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Abstract 
 

Documents, both internal and related publicly 
available, are now considered a corporate asset. 
The potential to efficiently and accurately search 
such documents is of great significance.  We 
demonstrate the application of sparse matrix-vector 
multiplication algorithms for text storage and 
retrieval as a means of supporting efficient and 
accurate text processing.  

As many parallel sparse matrix-vector 
multiplication algorithms exist, such an information 
retrieval approach lends itself to parallelism. This 
enables us to attack the problem of parallel 
information retrieval, which has resisted good 
scalabilit y.  We use sparse matrix compression 
algorithms and compare the storage of a sub-
collection of the commonly used NIST TREC corpus 
with a traditional inverted index.  We demonstrate 
query processing using sparse matrix-vector 
multiplication algorithm.  Our results indicate that 
our approach saves approximately 35% of the total 
storage requirements for the inverted index.  
Additionally, to improve accuracy, we develop a 
novel matrix based, relevance feedback technique 
as well as a proximity search algorithm. The results 
of our experiment to incorporate Proximity Search 
capabilit y into the system also indicate 35% less 
storage for sparse matrix over inverted index. 

 
 
1. Introduction 
 

The World Wide Web is doubling nearly every 
year.  Additionally, the amount of electronically 
available information continues to increase on large 
intranets.  Although the availabilit y of secondary 
storage continues to rise, the amount of information 
is, at the least, keeping pace.  A book on large-scale 
systems says: 

 
“ It might be argued that as 
machine performance increases, so 
too will t he amount of memory 
supported, but it seems likely that 
collection sizes will also grow at 
the same exponential rate, and that 
memory will never overtake 
demand.”  [Witten, et al., 1994] 

 
Hence, we can expect the need for better 

compression algorithms will continue to grow.  
Additionally, as the intranets inside of large 
Fortune 500 corporations grow, the need to search 
and quickly find information will rise.   
 
1.1. General Sparse Matrix Background 
 

Matrices are used in scientific applications to 
store data but have yet to be eff iciently used in the 
field of information retrieval systems. The nature of 
text data in a matrix format results in a very highly 
sparse matrix. To save space and run time, it is 
important to store only the non-zero elements. 
There are a variety of compression formats to 
compress a sparse matrix in a way that it stores 
only non-zero elements. Among these compression 
formats is Scalar ITPACK [Peters, 1991 and 
Petition, 1993]. BLAS (Basic Linear Algebra 
Subprograms) Technical Forum suggests sparse 
matrix formats such as Coordinate (COO), 
Compressed Sparse Row (CSR), Compressed 
Sparse Column (CSC), Sparse Diagonal (DIA), 
Block Coordinate (BCO), Block Compressed 
Sparse Row (BSR), Block Compressed Sparse 
Column (BSC), Block Sparse Diagonal (BDI), 
Variable Block Compressed Sparse Row (VBR)  
[BLAST, 1999].  

The Compressed Sparse Row (CSR) format 
saves some of the storage overhead by storing each 



 

row as the pair of non-zero element and column 
indices. Compressed Sparse Row is general and 
relatively eff icient, hence, we chose this format for 
our experiments. 

The CSR compression stores the compressed 
sparse in three vectors.  The first vector stores the 
non-zero elements of the sparse matrix. The second 
vector stores the column indices belonging to the 
non-zero elements. The elements of the third row, 
row vector, correspond to the i-th non-zero value of 
the sparse matrix belonging to the first non-zero 
element of each row.  The offset between every two 
adjacent value of the row vector is the number of 
elements that belong to the same row.  The last 
element in the row vector is the value of the last 
element of row vector incremented by the number 
of non-zero elements in the last row of sparse 
matrix. The size of the row vector is M+1, M being 
the number of the rows in the sparse matrix.   
 
1.2. Overview of the Information Retrieval  
Matrix Approach 
 

In our prior work [Goharian, et.al., 1999, 
2000], we demonstrated the application of Sparse 
Matrix-Vector Multiplication in an Information 
Retrieval (IR) System. The motivation of our work 
is to utili ze other techniques and codes to 
implement a scalable IR system. Thus, minimizing 
the need for the redevelopment of software. Our 
approach relies on the Vector Space model to 
compute relevance. We showed the sparse matrix 
storage method as an alternative to store the 
inverted index and demonstrated how to map the 
documents into a matrix. We demonstrated the use 
of sparse matrix-vector multiplication algorithm to 
perform query processing and relevance ranking. 
Figure 4 is the algorithm for CSR sparse matrix-
vector multiplication, which is one of the 
commonly used sparse matrix-vector multiplication 
algorithms for random pattern sparse matrices.  The 
approach is shown via an example with the sample 
collection of figure 1.  

The collection is parsed and the index of table 
1 and table 2 are created. The unique single-terms 
along with each term’s term frequency (tf) in a 
given document, the number of documents in the 
collection having a given term (df), and the 
importance of the term in the collection, i.e., 
Inverse Document Frequency (idf) are identified. 

The idf is commonly defined as log(
df

d
) where d 

is the number of documents in the collection. The 
collection representation in Compressed Sparse 
Row matrix is shown in figure 2. The elements of 
the non-zero vector are the weights of terms 
calculated as tf* idf of the terms. 

Using the algorithm of figure 4, the query 
processing is performed on the query of figure 1 
and the compressed matrix of figure 2. The query is 
presented as a vector in figure 3. The non-zero 
elements of query vector are tf* idf of query terms. 
The result of the query processing and relevance 
ranking is shown in figure 5. The result shows that 
the documents D0 and D1 are ranked the highest 
and after that document D3. The document D2 is 
not relevant.  
 
Table 1: Term Frequency for sample collection 

DOCS Tf 
D0  
matrix 2 
compression 2 
D1  
matrix 2 
compression 2 
D2  
vector 2 
multiplication 1 
D3  
sparse 1 
matrix  1 
multiplication 1 

 
Table 2: df and idf for sample collection 

 
 

 
 
 
 
 
Figure 1: Sample collection and query 
 
 
 

Term_id Term Df Idf 

0 compression 2 0.30 
1 matrix 3 0.12 
2 vector 1 0.60 
3 multiplication 2 0.30 
4 sparse 1 0.60 

 

D0 = matrix matrix compression compression  
D1 = matrix compression matrix compression 
D2 = vector vector multiplication   
D3 = sparse matrix multiplication 
Q = matrix compression  



 

 
 
 
 
Figure 2: CSR representation of data 
 
 
 
Figure 3: Query Vector 
 

Figure 4: CSR Sparse Matrix-Vector Multiplication Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Result of the relevance ranking 
 
1.3. Proximity Processing 
 

We enhanced our experiment to include the term 
offsets in each document to implement Proximity 
Search capabilit y of Information Retrieval both on 
inverted index and sparse matrix.  

Proximity searches are used in Information 
Retrieval to increase the accuracy of the search by 
considering a particular query term sequence in the 
document [Goldman et al, 1998].  The documents, in 
which the query terms appear within a specific 
window size, are retrieved and ranked higher than 
any document that simply contains the query term. 
For example, the query “ information retrieval” , with 
query condition of window size 1, does not rank as  
high the documents that have the terms “ information” 
and “retrieval” in a sequence with a negative window 
size such as “Retrieval of Information” , or a window 
size bigger than 1 such as “ Information System for 
Retrieval of Employee Data”. An example is the 

implementation of the Proximity Search on the King 
James Bible by the University of Michigan. The 
system searches for a text that includes the search 
terms specified to be Near, Not Near, Followed By, 
Not Followed By each other within 40, 80 or 120 
characters [UMich, 1997].   

We modified the sparse matrix storage structure 
to implement the Proximity Search. We add a fourth 
and fifth vector, namely, offset_vector and 
offset_marker to the structure. Figure 6 shows the 
modified structure. The offset_vector contains the 
offset of each term in each given document. The 
number of elements in the offset_vector is total 
number of all occurrences of unique terms in the 
collection. The elements in the offset_marker indicate 
the number of the occurrences of each term in a 
document; hence it shows which offsets in the 
offset_vector belong to a given term in a document. 
The number of elements in the offset_marker is the 
number of non-zero elements+1. The position of each 
element in the offset_marker corresponds to the 
position of the term id of the term in col_vector, 
whose offsets are identified in offset_vector. The 
value in offset_marker corresponds to the location of 
the first term offset of a term in the offset_vector. We 
show our structure for the same sample collection in 
figure 6, and for the query in figure 7.  We also 
modified the CSR matrix-vector multiplication 
algorithm of figure 4 to be able to perform Proximity 
search. We proposed our algorithm in our prior work 
and demonstrated the Proximity Search and relevance 
ranking on the sample collection. 

non_zero_vector = <0.60   0.24   0.60   0.24   1.20   0.30   0.12   0.30   0.60  > 
col_vector  =          <0     1   0        1       2        3        1        3        4  > 
row_vector =        < 0     2    4        6        9> 

Q= < 0.30 0.12 0 0 0       > 

DOC[0] = 0+(0.60*0.30)=0.18 
DOC[0] = 0.18+(0.24*0.12)=0.21   
DOC[1] = 0+(0.60*0.30)=0.18 
DOC[1] = 0.18+(0.24*0.12)=0.21 
DOC[2] = 0+(1.20*0.00)=0.00  
DOC[2] = 0.00+(0.30*0)=0.00   
DOC[3] = 0+(0.12*0.12)=0.01  
DOC[3] = 0.01+(0.30*0)=0.01 
DOC[3] = 0.01+(0.60*0.00)=0.01  

for (count=0; count<M; count++ ) 
 temp=0; 
 for (row_ind=row_vector[count] ;row_ind<= (row_vector[count+1] -1); row_ind++ ) 
  col_ind = col_vector[ row_ind] ; 
  temp = temp + non_zero_vector[ row_ind] * Q[col_ind] ;   
 endfor 

CSR_output[count] = temp; 
 endfor 
 



 

 
 
 
 

 
 
 

 
 
Figure 6: Modified Compressed Sparse Matrix for Proximity Search 
 
 
 

 

 
Figure 7: Modified Query for Proximity Search 

 
2. Experimental Results 

 
In the prior work, we showed the analytical 

results of the storage space for TREC text 
collection both as Inverted Index and Sparse 
Matrix structure. The analysis demonstrated that 
Compressed Sparse Row sparse matrix structure 
saves 35% - 40% storage space over storage space 
used in the Inverted Index structure both with and 
without offset structure for Proximity search. Later 
experimental results, presented in this paper, prove 
the initial analysis.  

We used a sub-collection of TREC data for 
our experiment. Table 3 shows the number of 
documents in the collection, distinct terms and 
total number of terms in the collection uniquely in 
each document. The total number of terms in 
collection uniquely in each document corresponds 
to the non-zero elements in sparse matrix and to 
the posting list entries in the Inverted Index. We 
stored this data in an Inverted Index and measured 
the storage space. Also, we stored the data in 
Compressed Sparse Row format of sparse matrix 
and measured the storage space.  A sample 
document from TREC data collection is shown 
below: 

 
<HEADLINE> 
<P> 
LIFE ON EARTH 
</P> 
</HEADLINE> 
<TEXT> 
<P> 
In response to Lee Dye's article "Galil eo Views Earth With an 
Alien's Eye" 

(front page, Dec. 20): 
</P> 
<P> 
In light of all the endless confli cts between men across our 
planet, Galil eo, 

the spacecraft, seems to have discerned the root of the problem 
-- "it detected 
no clear sign of intelli gent life" on planet Earth! 
</P> 
<P> 
MARILYN E. WHITAKER, Glendale 
</P> 
</TEXT> 
<TYPE> 
<P> 
Letter to the Editor 
</P> 
 
2.1.  Inverted Index Implementation 
 

To eliminate unnecessary I/O resulting from 
the retrieval of non-relevant blocks, text searches 
often rely on inverted index files [Stone, 1987]. 
For each key term in the collection, a list of the 
documents that the term appears in is associated. 
Each query term is examined against the terms in 
the index and in the case of a match, the posting 
list is returned.  The set of posting lists is then 
intersected and the documents containing all the 
requested terms are returned. 

The storage space for the conventional 
inverted index has two components.  The Index 
component stores the unique terms in the 
collection, each pointing to the Posting List. The 
Posting list is the list of all documents having a 
given term.  The storage needed for the posting 
lists of inverted index tend to grow fast as a new 
document is encountered having the term. The 
Eff iciency issues and considerations in handling 
Inverted Indices are discussed in [Frieder, et al., 
2000].  

The storage space for the Index component in 
our experiment is compound of storage for the 
term, document frequency (df) and the square of 
the Inverse Document Frequency (idf2). The 
posting list storage is compound of document 
identifier and term frequency (tf). Our experiment 
showed that the space taken for storing data in 
inverted index was 1,888,308 bytes.  

 
 

non_zero_vector = <0.60   0.24   0.60   0.24   1.20   0.30   0.12   0.30   0.60  > 
col_vector  =     <0 1        0        1        2        3        1        3        4  > 
row_vector =    < 0    2    4         6        9> 
offset _vector =   < 2   3   0   1   1   3   0   2   0   1  2   1  2   0> 
offset_marker=       < 0  2        4        6        8       10     11 12      13> 

Q= <0.30  0.12 0     0 0  > 
v2=<1    0 0     0 0 > 
 



 

Table 3: Experimental result for Storage of Inverted Index and CSR Matrix 
Documents Distinct Terms  NZ Elements Inverted Index (byte) Sparse Matrix (byte) 

1,828 23,744 320,135 1,888,308 1,199,508 

 
Table 4: Experimental result for Storage of Inverted Index and CSR Matrix for Proximity Search 
Documents Distinct Terms  NZ Elements Inverted Index (byte) Sparse Matrix (byte) 
1,788 20,580 316,065 5,305,492 3,468,994 

 
2.2.  Sparse Matrix Implementation 

 
We stored the tf* idf2 of each collection term 

as an element in the non-zero vector. We stored 
the term identifier of each corresponding term in 
the column vector. The third vector stored the 
document identifier for the corresponding terms. 
Storing the square of Inverse Document Frequency 
was done to reduce the query processing time to 
find the idf of the term. The storage space for our 
collection indicated the space taken to store the 
collection was 1,199,508 bytes for the same 
collection. The results are shown in table 3. 

In our implementation for Proximity Search, 
we modified the offset_marker to store term 
frequency, tf, of the terms to save more space. The 
term frequency stored in offset_marker indicates 
the number of elements stored in offset_vector 
associated to the term identifier, its location in 
col_vector is identified by the location of the 
element in the offset_marker.  Thus, the 
offset_marker for the sample collection 
implemented as  < 2   2   2   2   2   1   1   1  1>. 

Table 4 shows the result of our experiments to 
store the collection data with the term offsets for 
proximity search, both as inverted index and 
sparse matrix. 
 
3. Conclusion and Directions for 

Future Work 
 
Previously, we built an analytical model of the 

Sparse Matrix approach to Information Retrieval 
[Goharian et al., 1999, 2000].  In this paper, we 
built an experimental prototype to validate this 
analysis.  The storage reduction of compressed 
sparse row matrix is 35%-40% over the storage of 
conventional inverted index.  Furthermore, we also 
experimentally evaluated our proposed Proximity 
Search structure to improve the accuracy of 
relevance ranking. The results for Proximity 
Search also prove our analytical results of the 
previous effort and reduce also 35%-40% of the 
storage in compressed sparse row matrix over the 

inverted index.   In the future, we will evaluate the 
approach on a parallel platform. 
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