

Enterprise Text Processing: A Sparse Matrix Approach

Nazli Goharian
Illi nois Institute of

Technology
Chicago, Illi nois
nazli@ir.iit .edu

Tarek El-Ghazawi
George Mason University

Fairfax, Virginia
tarek@gmu.edu

David Grossman
Illi nois Institute of

Technology
Chicago, Illi nois

grossman@ir.iit .edu

Abstract

Documents, both internal and related publicly
available, are now considered a corporate asset.
The potential to efficiently and accurately search
such documents is of great significance. We
demonstrate the application of sparse matrix-vector
multiplication algorithms for text storage and
retrieval as a means of supporting efficient and
accurate text processing.

As many parallel sparse matrix-vector
multiplication algorithms exist, such an information
retrieval approach lends itself to parallelism. This
enables us to attack the problem of parallel
information retrieval, which has resisted good
scalabilit y. We use sparse matrix compression
algorithms and compare the storage of a sub-
collection of the commonly used NIST TREC corpus
with a traditional inverted index. We demonstrate
query processing using sparse matrix-vector
multiplication algorithm. Our results indicate that
our approach saves approximately 35% of the total
storage requirements for the inverted index.
Additionally, to improve accuracy, we develop a
novel matrix based, relevance feedback technique
as well as a proximity search algorithm. The results
of our experiment to incorporate Proximity Search
capabilit y into the system also indicate 35% less
storage for sparse matrix over inverted index.

1. Introduction

The World Wide Web is doubling nearly every
year. Additionally, the amount of electronically
available information continues to increase on large
intranets. Although the availabilit y of secondary
storage continues to rise, the amount of information
is, at the least, keeping pace. A book on large-scale
systems says:

“ It might be argued that as
machine performance increases, so
too will t he amount of memory
supported, but it seems likely that
collection sizes will also grow at
the same exponential rate, and that
memory will never overtake
demand.” [Witten, et al., 1994]

Hence, we can expect the need for better

compression algorithms will continue to grow.
Additionally, as the intranets inside of large
Fortune 500 corporations grow, the need to search
and quickly find information will rise.

1.1. General Sparse Matrix Background

Matrices are used in scientific applications to
store data but have yet to be eff iciently used in the
field of information retrieval systems. The nature of
text data in a matrix format results in a very highly
sparse matrix. To save space and run time, it is
important to store only the non-zero elements.
There are a variety of compression formats to
compress a sparse matrix in a way that it stores
only non-zero elements. Among these compression
formats is Scalar ITPACK [Peters, 1991 and
Petition, 1993]. BLAS (Basic Linear Algebra
Subprograms) Technical Forum suggests sparse
matrix formats such as Coordinate (COO),
Compressed Sparse Row (CSR), Compressed
Sparse Column (CSC), Sparse Diagonal (DIA),
Block Coordinate (BCO), Block Compressed
Sparse Row (BSR), Block Compressed Sparse
Column (BSC), Block Sparse Diagonal (BDI),
Variable Block Compressed Sparse Row (VBR)
[BLAST, 1999].

The Compressed Sparse Row (CSR) format
saves some of the storage overhead by storing each

row as the pair of non-zero element and column
indices. Compressed Sparse Row is general and
relatively eff icient, hence, we chose this format for
our experiments.

The CSR compression stores the compressed
sparse in three vectors. The first vector stores the
non-zero elements of the sparse matrix. The second
vector stores the column indices belonging to the
non-zero elements. The elements of the third row,
row vector, correspond to the i-th non-zero value of
the sparse matrix belonging to the first non-zero
element of each row. The offset between every two
adjacent value of the row vector is the number of
elements that belong to the same row. The last
element in the row vector is the value of the last
element of row vector incremented by the number
of non-zero elements in the last row of sparse
matrix. The size of the row vector is M+1, M being
the number of the rows in the sparse matrix.

1.2. Overview of the Information Retrieval
Matrix Approach

In our prior work [Goharian, et.al., 1999,
2000], we demonstrated the application of Sparse
Matrix-Vector Multiplication in an Information
Retrieval (IR) System. The motivation of our work
is to utili ze other techniques and codes to
implement a scalable IR system. Thus, minimizing
the need for the redevelopment of software. Our
approach relies on the Vector Space model to
compute relevance. We showed the sparse matrix
storage method as an alternative to store the
inverted index and demonstrated how to map the
documents into a matrix. We demonstrated the use
of sparse matrix-vector multiplication algorithm to
perform query processing and relevance ranking.
Figure 4 is the algorithm for CSR sparse matrix-
vector multiplication, which is one of the
commonly used sparse matrix-vector multiplication
algorithms for random pattern sparse matrices. The
approach is shown via an example with the sample
collection of figure 1.

The collection is parsed and the index of table
1 and table 2 are created. The unique single-terms
along with each term’s term frequency (tf) in a
given document, the number of documents in the
collection having a given term (df), and the
importance of the term in the collection, i.e.,
Inverse Document Frequency (idf) are identified.

The idf is commonly defined as log(
df

d
) where d

is the number of documents in the collection. The
collection representation in Compressed Sparse
Row matrix is shown in figure 2. The elements of
the non-zero vector are the weights of terms
calculated as tf* idf of the terms.

Using the algorithm of figure 4, the query
processing is performed on the query of figure 1
and the compressed matrix of figure 2. The query is
presented as a vector in figure 3. The non-zero
elements of query vector are tf* idf of query terms.
The result of the query processing and relevance
ranking is shown in figure 5. The result shows that
the documents D0 and D1 are ranked the highest
and after that document D3. The document D2 is
not relevant.

Table 1: Term Frequency for sample collection

DOCS Tf
D0
matrix 2
compression 2
D1
matrix 2
compression 2
D2
vector 2
multiplication 1
D3
sparse 1
matrix 1
multiplication 1

Table 2: df and idf for sample collection

Figure 1: Sample collection and query

Term_id Term Df Idf

0 compression 2 0.30
1 matrix 3 0.12
2 vector 1 0.60
3 multiplication 2 0.30
4 sparse 1 0.60

D0 = matrix matrix compression compression
D1 = matrix compression matrix compression
D2 = vector vector multiplication
D3 = sparse matrix multiplication
Q = matrix compression

Figure 2: CSR representation of data

Figure 3: Query Vector

Figure 4: CSR Sparse Matrix-Vector Multiplication Algorithm

Figure 5: Result of the relevance ranking

1.3. Proximity Processing

We enhanced our experiment to include the term
offsets in each document to implement Proximity
Search capabilit y of Information Retrieval both on
inverted index and sparse matrix.

Proximity searches are used in Information
Retrieval to increase the accuracy of the search by
considering a particular query term sequence in the
document [Goldman et al, 1998]. The documents, in
which the query terms appear within a specific
window size, are retrieved and ranked higher than
any document that simply contains the query term.
For example, the query “ information retrieval” , with
query condition of window size 1, does not rank as
high the documents that have the terms “ information”
and “retrieval” in a sequence with a negative window
size such as “Retrieval of Information” , or a window
size bigger than 1 such as “ Information System for
Retrieval of Employee Data”. An example is the

implementation of the Proximity Search on the King
James Bible by the University of Michigan. The
system searches for a text that includes the search
terms specified to be Near, Not Near, Followed By,
Not Followed By each other within 40, 80 or 120
characters [UMich, 1997].

We modified the sparse matrix storage structure
to implement the Proximity Search. We add a fourth
and fifth vector, namely, offset_vector and
offset_marker to the structure. Figure 6 shows the
modified structure. The offset_vector contains the
offset of each term in each given document. The
number of elements in the offset_vector is total
number of all occurrences of unique terms in the
collection. The elements in the offset_marker indicate
the number of the occurrences of each term in a
document; hence it shows which offsets in the
offset_vector belong to a given term in a document.
The number of elements in the offset_marker is the
number of non-zero elements+1. The position of each
element in the offset_marker corresponds to the
position of the term id of the term in col_vector,
whose offsets are identified in offset_vector. The
value in offset_marker corresponds to the location of
the first term offset of a term in the offset_vector. We
show our structure for the same sample collection in
figure 6, and for the query in figure 7. We also
modified the CSR matrix-vector multiplication
algorithm of figure 4 to be able to perform Proximity
search. We proposed our algorithm in our prior work
and demonstrated the Proximity Search and relevance
ranking on the sample collection.

non_zero_vector = <0.60 0.24 0.60 0.24 1.20 0.30 0.12 0.30 0.60 >
col_vector = <0 1 0 1 2 3 1 3 4 >
row_vector = < 0 2 4 6 9>

Q= < 0.30 0.12 0 0 0 >

DOC[0] = 0+(0.60*0.30)=0.18
DOC[0] = 0.18+(0.24*0.12)=0.21
DOC[1] = 0+(0.60*0.30)=0.18
DOC[1] = 0.18+(0.24*0.12)=0.21
DOC[2] = 0+(1.20*0.00)=0.00
DOC[2] = 0.00+(0.30*0)=0.00
DOC[3] = 0+(0.12*0.12)=0.01
DOC[3] = 0.01+(0.30*0)=0.01
DOC[3] = 0.01+(0.60*0.00)=0.01

for (count=0; count<M; count++)
 temp=0;
 for (row_ind=row_vector[count] ;row_ind<= (row_vector[count+1] -1); row_ind++)
 col_ind = col_vector[row_ind] ;
 temp = temp + non_zero_vector[row_ind] * Q[col_ind] ;
 endfor

CSR_output[count] = temp;
 endfor

Figure 6: Modified Compressed Sparse Matrix for Proximity Search

Figure 7: Modified Query for Proximity Search

2. Experimental Results

In the prior work, we showed the analytical

results of the storage space for TREC text
collection both as Inverted Index and Sparse
Matrix structure. The analysis demonstrated that
Compressed Sparse Row sparse matrix structure
saves 35% - 40% storage space over storage space
used in the Inverted Index structure both with and
without offset structure for Proximity search. Later
experimental results, presented in this paper, prove
the initial analysis.

We used a sub-collection of TREC data for
our experiment. Table 3 shows the number of
documents in the collection, distinct terms and
total number of terms in the collection uniquely in
each document. The total number of terms in
collection uniquely in each document corresponds
to the non-zero elements in sparse matrix and to
the posting list entries in the Inverted Index. We
stored this data in an Inverted Index and measured
the storage space. Also, we stored the data in
Compressed Sparse Row format of sparse matrix
and measured the storage space. A sample
document from TREC data collection is shown
below:

<HEADLINE>
<P>
LIFE ON EARTH
</P>
</HEADLINE>
<TEXT>
<P>
In response to Lee Dye's article "Galil eo Views Earth With an
Alien's Eye"

(front page, Dec. 20):
</P>
<P>
In light of all the endless confli cts between men across our
planet, Galil eo,

the spacecraft, seems to have discerned the root of the problem
-- "it detected
no clear sign of intelli gent life" on planet Earth!
</P>
<P>
MARILYN E. WHITAKER, Glendale
</P>
</TEXT>
<TYPE>
<P>
Letter to the Editor
</P>

2.1. Inverted Index Implementation

To eliminate unnecessary I/O resulting from
the retrieval of non-relevant blocks, text searches
often rely on inverted index files [Stone, 1987].
For each key term in the collection, a list of the
documents that the term appears in is associated.
Each query term is examined against the terms in
the index and in the case of a match, the posting
list is returned. The set of posting lists is then
intersected and the documents containing all the
requested terms are returned.

The storage space for the conventional
inverted index has two components. The Index
component stores the unique terms in the
collection, each pointing to the Posting List. The
Posting list is the list of all documents having a
given term. The storage needed for the posting
lists of inverted index tend to grow fast as a new
document is encountered having the term. The
Eff iciency issues and considerations in handling
Inverted Indices are discussed in [Frieder, et al.,
2000].

The storage space for the Index component in
our experiment is compound of storage for the
term, document frequency (df) and the square of
the Inverse Document Frequency (idf2). The
posting list storage is compound of document
identifier and term frequency (tf). Our experiment
showed that the space taken for storing data in
inverted index was 1,888,308 bytes.

non_zero_vector = <0.60 0.24 0.60 0.24 1.20 0.30 0.12 0.30 0.60 >
col_vector = <0 1 0 1 2 3 1 3 4 >
row_vector = < 0 2 4 6 9>
offset _vector = < 2 3 0 1 1 3 0 2 0 1 2 1 2 0>
offset_marker= < 0 2 4 6 8 10 11 12 13>

Q= <0.30 0.12 0 0 0 >
v2=<1 0 0 0 0 >

Table 3: Experimental result for Storage of Inverted Index and CSR Matrix
Documents Distinct Terms NZ Elements Inverted Index (byte) Sparse Matrix (byte)

1,828 23,744 320,135 1,888,308 1,199,508

Table 4: Experimental result for Storage of Inverted Index and CSR Matrix for Proximity Search
Documents Distinct Terms NZ Elements Inverted Index (byte) Sparse Matrix (byte)
1,788 20,580 316,065 5,305,492 3,468,994

2.2. Sparse Matrix Implementation

We stored the tf* idf2 of each collection term

as an element in the non-zero vector. We stored
the term identifier of each corresponding term in
the column vector. The third vector stored the
document identifier for the corresponding terms.
Storing the square of Inverse Document Frequency
was done to reduce the query processing time to
find the idf of the term. The storage space for our
collection indicated the space taken to store the
collection was 1,199,508 bytes for the same
collection. The results are shown in table 3.

In our implementation for Proximity Search,
we modified the offset_marker to store term
frequency, tf, of the terms to save more space. The
term frequency stored in offset_marker indicates
the number of elements stored in offset_vector
associated to the term identifier, its location in
col_vector is identified by the location of the
element in the offset_marker. Thus, the
offset_marker for the sample collection
implemented as < 2 2 2 2 2 1 1 1 1>.

Table 4 shows the result of our experiments to
store the collection data with the term offsets for
proximity search, both as inverted index and
sparse matrix.

3. Conclusion and Directions for

Future Work

Previously, we built an analytical model of the

Sparse Matrix approach to Information Retrieval
[Goharian et al., 1999, 2000]. In this paper, we
built an experimental prototype to validate this
analysis. The storage reduction of compressed
sparse row matrix is 35%-40% over the storage of
conventional inverted index. Furthermore, we also
experimentally evaluated our proposed Proximity
Search structure to improve the accuracy of
relevance ranking. The results for Proximity
Search also prove our analytical results of the
previous effort and reduce also 35%-40% of the
storage in compressed sparse row matrix over the

inverted index. In the future, we will evaluate the
approach on a parallel platform.

4. References

[BLAST, 1999] BLAST Forum,
http://www.netlib.org/blast/blast-forum, 1999.

[Frieder, et al., 2000] O. Frieder, D. Grossman, A.
Chowdhury, and G. Frieder, Eff iciency Considerations
in Very Large Information Retrieval Servers, Journal of
Digital Information, (British Computer Society), 1(5).

[Goharian et al., 2000] N. Goharian, T. El-Ghazawi, D.
Grossman, A. Chowdhury, On the Enhancements of a
Sparse Matrix Information Retrieval Approach,
PDPTA’2000.

[Goharian et al., 1999] N. Goharian, T. El-Ghazawi, D.
Grossman, On the Implementation of Information
Retrieval as Sparse Matrix Application, PDPTA’99.

[Goldman et al., 1998] R. Goldman, N. Shivakumar, S.
Venkatasubramanian, H. Garcia-Molina, Proximity
Search in Databases, VLDB’98, 26-37.

[Peters, 1991] Peters, Sparse matrix vector
multiplication technique on the IBM 3090 VP, Parallel
Computing 17.

[Petition et al., 1993] S. Petition, Y. Sood, K. Wu, W.
Ferng, Basic sparse matrix computations on the CM-5,
J. Mod. Phys., C(1).

[Stone, 1987] H. Stone, Parallel querying of large
databases: A case study, IEEE Computer.

[UMich,1997] www.hti.umich.edu/relig/kjv/prox.html

[Witten et al., 1994] I. Witten, A. Moffat, and T. Bell ,
Managing Gigabytes. Van Nostrand Reinhold.

