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Abstract. Naive Bayes has been an effective and important classifier
in the text categorization domain despite violations of its underlying as-
sumptions. Although quite accurate, it tends to provide poor estimates
of the posterior class probabilities, which hampers its application in the
cost-sensitive context. The apparent high confidence with which certain
errors are made is particularly problematic when misclassification costs
are highly skewed, since conservative setting of the decision threshold
may greatly decrease the classifier utility. We propose an extension of
the Naive Bayes algorithm aiming to discount the confidence with which
errors are made. The approach is based on measuring the amount of
change to feature distribution necessary to reverse the initial classifier
decision and can be implemented efficiently without over-complicating
the process of Naive Bayes induction. In experiments with three bench-
mark document collections, the decision-reversal Naive Bayes is demon-
strated to substantially improve over the popular multinomial version
of the Naive Bayes algorithm, in some cases performing more than 40%
better.

1 Introduction

In certain binary classification problems one is interested in very high preci-
sion or very high recall with respect to the target class, especially if the cost of
false-positive or false negative misclassifications is disproportionally high. Even
though probabilistic cost-sensitive classification frameworks have been proposed,
the complicating factor of their successful deployment is uncertainty of precise
misclassification costs and the fact that estimation of posterior class probabilities
is often inaccurate, especially when dealing with problems involving large num-
bers of attributes, such as text. As a result, the region within which a classifier
can actually benefit the target application may be quite narrow.

In this work, we focus on the problem of extending the utility of the Naive
Bayes classifier for problems involving extremely asymmetric misclassification
costs. Concentrating on text applications we discuss why certain misclassification
errors may be committed with an apparent high confidence and propose an
effective method of adjusting the output of Naive Bayes at classification time so
as to decrease its overconfidence.



2 Classification with extremely asymmetric
misclassification costs

Let us assume a two-class problem {(z,y):y € {0,1} and z € X'}, where y =1
designates that = belongs to class C' (target) and y = 0 designates that = € C.
Assuming no costs associated with making the correct decision, the expected
misclassification cost of a classifier F' over input domain X" is defined as

cost (F) =co1P(F=0Az € C)+ecioP(F=1Az€C)

where cq is the cost of misclassifying the target as non-target and c1g is the cost
of making the opposite mistake. If accurate estimates of P (C|x) are available,
the optimum class assignment for input z results from minimizing the expected
loss. In problems with highly asymmetric misclassification costs, assigning = to
the more expensive class may be preferable even if its posterior probability is
quite low. If c¢19 > cg1, the application dictates very low tolerance for false
positives and an acceptable classifier needs to be close to 100% correct when
assigning objects to class C. Conversely, if cg; > ci1g then false-negatives are
highly penalized and an acceptable classifier needs to be characterized by nearly
perfect recall in detecting objects belonging to C'. Perfect precision in detecting
C is equivalent to perfect recall in detecting C, but while perfect recall is always
possible, perfect precision may not be, especially if the target class is also the
one with least examples. In this work we will focus on the problem on achieving
near-perfect recall with respect to the target class.

3 Sources of overconfidence in Naive Bayes classification

3.1 The multinomial model

Naive Bayes (NB) is one of the most widely used classifiers, especially in the text
domain where it tends to perform quite well, despite the fact that many of its
model assumptions are often violated. Several variants of the classifier have been
proposed in the literature [1] but in applications involving text, the multinomial
model has been found to perform particularly well [2].

Naive Bayesian classifiers impose the assumption of class conditional feature
independence which, although rarely valid, has proved to be of surprisingly lit-
tle significance from the standpoint of classification accuracy [3]. Given input
x, NB computes the posterior probability of class C' using the Bayes formula
P(Clz) = P(C) PI(DJEL?)' Input z is assigned to the class with the highest ex-
pected misclassification cost which, assuming feature independence and when
only two classes are present, is determined by the log-odds score:

xZ\C

score (x) = const + Zlo \C)
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(1)



3.2 Overconfidence in decision making

It has been recognized that Naive Bayes, while being often surprisingly accurate
as a classifier (in terms of the 0/1 loss), tends to be poor when it comes to
assessing the confidence of its decisions [4][3]. In particular, the class-probability
estimates of NB tend to be clustered near the extreme values of 0 and 1. As shown
in [5], this is particularly true in the text domain. When classifying documents
with many features, their correlations may compound each other, thus leading to
exponential growth in the odds. This effect can intensify in areas only sparsely
populated by the training data. Since the log odds in (1) depend on the ratio
of class-conditional probabilities, they can be quite high even if the values of
the probabilities themselves are very low. But probability estimates for features
that were seen relatively rarely in the training data are likely to be more “noisy”
than the ones obtained for features with substantial presence. This may result
in NB outcomes that appear quite confident even if the neighborhood the test
input was only weakly represented in the training set.

Figure 1 illustrates the scatter of NB scores for erroneously classified doc-
uments vs. the maximum document frequency (DF) for features contained by
these documents. The maximum DF of features in x provides a rough measure
of how well the region of containing = was represented by the training data.
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Fig. 1. Scores of Naive Bayes misclassifiications (at default decision threshold) vs.
maximum training-set document frequency for features belonging to the misclassified
documents (for the collections of: Reuters-21578, 20-Newsgroups and TREC-AP). Mis-
classifications of documents falling into sparsely populated regions are likely to be made
with higher confidence (signified by high absolute score values) than those made for
documents for which the training data contained much of related content.

Thus scarcity by itself appears to be a good indicator of overconfidence,
although in practice it may be interacting with other factors, such as local class
imbalance and document length (e.g., a large number of “noisy” features).

In [6] it was argued that the trust put in the posterior probability estimates
of a classifier should decrease with a suitably defined distance between the test
input and the training data. In [7] it was suggested that for learners capable
of fast incremental learning, the reliability of their posterior estimates can be




improved within the framework of transductive learning. Given that a classifier
assigns x to class C| it is assumed that a confident decision is one that is little
affected by adding z to the training pool of C'. With augmented training data,
an updated estimate of P (C|z) is obtained, where its difference to the original
is used to gauge the sensitivity of the classifier. The techniques of [6] and [7]
both rely on modulating the posterior probability estimate of the base classifier
with a normalized reliability indicator, which is interpreted as probability, i.e.,

P(Clz) = P(Clz) - R(Clz) (2)

where R (C|z) monotonically approaches 1 as the reliability increases.

4 Changing Naive Bayes’ mind: a new reliability measure

The log-odds score of NB has the natural geometric interpretation of the projec-
tion of the input onto the weight vector normal to the decision hyperplane. On
the other hand, the reliability metrics of [6] and [7], while providing a measure
of classifier uncertainty, do not offer a similar interpretation of a margin within
which a particular classification is made. We propose a novel reliability met-
ric for Naive Bayes, based on the concept of gauging the difficulty of reversing
the classification outcome of NB for a given input. Our motivation comes from
applying Naive Bayes to on-line learning. Unlike discriminative models such as
decision trees, generative learners such as NB can be expected to be stable under
small adjustments of the training data. Thus, in order for NB to correct itself,
a more extensive change to the distribution of the training data may be needed.

To provide a concrete example, let us consider applying a NB classifier to
the problem of spam detection, where a user is given a way to correct classifier
mistakes by adding a particular email message to the appropriate pool of training
data. Take a scenario where arrival of a spam message finds prompts a corrective
action. If an “identical” spam appears again the user responds with another
training event, and so on until the classifier correctly identifies the message as
spam. In this scenario, the confidence of NB in its initial (mistaken) decision
can be linked to the number of training events necessary to correct its outcome,
which in turn translates to the amount of change to the training distribution
needed for decision reversal. Intuitively, decisions that are confident will require
more extensive adjustment of the distribution than less confident ones.

Thus, given that the classifier declares that = belongs to class C, we want
to ask how much training with = would it take to reverse its opinion. Since
the classifier outcome (1) is determined by its score and assuming the decision
threshold of 0 and that the perturbation of the training data does not alter class
priors, in order to achieve a decision reversal, one needs to satisfy

log P (z|C) —log P (z|C) = log P (z|C) — log P (z|C) — score (3)

where score is the original output score, while P (z|C) and P (z|C) denote
estimates over the altered training data.



A question arises as how best to measure the effected change to the training
distribution. Here we consider the Kullback-Leibler (KL) divergence, i.e.,

rdist(z) = KL (P (z|C) P (x|€)) — ZP (2:[C) Tog Jj (i C) (4)

P (z|C)

Once the KL divergence (4) is computed, a straightforward combination method
is to scale (see eq. (2)) the original posterior estimate (for the predicted class)
with a suitably defined function of the KL divergence, similarly to the approaches
taken in [6] and [7]. Here the difficulty lies in an appropriate choice of the nor-
malization function R (C|z) : rdist(z) — [0,1], but an additional problem with
such an approach in the context of Naive Bayes is that the original posterior
estimates produced by the NB are already very close to 1 or very close to 0.
Thus the modulation of (4) essentially boils down to substituting R (C|x) for
P (Cl|z)'. Given that in the case of extreme misclassification costs one is pri-
marily interested in the narrow region where posterior probabilities are close
to 1 or 0, the substitution effect may be undesirable since one loses the original
degree-of-confidence information. Therefore, we consider directly modulating the
raw log-odds score returned by NB, which typically have a much larger dynamic
range:

score (x) = score (x) - rdist (x) (5)

Other score transformations could be considered. In this work we will also use a
function KL distance in the form of:

score (x) = score (z) - exp (— - rdist (z)) (6)

as an alternative to (5).

5 Experimental Setup

In the experiments described below we compare classifiers at the point where
they achieve 100% test-set recall for the target class. At this operating setting,
a classifier’s utility is measured by its specificity (true-negative rate), i.e., the
fraction of non-target documents that are classified correctly. Arguably, this
measure is very sensitive to class noise and in practice one would have to account
for such a possibility, e.g., via interactive or automatic data cleansing procedures.

We compared the proposed decision-reversal extension to Naive Bayes (la-
beled as NB-KL) with the following:

— NB: Unmodified multinomial Naive Bayes (baseline).
— NB-Trans: Kukar’s transductive reliability estimator [7] (this is the method
closest in spirit to the one proposed here).

! In fact [7] does it directly by substituting the posterior estimate of P (C|z) with
prec- R(C|x), where prec refers to the overall precision of the classifier.



Algorithm
1. Classify input x using a trained NB model.

2. Estimate the multiplicity o with which = needs to be added to
the opposite class to achieve decision reversal.

3. Measure the KL divergence (eq.(4)) between the original
and the perturbed distribution of features for the class
opposite to the one originally predicted.

4. Modulate the original score (eq.(5) or (6)).
Table 1. Steps involved in the decision-reversal Naive Bayes. The most computation-
ally expensive part is step 2, in which one needs to estimate how many corrective
events need to take place before the initial decision of the classifier is changed. A naive
implementation would keep on generating such events and updating the model, but
since in some cases the number of events may be on the order of hundreds or more,
this would add significantly to the evaluation time. Instead, we treat the score as a
function of the corrective event count a and identify the zero-crossing of score(alpha).
In our implementation of the Newton method, usually only 1-7 iterations are needed.

Multi-class problems were treated as a series of two-class tasks, with one class
serving as the target and the remaining categories ones as the anti-target, i.e.,
one-against-the-rest. The results obtained by each classifier and for each dataset
are reported by macro-averaging the specificity obtained in the constituent two-
class tasks.

5.1 Data sets

We chose three document collections that have often been extensively used in text
categorization literature. In each case the collection was split (in the standard
way for these collections) into a training set and a test set, which were defined
as follows:

— Reuters-21578 (101 categories, 10,724 documents): We used the standard mod _apte
split of the data.

— 20 Newsgroups (20 categories, 19,997 documents): A random sample of 2/3 of the
dataset was chosen for training with the remaining documents used for testing.

— TREC-AP (20 categories, 209,783 documents): The training/test split described
in [8] was used.

Features were extracted by removing markup and punctuation, breaking the
documents on whitespace, and converting all characters to lowercase. No stop-
word removal or stemming was performed. In a modification of the standard bag
of words representation, in-document frequencies of terms were ignored.

In all two-class experiments, the feature set was reduced to the top 5,000 at-
tributes with the highest values of Mutual Information (MI) between the feature
variable and the class variable estimated over the training set.



Dataset NB  [NB-Trans|NB-KL [ 2B Bl (o]
Reuters-21578 |0.4743|  0.3070/0.6693 41
20 Newsgroups|0.4033| 0.3297|0.5379 33
TREC-AP  [0.5004| 0.1871]0.5954 19

Table 2. Macro-averaged classification performance (non-target specificity) captured
at the point of perfect target recall. The decision-reversal variant of Naive Bayes con-
sistently outperformed the baseline, while the transductive method consistently under-
perfomed in all three cases.

6 Results

Table 2 shows the results. For all three datasets, NB-KL provided a substantial
improvement over the baseline NB. The transductive method [7] generally under-
performed the baseline NB. With hindsight, this is perhaps not too surprising.
To achieve high specificity at 100% target class recall, one needs to discount
errors for the target class where classification is made with an apparently high
confidence. In such cases, the probability of a test document belonging to the
target class is estimated by NB to be almost one. The transductive step will
increase the probability even further, but this is likely to produce only a very
small difference between the original and the final class-probability distributions.
Thus the original decision made by NB proves in such cases to be quite stable.
It appears therefore that the utility of the transductive method may be highest
in cases where the apparent confidence of NB decisions is low.

To examine the effect of an alternative form of score transformation, we evalu-
ated the performance of NB-KL using the exponential formula (6) with the choice
if 7y in [0.001, 50]. The best optimization results obtained for NB-KL parametrized
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Fig. 2. at the point of perfect target recall. The results for best parameter settings in
(6) are compared to the baseline NB, NB-Trans and the default settings of NB-KL. In
the case of Reuters-21578 and TREC-AP exponential discounting results in substantial
increase in specificity. For 20-Newsgroups, however, the original formulation of NB-KL
works better.



according to (6) are compared in Figure 2 with the baseline NB, NB-Trans and
the default results for NB-KL. In some cases parameter optimization can substan-
tially improve the performance of NB-KL. The parametric formula (6) was un-
able however to outperform the regular NB-KL in the case of the 20-Newsgroups
dataset. The optimum way of incorporating the decision-reversal information
may thus need to be investigated further.

7 Conclusions

The decision-reversal NB proved to be effective in increasing Naive Bayes speci-
ficity and countering its native overconfidence. Although the original form of
the algorithm performed quite well, further improvements were achieved (in 2
out of 3 datasets) by considering an alternative exponential form of discounting
the perturbation distance. The dependence of the effectiveness of incorporating
the decision reversal information on the form of the discounting function will be
the subject of future work. We are also intending to investigate the effects of
combining the proposed method of curbing the overconfidence with techniques
motivated by explicit reduction of feature interdependence (e.g., as realized by
feature selection).
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