
Improving Accuracy and Run-Time Performance for

TREC-4

David A. Grossman

O�ce of Information Technology

3E09 Plaza B

Washington, DC

dgrossm1@mason1.gmu.edu

David O. Holmes

AT&T Global Information Solutions

Rockville, MD

David.Holmes@washingtondc.attgis.com

Ophir Frieder�

Department of Computer Science

George Mason University

Fairfax, VA

ophir@cs.gmu.edu

Matthew D. Nguyen

Coherent Design Systems

Centreville, Virginia

mnguye6@osf1.gmu.edu

Christopher E. Kingsbury

Hughes Applied Information Systems

Landover, Maryland

ckingsbu@osf1.gmu.edu

Abstract

For TREC-4, we enhanced our existing prototype that implements relevance ranking using
the AT&T DBC-1012 Model 4 parallel database machine to support the entire document collec-
tion. Additionally, we developed a special purpose IR prototype to test a new index compression
algorithm and to provide performance comparisons to the relational approach.

We submitted o�cial results for both automatic and manual adhoc queries for the entire
2GB English collection and the provided Spanish collection. Additionally, we submitted results
using n-grams to process the corrupted data. In addition to implementing the vector-space
model, we experimented with query reduction based on term frequency. Query reduction was
shown to result in dramatically improved run-time performance and, in many cases, resulted in
little or no degradation of precision/recall.

1 Introduction

For TREC-4, we implemented relevance ranking queries using SQL on an AT&T DBC-1012 (for-

merly Teradata) parallel database machine [1]. Additionally, we implemented a special purpose IR

prototype to test a new index compression algorithm and to provide performance comparisons to

the relational approach.

We submitted o�cial results for the entire 2GB English collection, both for automatic and

manual adhoc queries and against the Spanish collection. We also submitted results using n-grams

to process the corrupted data.

�This work supported in part by the National Science Foundation under contract number IRI-9357785.



In addition to implementing the vector-space model, we experimented with query reduction

based on term frequency. Query reduction was shown to dramatically a�ect run-time performance

without losing a signi�cant amount of precision/recall.

We will briey describe the implementation of our relational prototype and our special-purpose

prototype in Section 2. More detailed descriptions are found in [9, 12]. Sections 3 and 5 will describe

the results obtained for our English and Spanish submissions. Section 4 describes our corrupted

data results, and Section 6 contains our conclusions and future work.

2 Implementation of the Inverted Index

We developed two separate implementations, a parallel relational approach and a special purpose

IR approach.

2.1 A Parallel DBMS Approach to IR

Our approach treats the problem as an application of a relational database system. While parallel

implementations of relational database systems are common, parallel implementations of informa-

tion retrieval (IR) systems are rare. Implementing information retrieval as a relational database

application provides a portable, parallel means of implementing information retrieval algorithms.

We model an inverted index with a relation DOC TERM(doc id, term, tf). A relation, QUERY

(query, term, tf), indicates the terms in the query and their frequency in the query. DOC (doc id,

doc name, doc weight) contains the document name and the normalized weight for each document.

QUERY WEIGHT (query, query weight) contains the normalized query weight for each query.

Finally, an IDF(term,idf) relation stores the inverse document frequency for each term.

Given these relations, the following DBC-1012 SQL will compute a cosine similarity coe�cient

for a given query: query number:

Ex: 1 SELECT a.query, c.doc name, SUM(a.tf * b.tf * e.idf * e.idf) / SQRT(d.query weight * c.doc weight)
FROM QUERY a, DOC TERM b, DOC c, QUERY WEIGHT d, IDF e

WHERE a.term = b.term AND
a.term = e.term AND
b.docid = c.docid AND
a.query = d.query AND
a.query = query number

GROUP BY a.query, c.doc name, d.query weight, c.doc weight
ORDER BY 2 DESC

For additional details the reader is referred to [7]. The query in Example 1 is of �xed syntactic

length. We implemented the cosine query on the AT&T parallel database machine. We imple-

mented the simple dot product on Microsoft SQL Server V4.2, Sybase SQL Server System 10, and

Oracle 7. Practical experimentation shows that this query performs well on each of these systems.

2.2 Special Purpose IR Prototoype

We developed a special-purpose IR system to test a new index compression algorithm. Additionally,

we wanted to learn more about the implementation details of an IR system. Our system implements

relevance ranking using the popular vector-space model [14].



Although compression of text has been extensively studied [2, 8], we have found little work

in the area of compression of inverted indexes. Lino� and Stan�ll, the most recent published work

on the compression of inverted indexes, combine three techniques to compress their index [11]. We

implemented this algorithm, referred to as NS compression, as well as a new algorithm, byte-aligned

(BA), and compared the di�erences. Run-time performance for index creation and compression

ratio of both TREC-3 and TREC-4 data are given below:

Run Time Performance (index construction)

Compression Type TREC-3 TREC-4

none 3:48:47 2:38:59

ns 3:50:58 3:14:47

ba 2:56:42 3:06:58

Compression Ratio

Compression Type TREC-3 TREC-4

none .466 : 1 .457 : 1

ns .128 : 1 .121 : 1

ba .163 : 1 .157 : 1

We have found that the BA compression algorithm results in faster creation of the inverted

index, but yields slightly less compression than NS compression.

Query run-time performance is give in Figure 1. Note that run-time is very slightly improved

with BA. All performance numbers given here were obtained when running Sun Solaris 2.4 on an

18 processor SUN Sparc 2000. The data was spread across the processors, but the algorithms

implemented were sequential.

3 English Results

3.1 Automatic

We submitted both manual and automatic results for the Category A data. All results for Category

A data were submitted using the relational IR prototype. Each section of the corpus was loaded into

a corresponding relation, and a larger query to UNION all the di�erent relations was implemented.

In addition to simply loading terms, we also loaded phrases which were recognized with a crude

phrase parser. A phrase was de�ned as a two-term sequence that did not contain a punctuation

mark or a stop word.

The topics were parsed in the same fashion and both terms and phrases were incorporated

into the queries. Phrase inverse document frequency (IDF) was computed as if the phrase was a

single term. All terms other than stop words were used in the query.

3.2 Manual

Our automatic queries returned a union of all documents that contained one or more terms related

to a query. The manual implementation restricted answer sets, in many cases, to an intersection of

documents.



200

250

300

350

400

450

500

550

600

10 20 30 40 50 60 70 80 90 100

R
u
n
t
i
m
e

Percentage of Terms in Original Query

none 3

3 3 3
3

3

3

3byte-aligned +

+
+

+ +

+

+

+ns 2

2

2
2 2

2

2

2

Figure 1: Query Performance (TREC-4, 2GB)

The manual queries were generated after careful study of the query terms. Related terms were

placed in at most three sets, and the SQL was generated such that a document was only ranked if

it contained at least one term from each set. An optional fourth set contained terms which were

not required, but increased the relevance of a document if they were present. Many sets contained

lexical variants of the term as we did not perform any stemming. Each set roughly corresponded

to a concept.

For example, on topic 203, our answer set was an intersection of two lists. The �rst set

contained the terms frecycle, recycled, recyclingg. The second set contained the term ftiresg.
Qualifying documents mentioned one of the three forms of recycle and referenced tires.

To increase the relevance of documents about the economic bene�t of recycling tires, we

included terms and phrases such as car tires, automobile tires, cost e�ective and pro�table to the

optional fourth set. The inclusion of a document into the answer set was not dependent upon these

extra terms and phrases, however, their presence a�ected the ranking of the document within the

answer set.

Finally, world knowledge was used to generate query terms. Topic 205 requests information

about paramilitary activity in the United States. For this topic, one set contained fmilitia, militiasg
and another set was fIdaho, Oklahomag in an e�ort to ensure that certain states in which the militia

have been active were searched.

3.3 Results

Our calibration against TREC-3 data indicated that a threshold of 100 provides the best results

for English data. Hence, we used a threshold of 100 for our o�cial results. The hypothesis for

the parallel approach was that queries would run in a balanced fashion; that is, the workload for

each processor would be approximately equal. This balance is critical if the approach is to be truly

scalable. Table 1 indicates the amount of Processor Load Imbalance (PLIB) for CPU and DISK I/O

time:
�
max�min

min

�
measured at each query threshold. For all workloads, the processors are �fteen



Table 1: Percent of Processor Imbalance

threshold CPU Time Disk I/O)

10 15.0 1.5

20 12.0 1.5

25 10.4 1.2

33 9.4 0.9

50 2.0 0.7

percent or less out of balance. Given that the workload is balanced evenly among the existing

processors, if processors are added, response time will be reduced. Due to resource limitations, it

was not possible to empirically validate this scalability hypothesis.

Our overall results for English are given below:

Avg. Precision Above Median Below Median Equal Median

Automatic .1385 10 37 2

Manual .2216 25 22 2

4 Corrupted Data Results

For corrupted data, we tested the use of n-grams and the e�ect of reducing the number of n-grams

in the query based on an automatically generated query threshold. All results for corrupted data

were obtained using our special-purpose IR prototype.

N-grams have been used for detection of spelling errors [13, 15, 19] and text compression [16].

A survey of text compression and spelling checking may be found in [18]. More recently, n-grams

have been used to determine the authorship of documents [10]. Yochum has shown n-grams are

e�ective in implementing a high-speed document routing system [17].

The �rst similarity measures based on n-grams were done by Ray D'Amore and Clinton Mah

in the early 1980's [6]. More recently, at TREC-3, Damashek expanded on D'Amore and Mah's

work by implementing a �ve-gram based measure of relevance [5]. Damashek's algorithm is entirely

language independent and relies upon the vector space model but computes relevance using centroid

vectors.

Also at TREC-3, Cavnar implemented a vector-space approach using n-grams [4]. The e�ec-

tiveness of his approach and the claim that n-grams should have resilience to errors resulted in our

decision to use n-grams as part of the corrupted data track for TREC-4.

In TREC-3, we illustrated the e�ectiveness of automatically reducing query size based on term

frequency. First, the terms in the query are sorted and only a percentage of these terms are used.

We found that for higher thresholds, relatively useless terms are added to the query and there is

little, if any, improvement in precision and recall.

We trained for the real data in TREC-4 (both WSJ data on disk 2 and SJMN data on disk

3) by implementing various n-grams and query thresholds against only the WSJ data on disk 2

and running the TREC-3 queries against this data. We tried n-grams of both size three and four

and thresholds of 10, 20, 25, 33, 50, 75, and 100 percent of the original query. With trigrams,

we obtained between 700 and 800 relevant documents for the various thresholds (increasing for

thresholds from 10 to 33 and decreasing for 50 to 100). With 4-grams we found between 800 and

900 relevant documents with the threshold value increasing up to 75 and then decreasing. Hence,

we selected a query threshold of 75 and 4-grams for our o�cial results.



Our results for corrupted data are given below:

Avg. Precision Above Median Below Median Equal Median

Baseline .1401 11 19 0

10 Percent .1153 23 26 0

5 Spanish Results

For the Spanish data, we used the special purpose IR system to obtain our automatic results, and

the same method that was used for the English queries was implemented to obtain the manual

results.

5.1 Automatic Results

We developed a Spanish stop word list by identifying the top 500 most frequent terms and asking

a Spanish linguist to determine which ones were really not so common across the language that

they should be in a stop list. We calibrated our approach using the �rst twenty-�ve topics and the

relevance assessments from TREC-3. Results for trigrams, 4-grams, and 5-grams at thresholds of

10, 20, 25, 33, 50, 75, and 100 are given in Figure 2.



2400

2600

2800

3000

3200

3400

3600

3800

10 20 30 40 50 60 70 80 90 100

R
e
l
e
v
a
n
t

R
e
t
r
i
e
v
e
d

Percentage of Terms in Original Query

3-gram 3

3

3 3 3 3 3 3

4-gram +

+

+ + + + +
+5-gram 2

2

2
2

2
2 2 2

term �

�

�

� �
�

� �

Figure 2: Spanish Relevant Retrieved

We found that our best results occurred with a threshold of 100 using 5-grams. We submitted

o�cial results using these parameters.

5.2 Manual Results

After having the queries translated by a Spanish linguist and key terms identi�ed, we grouped the

terms in sets and ran the same type of manual queries as done for the English data.

5.3 Results

Our results for Spanish data are given below:

Avg. Precision Above Median Below Median Equal Median

Manual .1708 12 11 2

Automatic .1722 14 6 5

Interestingly, the automatically generated queries performed better than the manual queries.

The manual queries used terms, while the automatic used n-grams. The use of n-grams appears

to provide a type of automatic stemming as frequently occuring pre�xes and su�xes are ignored.

Additionally, our lack of Spanish language knowledge made it di�cult to develop sophisticated

manual queries.

6 Conclusions and Future Work

Given that this was our �rst year as a Category A participant, we see much room for improvement.

Although about half of our queries for both corrupted data and the manual English data were over

the median of all participants, half were not.



Our manual queries surprised us with their accuracy. Clearly our automated system needs

more improvements, such as passages and relevance feedback. With these improvements, it is likely

that our manual queries will improve as well. We are working on enhancing the prototype to expand

the manual queries based on relevance feedback.

For corrupted data, we were pleased that the n-gram approach showed resilience to errors.

More queries for corrupted data were above the median than below. We will continue testing on

the 20 percent corrupted data.

It was interesting that an n-gram approach was calibrated as superior to a term-based approach

for Spanish. We look forward to o�cial results to determine whether or not the e�ects we observed

during calibration occurred on the TREC-4 data.

Overall, we were much improved from TREC-3. During TREC-3, we only used the category

B data and our precision/recall was a mediocre .0860 and .1356, respectively. Only one of our �fty

queries was above the median. Our worst results this year were vastly superior to those submitted

last year (our lowest number above the median is ten). We will try to keep up this pace and improve

as much in TREC-5.



References

[1] AT&T Global Information Systems. Teradata DBC-1012 Concepts and Facilities, March 1992.

[2] T.C. Bell, J.G. Cleary, and I.H. Witten. Text Compression. Prentice Hall, Englewood Cli�s,

NJ, 1990.

[3] D. Blair. An extended relational retrieval model. Information Processing and Management,

1988.

[4] W. Cavnar. N-grams in trec-3. In Proceedings of the Third Annual Text REtrieval and Eval-

uation Conference, 1994.

[5] M. Damashek. Gauging similarity via n-grams: Text sorting, categorization, and retrieval in

any language. Submitted to Science, 1994.

[6] R. D'Amore and C. Mah. One-time complete indexing of text: Theory and practice. 8th

International Conferencee on Research and Development in Information Retrieval, pages 155{

164, 1985.

[7] D. Grossman, O. Frieder, D. Holmes, and D. Roberts. Integrating structured data and text: A

relational approach. To appear in the Journal of the American Society of Information Science,

1995.

[8] P.C. Gutmann and T.C. Bell. A hybrid approach to text compression. In Proceedings of the

Data Compression Conference DCC '94, 1994.

[9] D. Grossman O. Frieder D. Holmes and D. Roberts. Integrating structured data and text:

A relational approach. Submitted to the Journal of the American Society for Information

Science, August 1995.

[10] B. Kjell, A. Woods, and O. Frieder. Discrimination of authorship using visualization. Infor-

mation Processing and Management, 30(1):141{150, January 1994.

[11] G. Lino� and C. Stan�ll. Compression of indexes with full positional information in very large

text databases. Proceedings of the Sixteenth Annual ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 88{95, 1993.

[12] D. Grossman O. Frieder M. Nguyen and C. Kingsbury. Implementation of an information

retrieval system. To be Submitted to Software Practice and Engineering, October, 1995.

[13] J. Pollock and A. Zamora. Automatic spelling correction in scienti�c and scholarly text.

Communications of the ACM, 27(4):358{358, April 1984.

[14] G. Salton, C.S. Yang, and A. Wong. A vector-space model for information retrieval. Commu-

nications of the ACM, 18, 1975.

[15] Lars Erik Thorelli. Automatic correction of errors in text. BIT, 2:45{62, 1962.

[16] E.J. Yannakoudakis, P. Goayal, and J.A. Huggill. The generation and use of text fragments

for data compression. Information Processing and Management, 18(1):15{21, 1982.

[17] J. Yochum. A high-speed text scanning algorithm utilizing least frequent trigrahs. IEEE

Proceedings on New Directions in Computing Symposium, pages 114{121, 1985.

[18] E.M. Zamora. Survey of spelling correcting methods. ACM Computing Surveys, 1983.

[19] E.M. Zamora, J.J. Pollock, and A. Zamora. The use of trigram analysis for spelling error

detection. Information Processing and Management, 17(6):305{316, 1981.


