 6(e)).
6. Upon receiving the DOMINATOR message from node 3,
nodes 1 and 6 mark themselves gray and send out DOMINATEE
messages; node 8 remark itself black and send out a DOMINA-
TOR message (see Figure 6(f)).

Note that at the end of the last step, node 4 will receive the
DOMINATOR message from node 8. But it will not remark
its color from gray to black as node 8 has sent a DOMINATEE
message previously.

B. Correctness

We distinguish the black nodes into two types. A black node
is of the first type if it is marked black from white, and is of
the second type if it is first marked gray from white and then
remarked black from gray.

Theorem 8: At the end of the third phase, all black nodes
form a nontrivial CDS.

Proof: Since all nodes are either marked gray or black
and each gray node is adjacent to at least one black node, all
black nodes form a DS. In order to show that all black nodes are
connected, it is sufficient to prove that between any black node
and the root, there is a “black” path, i.e., a path consisting of
only black nodes. We prove it by contradiction.

Assume to the contrary. Let u1 be the black node that is
marked black at the earliest time among those black nodes
which have no black path from the root. Then u1 must be of
the first type, i.e., u1 marks itself black from white. Let u2 be
the parent of u1. Then by the time u1 marks itself black, u2 is al-
ready marked gray. Let u3 be the black node whose DOMINA-
TOR message causes u2 to mark itself gray from white. Then u3
is marked black earlier than u1. From the selection of u1, there
is a black path from u3 to the root. On the other hand, u2 will
eventually mark itself black, upon receiving the DOMINATOR
message either from u1 or some other child which has never sent
a DOMINATEE message previously. By concatenating the path
u1u2u3 and the black path from u3 to the root, we obtain a black
path from u1 to the root. This contradicts to the assumption that
u1 has no black path from the root.

It is obvious that the CDS is nontrivial.

C. Performance Analysis

Since all three phases haveO (n) time complexity, the overall
time complexity of our distributed algorithm is O (n). The mes-
sage complexity of the first phase is O (n logn). The message

complexity of the second phase is O (n). The message com-
plexity of the third phase is also O (n), as each gray node or
black node of the first type sends exactly one message and each
black node of the second type sends two messages. Thus the
total message complexity of our algorithm is O (n logn).

Next, we bound the number of black nodes in terms of the size
of an MCDS, denoted by opt. A set of nodes are said to be inde-
pendent if they are pairwise non-adjacent. Intuitively, the nodes
in an independent set are “sparsely” distributed with certain dis-
tance between any pair of nodes. Indeed, it is well-known that
in a unit-disk graph each node is adjacent to at most five inde-
pendent nodes. This immediately implies that the size of any
independent set is at most 5 � opt. Next, we show a stronger
bound on the size of any independent set.

Lemma 9: The size of any independent set in a unit-disk
graph G = (V;E) is at most 4 � opt+ 1.

Proof: Let U be any independent set of V , and let T � be
any spanning tree of an MCDS. Consider an arbitrary preorder
traversal of T � given by v1; v2; � � � ; vopt. Let U1 be the set of
nodes in U that are adjacent to v1. For any 2 � i � opt, let
Ui be the set of nodes in U that are adjacent to vi but none of
v1; v2; � � � ; vi�1. Then U1; U2; � � � ; Uopt form a partition of U .
As v1 can be adjacent to at most five independent nodes, jU1j �
5. For any 2 � i � opt, at least one node in v1; v2; � � � ; vi�1
is adjacent to vi. Thus Ui lie in a sector of at most 240 degree
within the coverage range of node vi (see Figure 7). This implies
that jUij � 4. Therefore,

jU j =

optX
i=1

jUij � 5 + 4 (opt� 1) = 4 � opt+ 1:

This completes the proof.

Uiiv

Fig. 7. Ui lie in a sector of at most 240 degree within the coverage range of
node vi .

Let k be the number of levels of the spanning tree T con-
structed in the first phase. For each level 0 � ` � k � 1, let S`

denote the black nodes of the first type at level `, and P` denote
the black nodes of the second type at level `. Then S0 consists
only of the leader, and S1 = P0 = Pk�1 = ;. In addition, for
each 1 � ` � k � 2, each node in P` is the parent of some node

[1][7][10] [12] [11] This paper
Approx. factor O (log n) O (n) O (n) � 8
Msg. complexity O

�
n2

�
O

�
n2

�
O (n)–O

�
n2

�
O (n logn)

Time complexity O
�
n2

�
O

�
�3

�
O (n)–O

�
n2

�
O (n)

Ngh. knowledge two-hop two-hop single-hop single-hop

TABLE I

PERFORMANCE COMPARISON.

in S`+1;and thus jP`j � jS`+1j. Therefore,

�����
k�1[
`=0

P`

����� =
k�1X
`=0

jP`j =
k�2X
`=1

jP`j

�
k�2X
`=1

jS`+1j =
k�1X
`=0

jS`j � 1 =

�����
k�1[
`=0

S`

������ 1:

On the other hand, all nodes in
Sk�1

`=0 S` are independent, and
thus from Lemma 9,

�����
k�1[
`=0

S`

����� � 4opt+ 1:

This implies that the total number of black nodes is at most

�����
k�1[
`=0

S`

�����+
�����
k�1[
`=0

P`

����� � 2 (4opt+ 1)� 1 = 8opt+ 1:

In summary, we have the following performance results of the
distributed algorithm in [12].

Theorem 10: Our distributed algorithm has an approximation
factor of at most 8, O (n) time complexity, andO (n logn) mes-
sage complexity.

VII. CONCLUSION

In this paper, we have established a
 (n logn) lower bound
on message complexity of any distributed algorithm for non-
trivial CDS. We then reinvestigated three known distributed ap-
proximation algorithms for MCDS. After that we presented our
own algorithm. The performance comparison of these four al-
gorithms is listed in Table I. From this table, we can conclude
that our algorithm outperforms the existing algorithms.

REFERENCES

[1] V. Bharghavan and B. Das, “Routing in Ad Hoc Networks Using Mini-
mum Connected Dominating Sets”, International Conference on Commu-
nications’97, Montreal, Canada. June 1997.

[2] J. Burns, “A Formal Model for Message Passing Systems”, Technical Re-
port TR-91, Computer Sceince Department, Indiana University, May 1980.

[3] G. Chen and I. Stojmenovic, “Clustering and routing in wireless ad hoc
networks”, Technical Report TR-99-05, Computer Science, SITE, Univer-
sity of Ottawa, June 1999.

[4] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics
of Operation Research, 4(3):233–235, 1979.

[5] I. Cidon and O. Mokryn, “Propagation and Leader Election in Multihop
Broadcast Environment”, 12th International Symposium on DIStributed
Computing (DISC98), September 1998, Greece. pp.104–119.

[6] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit Disk Graphs”, Dis-
crete Mathematics, 86:165–177, 1990.

[7] B. Das, R. Sivakumar, and V. Bhargavan, “Routing in Ad-Hoc Networks
Using a Spine”, International Conference on Computers and Communica-
tions Networks ’97, Las Vegas, NV. September 1997.

[8] M. Gerla, and J. Tsai, “Multicluster, mobile, multimedia radio net-
work”, ACM-Baltzer Journal of Wireless Networks, Vol.1, No.3, pp.255-
265(1995).

[9] C.R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless Net-
works”, IEEE Journal on Selected Areas in Communications, Vol. 15, No.
7, Sept. 1997, pp. 1265-1275

[10] R. Sivakumar, B. Das, and V. Bharghavan, “An Improved Spine-based In-
frastructure for Routing in Ad Hoc Networks”, IEEE Symposium on Com-
puters and Communications ’98, Athens, Greece. June 1998.

[11] I. Stojmenovic, M. Seddigh, J. Zunic, “Dominating sets and neighbor
elimination based broadcasting algorithms in wireless networks”, Proc.
IEEE Hawaii Int. Conf. on System Sciences, January 2001.

[12] J. Wu and H.L. Li, “On calculating connected dominating set for efficient
routing in ad hoc wireless networks”, Proceedings of the 3rd ACM inter-
national workshop on Discrete algorithms and methods for mobile com-
puting and communications, 1999, Pages 7–14.

