Enterprise Text Processing: A Sparse Matrix Approach

Nazli Goharian
[lli nais Institute of
Techndogy
Chicago,lllinois

Tarek El-Ghazawi
George Mason University
Fairfax, Virginia
tarek@gmu.edu

David Grossman
Il nais Institute of
Tedhndogy
Chicago,lllinois

nazi @ir .iit.edu

Abstract

Documents, both internal and related pulicly
available, are now considered a corporate asst.
The potential to efficiently and acurately search
such dacuments is of great significance We
demonstrate the apgication d sparse matrix-vedor
multiplication dgorithms for tex storage and
retrieval as a means of suppating efficient and
accurate text processng.

As many parallel sparse matrix-vedor
multi pli cation dgorithms exst, such aninformation
retrieval approach lends itself to parallelism. This
enables us to attack the problem of parallel
information retrieval, which has resisted good
scalability. We use sparse matrix compresson
algorithms and compare the storage of a sub-
colledion d the ammnonly used NIST TREC corpus
with atraditiond inverted index We demonstrate
guery processng Wwsing sparse matrix-vedor
multiplication dgorithm. Our results indicate that
our approach saves approximately 35% of the total
storage requirements for the inverted index
Additiondly, to improve accuracy, we devdop a
nove matrix based, relevance feedback technique
aswell asa proximity search agorithm. The results
of our experiment to incorporate Proximity Search
capahlity into the system also indicate 35% less
storage for sparse matrix over inverted index

1. Introduction

The World Wide Web is doubling realy every
yea. Addtionadly, the anount of eledronicdly
avail able information continues to increase on large
intranets. Although the avail ability of secondary
storage ntinues to rise, the amount of information
is, at the least, kegping pace A bodk on large-scde
systems sys.

grossman@ir .iit.edu

“It might be argued that as
machine performance increases, so
too will the amount of memory
suppated, but it seams likdy that
colledion sizes will also grow at
the same eyorential rate, and that
memory will neve overtake
demand” [Witten, et a., 1994

Hence we can exped the neal for better
compresgon algorithms will continue to grow.
Additionally, as the intranets inside of large
Fortune 500 corporations grow, the neel to seach
and quickly find information will rise.

1.1. General Sparse Matrix Background

Matrices are used in scientific goplications to
store data but have yet to be dficiently used in the
field of information retrieval systems. The nature of
text data in a matrix format results in a very highly
gparse matrix. To save space ad run time, it is
important to store only the non-zero elements.
There ae a variety of compresgon formats to
compress a sparse matrix in a way that it stores
only non-zero elements. Among these compresson
formats is Scdar ITPACK [Peters, 1991 and
Petition, 1993. BLAS (Basic Linea Algebra
Subprograms) Technicd Forum suggests arse
matrix formats such as Coordinate (COO),
Compreseed Sparse Row (CSR), Compressd
Sparse Column (CSC), Sparse Diagonal (DIA),
Block Coordinate (BCO), Block Compressed
Sparse Row (BSR), Block Compresed Sparse
Column (BSC), Block Sparse Diagonal (BDI),
Variable Block Compressed Sparse Row (VBR)
[BLAST, 1999.

The Compresed Sparse Row (CSR) format
saves ome of the storage overheal by storing eat

row as the pair of non-zero element and column
indices. Compressd Sparse Row is general and
relatively efficient, hence we dchose this format for
our experiments.

The CSR compresson stores the cmmpressd
sparse in three vedors. The first vedor stores the
non-zero elements of the sparse matrix. The second
vedor stores the mlumn indices belonging to the
non-zero elements. The dements of the third row,
row vedor, correspond to the i-th non-zero value of
the sparse matrix belonging to the first non-zero
element of ead row. The offset between every two
adjacent value of the row vedor is the number of
elements that belong to the same row. The last
element in the row vedor is the value of the last
element of row vedor incremented by the number
of non-zero elements in the last row of sparse
matrix. The size of the row vedor is M+1, M being
the number of the rows in the sparse matrix.

1.2. Overview of the Information Retrieval
Matrix Approach

In our prior work [Goharian, et.al., 1999
2004, we demonstrated the gplicaion of Sparse
Matrix-Vedor Multiplicaion in an Information
Retrieval (IR) System. The motivation of our work
is to utilize other techniques and codes to
implement a scdable IR system. Thus, minimizing
the neal for the redevelopment of software. Our
approach relies on the Vedor Space model to
compute relevance. We showed the sparse matrix
storage method as an dternative to store the
inverted index and demonstrated how to map the
documents into a matrix. We demonstrated the use
of sparse matrix-veaor multiplicaion algorithm to
perform query procesing and relevance ranking.
Figure 4 is the dgorithm for CSR sparse matrix-
vedor multiplicaion, which is one of the
commonly used sparse matrix-vecor multiplicaion
algorithms for random pattern sparse matrices. The
approach is $rown via an example with the sample
colledion of figure 1.

DO = matrix matrix compresson compresson
D1 = matrix compresson matrix compresson
D2 = vedor vedor multiplication

D3 = sparse matrix multi plication

Q = matrix compresson

Figure 1: Sample collection and query

The alledion is parsed and the index of table
1 and table 2 are aeaed. The unique single-terms
along with ead term’s term frequency (tf) in a
given document, the number of documents in the
colledion having a given term (df), and the
importance of the term in the wlledion, i.e.,
Inverse Document Frequency (idf) are identified.

d
The idf is commonly defined as Iog(d—f) where d

is the number of documents in the wlledion. The
colledion representation in Compressed Sparse
Row matrix is iown in figure 2. The dements of
the non-zero vedor are the weights of terms
cdculated as tf*idf of the terms.

Using the dgorithm of figure 4, the query
processng is performed on the query of figure 1
and the compressed matrix of figure 2. The query is
presented as a vedor in figure 3. The non-zero
elements of query vedor are tf*idf of query terms.
The result of the query processng and relevance
ranking is shown in figure 5. The result shows that
the documents DO and D1 are ranked the highest
and after that document D3. The document D2 is
not relevant.

Table 1: Term Frequency for sample collection

DOCS Tf
DO

matrix 2
compresson 2
D1

matrix 2
compresson 2
D2

vedor 2
multi plicaion 1
D3

Sparse 1
matrix 1
multi plicaion 1

Table 2: df and idf for sample collection

Term_id | Term Df | Idf

0 compresson 2 0.30
1 matrix 3 0.12
2 vedor 1 0.60
3 multiplicdion | 2 0.30
4 Sparse 1 0.60

col_vedor = <0 1 0 1 2
row_vedor = <0 2 4 6 9

non_zero_vedor =<0.60 024 Q60 024 120 Q30 Q12 Q30 Q60 >

3 1 3 >4

Figure2: CSR representation of data

030 012 O 0 o >

Q=<

Figure 3: Query Vector

for (count=0; count<M; court++)
temp=0;

col_ind= col_vedor[row_ind];
endfor

CSR_ouput[court] = temp;
endfor

for (row_ind=row_vedor[court] ;row_ind<= (row_vedor[cournt+1]-1); row_inc++)

temp = temp + non_zero_vedor[row_ind] * Q[col_ind];

DOC[0] = 0+(0.6040.30)=0.18
DOC[0] = 0.18+(0.24*0.12)=0.21
DOC[1] = 0+(0.600.30)=0.18
DOC[1] = 0.18+(0.24*0.12)=0.21
DOC[2] = 0+(1.200.00)=0.00
DOC[2] = 0.00+(0.300)=0.00
DOC[3] = 0+(0.12*0.12)=0.01
DOC[3] = 0.01+(0.300)=0.01
DOC[3] = 0.01+(0.60*0.00)=0.01

Figure5: Result of the relevance ranking

1.3. Proximity Processing

We enhanced our experiment to include the term
offsets in ead document to implement Proximity
Seach capability of Information Retrieval both on
inverted index and sparse matrix.

Proximity seaches are used in Information
Retrieval to increase the acarracy of the seach by
considering a particular query term sequence in the
document [Goldman et al, 1998. The documents, in
which the query terms appea within a spedfic
window size are retrieved and ranked higher than
any document that simply contains the query term.
For example, the query “information retrieval”, with
guery condition of window size 1, does not rank as
high the documents that have the terms “information”
and “retrieval” in a sequence with a negative window
size such as “Retrieval of Information”, or a window
size bigger than 1 such as “Information System for
Retrieval of Employee Data”. An example is the

Figure 4: CSR Sparse Matrix-Vector Multiplication Algorithm

implementation of the Proximity Seach on the King
James Bible by the University of Michigan. The
system seaches for a text that includes the search
terms pedfied to be Nea, Not Nea, Followed By,
Not Followed By ead other within 40, 80 a 120
charaders[UMich, 1997.

We modified the sparse matrix storage structure
to implement the Proximity Search. We ald a fourth
and fifth vedor, namely, offset vedor and
offset_ marker to the structure. Figure 6 shows the
modified structure. The offset vedor contains the
offset of ead term in eah dgven document. The
number of elements in the offset vedor is total
number of al occurrences of unique terms in the
colledion. The dementsin the offset_marker indicate
the number of the occurrences of ead term in a
document; hence it shows which offsets in the
offset_vedor belong to a given term in a document.
The number of elements in the offset_ marker is the
number of non-zero elements+1. The paosition of ead
element in the offset marker corresponds to the
position of the term id of the term in col_vedor,
whose offsets are identified in offset_vedor. The
value in offset_marker corresponds to the location of
the first term off set of aterm in the offset_vedor. We
show our structure for the same sample wlledion in
figure 6, and for the query in figure 7. We dso
modified the CSR matrix-vedor multiplication
algorithm of figure 4 to be able to perform Proximity
search. We propased our algorithm in our prior work
and demonstrated the Proximity Search and relevance
ranking on the sample wlledion.

col_vedor = <0 1 0 1 2
row_vedor = <0 2 4 6

offset_marker= <0 2 4 6 8

non_zero_vedor =<0.60 024 Q60 024 120 Q30 Q12 Q30 Q60 >

4
offset vedor= <2 3 011302012120

1 3 >4

112 1%

Q=<030 012 0 0O 0>
v2=<1 O 0O 0 0>

Figure 7: Modified Query for Proximity Search

2. Experimental Results

In the prior work, we showed the analyticd
results of the storage space for TREC text
colledion both as Inverted Index and Sparse
Matrix structure. The analysis demonstrated that
Compressed Sparse Row sparse matrix structure
saves 35% - 40% storage spaceover storage space
used in the Inverted Index structure both with and
without offset structure for Proximity seach. Later
experimental results, presented in this paper, prove
theinitial analysis.

We used a sub-colledion of TREC data for
our experiment. Table 3 shows the number of
documents in the olledion, distinct terms and
total number of terms in the mlledion uriquely in
eat document. The total number of terms in
colledion uriquely in ead document corresponds
to the non-zero elements in sparse matrix and to
the posting list entries in the Inverted Index. We
stored this data in an Inverted Index and measured
the storage space Also, we stored the data in
Compressed Sparse Row format of sparse matrix
and measured the storage space A sample
document from TREC data olledion is own
below:

<HEADLINE>

<p>

LIFE ON EARTH

</P>

</HEADLINE>

<TEXT>

<P>

In resporse to LeeDyés article "Galil eo Views Earth With an
Alien's Eyé'

(front page, Dec. 20):

</P>

<P>

In light of all the endless conflicts between men across our
planet, Galil eo,

Figure 6: M odified Compressed Sparse Matrix for Proximity Search

the spacecaaft, seensto havediscerned the root of the problem
--"it deteded

noclear sign d intelli gent life" on danet Earth!
</P>

<p>

MARILYN E. WHITAKER, Glendde

</P>

</TEXT>

<TYPE>

<pP>

Letter to the Editor

</P>

2.1. Inverted Index Implementation

To eliminate unrecessary 1/O resulting from
the retrieval of non-relevant blocks, text seaches
often rely on inverted index files [Stone, 1987.
For eat key term in the mlledion, a list of the
documents that the term appeas in is asociated.
Each query term is examined against the terms in
the index and in the cae of a match, the posting
list is returned. The set of posting lists is then
interseded and the documents containing al the
requested terms are returned.

The dstorage space for the nventiona
inverted index has two components. The Index
component stores the unique terms in the
colledion, ead pointing to the Posting List. The
Posting list is the list of al documents having a
given term. The storage nealed for the posting
lists of inverted index tend to grow fast as a new
document is encountered having the term. The
Efficiency issues and considerations in handling
Inverted Indices are discussed in [Frieder, et al.,
200d.

The storage spacefor the Index component in
our experiment is compound of storage for the
term, document frequency (df) and the square of
the Inverse Document Frequency (idf¥). The
posting list storage is compound of document
identifier and term frequency (tf). Our experiment
showed that the space taken for storing data in
inverted index was 1,888308 bytes.

Table 3: Experimental result for Storage of Inverted Index and CSR Matrix

Documents | Digtinct Terms | NZ Elements Inverted Index (byte) Sparse Matrix (byte)
1,828 23,744 320135 1,888308 1,199508

Table 4: Experimental result for Storage of Inverted Index and CSR Matrix for Proximity Sear ch
Documents | Digtinct Terms | NZ Elements Inverted Index (byte) Sparse Matrix (byte)
1,788 20,580 316,065 5,305492 3,468994

2.2. Sparse Matrix mplementation

We stored the tf*idf* of eat colledion term
as an element in the non-zero vedor. We stored
the term identifier of ead corresponding term in
the wlumn vedor. The third vedor stored the
document identifier for the crresponding terms.
Storing the square of Inverse Document Frequency
was done to reduce the query processng time to
find the idf of the term. The storage spacefor our
colledion indicated the space taken to store the
colledion was 1,199508 bytes for the same
colledion. The results are shown in table 3.

In our implementation for Proximity Search,
we modified the offset marker to store term
frequency, tf, of the terms to save more space The
term frequency stored in offset_marker indicaes
the number of elements dored in offset_vedor
asciated to the term identifier, its locaion in
col_vedor is identified by the locaion of the
dement in the offset marker. Thus, the
offset marker for the sample lledion
implementedas <2 2 2 2 2 1 1 1>1

Table 4 shows the result of our experiments to
store the wlledion data with the term offsets for
proximity seach, both as inverted index and
sparse matrix.

3. Concluson and Directions for

FutureWork

Previoudly, we built an analyticd model of the
Sparse Matrix approach to Information Retrieval
[Goharian et al., 1999 200Q. In this paper, we
built an experimental prototype to validate this
analysis. The storage reduction of compressd
sparse row matrix is 35%-40% over the storage of
conventional inverted index. Furthermore, we dso
experimentally evaluated our proposed Proximity
Seach structure to improve the acwracy of
relevance ranking. The results for Proximity
Seach aso prove our analytical results of the
previous effort and reduce dso 33%-40% of the
storage in compressed sparse row matrix over the

inverted index. In the future, we will evaluate the
approach on a paral el platform.

4. References

[BLAST, 1999] BLAST Forum,
http://www.netli b.org/blast/blast-forum, 1999

[Frieder, et al., 2000] O. Frieder, D. Grossman, A.
Chowdhury, and G. Frieder, Efficiency Considerations
in Very Large Information Retrieval Servers, Journa of
Digita Information, (British Computer Society), 1(5).

[Goharian et al., 2000] N. Goharian, T. El-Ghazawi, D.
Grosgmnan, A. Chowdhuy, On the Enhancements of a
Sparse Matrix Information Retrieval Approad,
PDPTA’200Q

[Goharian et al., 1999] N. Goharian, T. EI-Ghazawi, D.
Grosgnan, On the Implementation d Information
Retrieval as Sparse Matrix Applicaion, PDPTA’99.

[Goldman et al., 1998] R. Goldman, N. Shivakumar, S.
Venkatasubramanian, H. GarciaMolina, Proximity
Seach in Databases, VLDB’98, 26-37.

[Peters, 1991] Peters, Sparse matrix vedor
multi pli cation technique on the IBM 3090V P, Parallel
Computing 17.

[Petition et al., 1993] S. Petition, Y. Sood, K. Wu, W.
Ferng, Basic sparse matrix computations on the CM-5,
J. Mod. Phys., C(1).

[Stone, 1987] H. Stone, Paralel querying of large
databases: A case study, |IEEE Computer.

[UMich,1997] www.hti.umich.edu/'reli g/kjv/prox.html

[Witten et al., 1994] |. Witten, A. Moffat, and T. Bell,
Managing Gigabytes. Van Nostrand Reinhdd.

