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Abstract. Interest in domain-specific search is growing rapidly, creating a need 

for domain-specific synonym discovery. The best-performing methods for this 

task rely on query logs and are thus difficult to use in many circumstances. We 

propose a method for domain-specific synonym discovery that requires only a 

domain-specific corpus. Our method substantially outperforms previously pro-

posed methods in realistic evaluations. Due to the difficulty of identifying pairs 

of synonyms from among a large number of terms, methods have traditionally 

been evaluated by their ability to choose a target term's synonym from a small 

set of candidate terms. We generalize this evaluation by evaluating methods’ 

performance when required to choose a target term's synonym from progres-

sively larger sets of candidate terms. We approach synonym discovery as a 

ranking problem and evaluate the methods' ability to rank a target term's candi-

date synonyms. Our results illustrate that while our proposed method substan-

tially outperforms existing methods, synonym discovery is still a difficult task 

to automate and is best coupled with a human moderator. 
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1 Introduction 

Interest in domain-specific search has grown over the past few years. Researchers 

are increasingly investigating how to best search medical documents [7, 14, 16], legal 

documents [10, 11, 19], and patents [2, 21]. With the growing interest in domain-

specific search, there is an unmet need for domain-specific synonym discovery. Do-

main-independent synonyms can be easily identified with resources such as thesauri, 

but domain-specific variants of such resources are often less common and less com-

plete. Worse, synonyms can even be corpus-specific or specific to a subdomain within 

a given domain. For example, in the legal or e-discovery domain, an entity subject to 

e-discovery may use its own internal terms and acronyms that cannot be found in any 

thesaurus. In the medical domain, whether or not two terms are synonyms can depend 

entirely on the use case. For example, a system for detecting drug side effects might 

treat “left arm pain” as a synonym of “arm pain” because the arm pain is the relevant 

part. On the other hand, “left arm pain” would not be synonymous with “arm pain” in 

an electronic health record belonging to a patient who had injured her left arm.  

Furthermore, domain-specific document collections (e.g., e-discovery or medical) 

are often significantly smaller than the collections that domain-independent synonym 



 

 

discovery is commonly performed on (e.g., the Web). We present a domain-specific 

synonym discovery method that can be used with domain-specific document collec-

tions. We evaluate our method on a focused collection consisting of 400,000 forum 

posts. Our results show that our method can be used to produce ranked lists that sig-

nificantly reduce the effort of a human editor. 

The best-performing synonym discovery methods require external information that 

is difficult to obtain, such as query logs [33] or documents translated into multiple 

languages [12, 25]. Other types of synonym discovery methods (e.g., [31, 32]) have 

commonly been evaluated using synonym questions from TOEFL (Test Of English as 

a Foreign Language), in which the participant is given a target word (e.g., “disagree”) 

and asked to identify the word’s synonym from among four choices (e.g., “coincide”, 

“disparage”, “dissent”, and “deviate”). While this task presents an interesting problem 

to solve, this type of evaluation is not necessarily applicable to the more general task 

of discovering synonyms from among the many terms (n candidates) present in a 

large collection of documents. We address this concern by evaluating our method’s 

and other methods’ performance when used to answer domain-specific TOEFL-style 

questions with progressively larger numbers of incorrect choices (i.e., from 3 to 1,000 

incorrect choices). While our proposed method performs substantially better than 

strong existing methods, neither our method nor our baselines are able to answer a 

majority of the questions correctly when presented with hundreds or thousands of 

incorrect choices. Given the difficulty of choosing a target term’s synonym from 

among 1,000 candidates, we approach domain-specific synonym discovery as a rank-

ing problem in which a human editor searches for potential synonyms of a term and 

manually evaluates the ranked list of results.  To evaluate the usefulness of this ap-

proach, we use our method and several strong existing methods to rank lists of poten-

tial synonyms. Our method substantially outperforms existing methods and our results 

are promising, suggesting that, for the time being, domain-specific synonym discov-

ery is best approached as a human-moderated relevance-ranking task. 

Our contributions are (1) a new synonym discovery method that outperforms 

strong existing approaches (our baselines); (2) an evaluation of how well our method 

and others’ methods perform on the TOEFL-style evaluations when faced with an 

increasing number of synonym candidates; (3) an evaluation of how well our methods 

and others’ methods perform when used to rank a target term’s synonyms; our method 

places 50% of a target term’s synonym in the top 5% of results, whereas other ap-

proaches place 50% of a target term’s synonyms in the top 40%. 

2 Related Work 

A variety of methods have been applied to the domain-independent synonym iden-

tification problem. Despite the limited comparisons of these methodologies, the best-

performing methods are reported to use query logs or parallel corpora. We describe 

the existing methodologies and differentiate our approach. 

Distributional Similarity. Much related work discovers synonyms by computing 

the similarity of the contexts that terms appear in; this is known as distributional simi-



 

 

larity [26]. The intuition is that synonyms are used in similar ways and thus are sur-

rounded by similar words. In [31], Terra and Clarke compare the abilities of various 

statistical similarity measures to detect synonyms when used along with term co-

occurrence information. Terra and Clarke define a term’s context as either the term 

windows in which the term appears or the documents in which the term appears. They 

use questions from TOEFL (Test Of English as a Foreign Language) to evaluate the 

measures’ abilities to choose a target word’s synonym from among four candidates. 

We use Terra and Clarke’s method as one of our baselines (baseline 1: Terra & 

Clark). In [8], Chen et al. identify synonyms by considering both the conditional 

probability of one term’s context given the other term’s context and co-occurrences of 

the terms, but perform limited evaluation. In [27], Rybinski et al. find frequent term 

sets and use the term sets’ support to find terms which occur in similar contexts. This 

approach has a similar outcome to other approaches that use distributional similarity, 

but the problem is formulated in terms of terms sets and support.  

Distributional similarity has also been used to detect other types of relationships 

among words, such as hyponymy and hypernymy, as they also tend to occur in similar 

contexts. In [28], Sahlgren and Karlgren find terms related to a target concept (e.g., 

“criticize” and “suggest” for the concept “recommend”) with random indexing [18], a 

method which represents terms as low-dimensional context vectors. We incorporate 

random indexing as one of our model’s features and evaluate the feature’s perfor-

mance in our feature analysis. Brody and Lapata use distributional similarity to per-

form word sense disambiguation [5] using a classifier with features such as  n-grams, 

part of speech tags, dependency relations, and Lin’s similarity measure [20], which 

computes the similarity between two words based on the dependency relations they 

appear in. We incorporate Lin’s similarity measure as a feature and derive features 

based on n-grams and part-of-speech n-grams. Strzalkowski proposes a term similari-

ty measure based on shared contexts [30]. Carrell and Baldwin [6] use the contexts a 

target term appears in to identify variant spellings of a target term in medical text. 

Pantel et al. use distributional similarity to find terms belonging to the same set (i.e., 

terms which share a common hypernym) [24] by representing each term as a vector of 

surrounding noun phrases and computing the cosine distance between term vectors.  

Lexico-syntactic Patterns. In [22], McCrae and Collier represent terms by vectors 

of the patterns [15] they occur in and use a classifier to judge whether term pairs are 

synonyms. Similarly, Hagiwara [13] uses features derived from patterns and distribu-

tional similarity to find synonyms. Hagiwara extracts dependency relations from doc-

uments (e.g., X is a direct object of Y) and use them as a term’s context. Hagiwara 

finds that the features derived from distributional similarity are sufficient, because 

there is no significant change in precision or recall when adding features derived from 

patterns. Their analysis is logical given that lexico-syntactic patterns and distribution-

al similarity are both concerned with the terms surrounding a target term. We use 

Hagiwara’s method as another one of our baselines (baseline 2: Hagiwara). 

Tags. Clements et al. [9] observe that in social tagging systems different user 

groups sometimes apply different, yet synonymous tags. They identify synonymous 

tags based on overlap among users/items. Other tag similarity work includes [29], 

which  identifies similar tags that represent a “base tag”. Tag-based approaches rely 



 

 

on the properties of tags, thus they are not applicable to domains in which tags are not 

used. For this reason we do not compare our method with tag-based approaches. 

Web Search. Turney [32] identifies synonyms by considering the co-occurrence 

frequency of a term and its candidate synonym in Web search results. This method is 

evaluated on the same TOEFL dataset used by Terra and Clarke [31]; Terra and 

Clarke’s method performs better. Similarly, other approaches [1, 3] rely on obtaining 

co-occurrence frequencies for terms from a Web search engine. We do not compare 

with Web search-based methods as they rely on a general corpus (the Web), whereas 

our task is to discover domain-specific synonyms in a domain-specific corpus. 

Word Alignment. Plas [25] and Grigonytė et al. [12] observe that English syno-

nyms may be translated to similar words in another language; they use word align-

ment between English and non-English versions of a document to identify synonyms 

within a corpus. Wei et al. [33] use word alignment between queries to identify syno-

nyms. Similarly, word alignment can be coupled with machine translation to identify 

synonyms by translating text into a second language and then back into the original 

language (e.g., [23]). While word alignment methods have been shown to perform 

well, their applicability is limited due to requiring either query logs or parallel corpo-

ra. Due to this limitation, we do not use any word alignment method as a baseline; we 

are interested in synonym discovery methods that do not require difficult-to-obtain 

external data. 

3 Methodology 

We compare our approach against three baselines: Terra and Clarke’s method [31], 

Hagiwara’s SVM method [13], and a variant of Hagiwara’s method.  

3.1 Baseline 1: Terra and Clarke 

In [31], Terra and Clarke evaluate how well many statistical similarity measures iden-

tify synonyms. We use the similarity measure that they found to perform best, point-

wise mutual information (PMI), as one of our baselines. The maximum likelihood 

estimates used by PMI depend on how term co-occurrences are defined. Terra and 

Clarke propose two approaches: a window approach, in which two terms co-occur 

when they are present in the same n-term sliding window, and a document approach, 

in which two terms co-occur when they are present in the same document. We empir-

ically determined that a 16-term sliding window performed best on our dataset.  

With this approach the synonym of a term 𝑤𝑖  is the term 𝑤𝑗  that maximizes 

𝑃𝑀𝐼(𝑤𝑖 ,  𝑤𝑗). Similarly, a ranked list of the synonym candidates for a term  𝑤𝑖  can be 

obtained using this approach by using 𝑃𝑀𝐼(𝑤𝑖 ,  𝑤𝑗) as the ranking function. 

3.2 Baseline 2: Hagiwara (SVM) 

Hagiwara [13] proposes a synonym identification method based on point-wise total 

correlation (PTC) between two terms (or phrases treated as single terms) 𝑤𝑖 and 𝑤𝑗 



 

 

and a context 𝑐𝑘 in which they both appear. Hagiwara uses syntax to define context. 

The RASP parser [4] is used to extract term dependency relations from documents in 

the corpus. A term’s contexts are the (modifier term, relation type) tuples from the 

relations in which the term appears as a head word. 

Hagiwara takes a supervised approach. Each pair of terms (𝑤𝑖, 𝑤𝑗) is represented 

by a feature vector containing the terms’ point-wise total correlations for each context 

as features. Features for contexts not shared by 𝑤𝑖 and 𝑤𝑗 have a value of 0. That is, 

𝑣𝑒𝑐𝑡𝑜𝑟𝑤𝑖,𝑤𝑗
=  〈𝑃𝑇𝐶(𝑤𝑖 , 𝑤𝑗 , 𝑐1), … , 𝑃𝑇𝐶(𝑤𝑖 , 𝑤𝑗 , 𝑐𝑛)〉. We prune features using the 

same criteria as Hagiwara and identify synonyms by classifying each word pair as 

synonymous or not synonymous using SVM. We modified this approach to rank syn-

onym candidates by ranking the results based on SVM’s decision function’s value. 

3.3 Baseline 3: Hagiwara (Improved) 

We modified Hagiwara’s SVM approach to create an unsupervised approach based on 

similar ideas. The contexts and maximum likelihood estimates are the same as in 

Hagiwara’s approach (described in section 3.2). Instead of creating a vector for each 

pair of terms (𝑤𝑖, 𝑤𝑗), we created a vector for each term 𝑤𝑖 and computed the similari-

ty between these vectors. The vector for a term 𝑤𝑖 is composed of the PMI measures 

between the term 𝑤𝑖 and each context 𝑐𝑘. That is, 𝑣𝑒𝑐𝑡𝑜𝑟𝑤𝑖
=

〈𝑃𝑀𝐼(𝑤𝑖 , 𝑐1), 𝑃𝑀𝐼(𝑤𝑖 , 𝑐2), … , 𝑃𝑀𝐼(𝑤𝑖 , 𝑐𝑛)〉. The similarity between 𝑤𝑖 and 𝑤𝑗 is 

computed as the cosine similarity between their two vectors. Similarly, we rank syno-

nym candidates for a term 𝑤𝑖 by ranking vectors based on their similarity to 𝑣𝑒𝑐𝑡𝑜𝑟𝑤𝑖
.  

3.4 Regression 

Our approach is a logistic regression on a small set of features. We hypothesize that a 

supervised approach will outperform statistical synonym identification approaches 

since it does not rely on any single statistical measure and can instead weight different 

types of features. While Hagiwara’s original method used supervised learning, it only 

used one type of contextual feature (i.e., point-wise total correlation between two 

terms and a context). Like Hagiwara, we construct one feature vector for each word 

pair. In the training set, we give each pair of synonyms a value of (+1) and each pair 

of words that are not synonyms a value of (-1). To obtain a ranked list of synonym 

candidates, the probabilities of candidates being synonyms are used as relevance 

scores. That is, the highest ranked candidates are those that the model gives the high-

est probability of being a 1. 

We also experimented with SVMRank [17] and SVM, but found that a logistic re-

gression performed similarly or better while taking significantly less time to train. 

The features we used are: 

1. The number of distinct contexts both 𝑤𝑖 and 𝑤𝑗 appear in, normalized by the 

minimum number of contexts either one appears in, 

𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠 =  
𝐶(𝑤𝑖,   𝑤𝑗)

min(𝑐(𝑤𝑖),   𝑐(𝑤𝑗))
  



 

 

where 𝑐(𝑤𝑖) is the number of distinct contexts 𝑤𝑖 appears in and  𝑐(𝑤𝑖 , 𝑤𝑗) is 

the number of distinct contexts both 𝑤𝑖 and 𝑤𝑗 appear in. According to the 

distributional hypothesis [26], similar words should appear in the same con-

text more often than dissimilar words do. We use Hagiwara’s method as de-

scribed in section 3.2 for finding contexts. 

2. The number of sentences both 𝑤𝑖  and 𝑤𝑗  appear in, normalized by the mini-

mum number of sentences either one appears in, 

𝑠ℎ𝑎𝑟𝑒𝑑_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 =  
𝑠(𝑤𝑖,   𝑤𝑗)

min(𝑠(𝑤𝑖),   𝑠(𝑤𝑗))
  

where 𝑠(𝑤𝑖) is the number of windows 𝑤𝑖  appears in and  𝑠(𝑤𝑖 , 𝑤𝑗) is the 

number of windows both 𝑤𝑖  and 𝑤𝑗  appear in. 

3. The cosine similarity between 𝑤𝑖 and 𝑤𝑗 as calculated by the Hagiwara (Im-

proved) method, as described in section 3.3. This method weights contexts 

by their PMI, whereas 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠 weights all contexts equally. 

4. The Levenshtein distance between terms 𝑤𝑖 and 𝑤𝑗. Our synonym list con-

tains phrases; that is, terms may contain multiple words (e.g., “sore_throat”). 

We hypothesize that this feature will be useful because synonymous phrases 

may share common terms (e.g., “aching_throat” and “sore_throat”).  

5. The probability of the target term 𝑤𝑖 appearing in an n-gram given that the 

candidate term 𝑤𝑗 appears in the n-gram. We use all n-grams of size 3 that 

appear in our dataset (e.g., “have|a|headache”) and replace the candidate and 

target terms with X (e.g., “have|a|X”).  

        𝑛𝑔𝑟𝑎𝑚_𝑝𝑟 =  Pr(𝑤𝑖  𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑎𝑠 𝑋 | 𝑤𝑗  𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑎𝑠 𝑋)

=  
𝑃𝑟(𝑤𝑖  𝑎𝑛𝑑 𝑤𝑗  𝑎𝑝𝑝𝑒𝑎𝑟 𝑎𝑠 𝑋)

𝑃𝑟(𝑤𝑗  𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑎𝑠 𝑋)
 

6. The probability of the target term 𝑤𝑖 appearing in a part-of-speech n-gram 

given that the candidate term 𝑤𝑗 appears in the part-of-speech (POS) n-gram. 

As with ngram_pr, we use n-grams of size 3. To construct POS n-grams, we 

replace the candidate and target terms with X as before and replace each 

term in the n-gram with its POS (e.g., “have|a|X” becomes “VBP|DT|X”). 

𝑝𝑜𝑠𝑛𝑔_𝑝𝑟 =  Pr(𝑤𝑖  𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑎𝑠 𝑋 | 𝑤𝑗  𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑎𝑠 𝑋) 

         =  
𝑃𝑟(𝑤𝑖  𝑎𝑛𝑑 𝑤𝑗  𝑎𝑝𝑝𝑒𝑎𝑟 𝑎𝑠 𝑋)

𝑃𝑟(𝑤𝑗  𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑎𝑠 𝑋)
 

7. The similarity between terms 𝑤𝑖 and 𝑤𝑗 as computed by Lin’s information-

theoretic term similarity measure (lin_sim) as described in [20]; this measure 

is computed using the dependency relations that terms 𝑤𝑖 and 𝑤𝑗 appear in. 

8. The cosine distance between the vector for term 𝑤𝑖 and the vector for term 

𝑤𝑗 as obtained using random indexing. We used the SemanticVectors 

(https://code.google.com/p/semanticvectors/) implementation of random in-

dexing with the default parameters. 

Features 5-7 (ngram_pr, posng_pr, and lin_sim) were inspired by features used in 

Brody and Lapata’s effort on word sense disambiguation [5]; random_indexing was 

https://code.google.com/p/semanticvectors/


 

 

shown by Sahlgren and Karlgren to perform well at identifying related terms in [28]. 

We explore the utility of each feature in section 4.4. 

4 Experiments 

We describe our ground truth and corpus in section 4.1. In section 4.2 we evaluate the 

quality of our approach and various baseline methods using a more realistic variant of 

the TOEFL evaluation methodology commonly used in previous efforts. We approach 

synonym discovery problem as a ranking problem in section 4.3 and evaluate how 

well our approach and the baseline methods rank a target term’s synonyms. Finally, 

we examine the impact of each feature used by our method in section 4.4. 

4.1 Dataset 

We focus on the medical side-effect domain in our evaluation. To evaluate our meth-

odology and compare with existing strong approaches (i.e., our baselines), we used a 

corpus of medical forum posts and the MedSyn synonym list [34] as our ground truth, 

which contains synonyms in the medical side-effect domain. A domain-specific the-

saurus is required to train the synonym discovery methods for a given domain. We 

removed synonyms from the list that do not occur or occur only once in our corpus 

because it is impossible for any of the methods to detect them. We also removed 

terms from the list that had no synonyms in our corpus. This left us with 1,791 syno-

nyms, which were split into a training set (291 pairs) which was used to tune our 

methods, and a testing set (1,500 pairs), which was used to perform our evaluations. 

On average, each term in the list had 2.8 synonyms (𝜎 = 1.4). The maximum number 

of synonyms per term was 11 and the minimum number was 2. Of the 1,791 syno-

nyms that we kept, 67% of the synonyms were phrases treated as a single term (e.g., 

“joint_pain”) and the remaining 33% were single terms (e.g., “arthralgia”). 

We created questions  (target terms) similar to those used in TOEFL from terms in 

the synonym list by choosing a target term as the question (e.g., “joint pain”) and 

choosing a synonym (e.g., “arthralgia”) and non-synonymous terms (e.g., “headache”, 

“arthritis”,  and “arm pain”) as choices (synonym candidates). The methods’ task is to 

identify the correct synonym from among the choices (synonym candidates) given the 

target term. In the general TOEFL-style evaluation (section 4.2), each question has 

one correct choice and n incorrect choices. In the relevance ranking evaluation (sec-

tion 4.3), each question i has mi correct choices and n incorrect choices, where mi is 

the number of synonyms that question i has in the synonym list. 

Our corpus was built from a crawl of 400,000 forum posts made to the Breast-

cancer.org discussion boards1 and the FORCE breast cancer message boards2. Both 

Websites divide their discussion boards into topics. In keeping with our goal of identi-

fying domain-specific synonyms, we crawled only those topics related to general 

                                                           
1 http://community.breastcancer.org/ 
2 http://www.facingourrisk.org/messageboard/index.php 



 

 

discussion or to side-effects. A complete list of the pages crawled is available at 

http://ir.cs.georgetown.edu/data/medposts.txt. While this dataset is focused on the 

medical side-effect domain, our methods do not take advantage of any medical do-

main knowledge and could be applied to find synonyms within any domain. We 

stemmed both the synonym list and corpus with the Porter stemmer. When tokenizing 

our corpus and synonym list, we transformed each multi-word term in the synonym 

list into a single term (e.g., “joint pain” became “joint_pain”). We define synonyms as 

equivalent terms, including spelling variations. Synonymous phrases may be the same 

except for one additional word (e.g., “arm_pain” and “left_arm_pain”). We do not 

include separate entries in our synonym list for every morphological variant of a term, 

however, because the synonym list is stemmed. 

4.2 General TOEFL-Style Evaluation 

In related research efforts, TOEFL (Test Of English as a Foreign Language) questions 

have been most commonly used to measure synonym identification accuracy. Suc-

cinctly, a TOEFL question consists of a target term and four synonym candidates. The 

task is to identify which one of the four candidates is a synonym of the target term. To 

create a more realistic TOEFL-style evaluation in which methods are faced with more 

than four choices (synonym candidates), we created TOEFL-style questions that con-

sisted of one target word, one correct choice, and n incorrect choices (analogous to 

the TOEFL evaluation when n=3). We let n range from 3 to 138 in multiples of 15 (3, 

18, 33, 48, …, 138) and from 150 to 1050 in multiples of 100 (150, 250, …, 1050) so 

that we could observe the methods’ performance while the questions were gradually 

made harder (multiples of 15) and while the questions became harder more rapidly 

(multiples of 100). We used five-fold cross-validation with the supervised methods. 

As in previous work, we measured the performance in terms of the number of ques-

tions answered correctly as the number of incorrect candidates varies (correct@n). 

The results for the general TOEFL-Style evaluation are shown in Figure 1. We also 

show the expected performance of a method that randomly selects synonyms (Ran-

dom). Terra and Clarke’s method quickly overtakes Hagiwara (Improved) as n in-

creases. Our method, Regression, performs substantially better than Terra & Clarke 

for all values of n (about 175% better @33, @150, and @450). The performance of 

all methods decreases as n increases. Hagiwara (SVM) performs the worst among the 

methods (91% worse than Regression @150) and quickly approaches the performance 

of Random. Hagiwara (Improved) performs better than Hagiwara (SVM), but it per-

forms much worse than Regression and Terra and Clarke (85% worse than Regres-

sion @150). At n=3, which is equivalent to the traditional TOEFL evaluations with 

one correct choice and three incorrect choices, Regression performs 49% better (67% 

vs. 45%) than the next best method, Hagiwara (improved). If each question’s number 

of correct choices increases to two or three (instead of one), the methods perform 

similarly and Regression continues to substantially outperform the other methods. 



 

 

 
Figure 1: General TOEFL-Style Evaluation 

 
Figure 2: MAP 

 
Figure 3: Recall@n 

 
Figure 4: MAP@200 using single features 

While Regression and Terra and Clarke perform much better than the two Hagi-

wara methods, they do not perform well on an absolute scale. When used to find a 

target term’s synonym from among 451 choices (450 incorrect choice and 1 correct 

choice), Regression is only correct 25% of the time; when n=1000, Regression is 

correct only 18% of the time. This is not accurate enough for use as a domain-specific 

synonym discovery method. In the next section (section 4.3), we propose a solution. 

4.3 Relevance Ranking Evaluation 

It is clear from the general TOEFL evaluation (section 4.2) that currently-existing 

methods are incapable of discovering domain-specific synonyms with acceptable 

accuracy. Given this observation, we propose approaching the problem of domain-

specific synonym discovery as a ranking problem, in which a human editor identifies 

a target term’s synonyms by manually reviewing a ranked list of potential synonyms. 

While this process does require human effort, providing a high quality ranked list 

significantly reduces the amount of required effort. We evaluate the methods’ abilities 

to produce ranked lists. To do so, each method is given a target term and required to 

rank the term’s synonym candidates. To evaluate this approach, we generated 

TOEFL-style questions in which each question i has mi correct choices and n incorrect 

choices, where mi is the number of synonyms that question i has in the synonym list. 

That is, each mi is fixed for each question i and n grows progressively larger. That is, 



 

 

there is no fixed number of correct choices as in the general TOEFL evaluation where 

there was only one correct choice. Instead, the number of correct choices for each 

question is the number of synonyms that actually exist; this is more realistic than 

fixing the number of correct choices in the evaluation. We started n at 10 and then 

allowed it to range from 100 to 1,000 in multiples of 100 (10, 100, 200, 300, …, 

1000). The quality of the ranked lists produced by each method was measured with 

Mean Average Precision (MAP). We used five-fold cross-validation with the super-

vised methods, as we did in our previous evaluations. Each method was modified to 

produce a ranked list of results as described in the methodology sections  

The results are shown in Figure 2. In this evaluation, Regression outperforms Terra 

and Clarke for all values of n (57% better @10, 135% better @200, and 170% better 

@1000). Similarly, Hagiwara (Improved) outperforms Hagiwara (SVM) for all values 

of n. As in the general TOEFL evaluation, Regression and Terra and Clarke perform 

much better than the Hagiwara methods. Regression’s MAP remains above 0.40 for n 

≤ 200 and has a MAP of 0.27 at n = 1000. This suggests that Regression produces a 

ranked list that a human editor would find useful.  

We measured recall@n with 1,000 candidates to explore how useful a human edi-

tor would find these ranked lists. The results are shown in Figure 3. As with MAP, 

Regression outperforms the other methods. Regression achieves a recall of 0.54 @50, 

indicating that a human editor could use Regression’s ranked lists to find half of a 

target term’s synonyms by looking at only the top 50 of 1,000 results (5%). This is a 

sharp contrast to the other three methods, which require at least the top 400 of 1,000 

results (40%) to be viewed before achieving an equivalent recall; Regression performs 

157% better than Terra & Clarke @50, suggesting that our method can significantly 

decrease the work performed by a human editor. 

4.4 Feature Analysis 

We examine Regression’s features to determine their contribution to Regression’s 

overall performance. To do so, we analyze the features in the context of the relevance 

ranking evaluation. We compare the MAP@200, achieved by single features, and 

feature pairs. We abbreviate the name of each feature as follows: Hagiwara_improved 

(HI), Levenshtein_distance (LD), Lin_sim (LS), ngram_pr (NG), posng_pr (POS), 

random_indexing (RI), shared_contexts (SC), and shared_sentences (SS). 

The performance of each single feature is shown in Figure 4. LD performs the best, 

which is surprising given that our corpus was stemmed. We hypothesize that LD’s 

utility both results from synonymous terms that stem to different roots and synony-

mous phrases that share some terms. SS, RI, LS, and HI follow LD, but achieve 

MAPs approximately 50% lower than LD’s. The features that use dependency rela-

tions (HI and LS) perform similar to RI, which uses term co-occurrences. NG, POS, 

and SC perform the worst. When pairs of features are used, the pairs containing LD 

perform the best. All of these pairs perform similarly, but LD-SS performs best (25% 

better than LD alone); it is closely followed by LD-RI. Of the feature pairs that do not 

contain LD, three pairs that contain SS perform the best (LS-SS, RI-SS, and SS-HI), 

however, they perform approximately 50% worse than the pairs containing LD. These 



 

 

results mirror those obtained using single features. The performance achieved by the 

best performing feature combinations (LD and LD-SS) cannot be achieved simply by 

combining baselines (e.g., HI and RI). 
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6 Conclusions 

We proposed a new regression-based method for synonym discovery that substan-

tially outperforms existing methods when used to rank a target term’s synonym can-

didates. Additionally, our method performs better at a generalization of the TOEFL-

style evaluation commonly used in prior work. When used to rank a target term’s 100 

synonym candidates, our method produces rankings with a MAP of 0.47, a 135% 

increase over the next-highest method. On average our method places 54% of a target 

term’s synonyms in the top 50 of 1,000 results (5%), whereas other approaches place 

50% of a target term’s synonyms in the top 400 of 1,000 results (40%). While do-

main-specific synonym discovery is still a difficult task requiring a human editor, our 

method significantly decreases the number of terms an editor must review. Our meth-

od finds domain-specific synonyms, but the method itself is not domain specific. Fu-

ture work could investigate the benefits of using a domain-specific method. 

 

7 References 

1. Alfonseca, E. et al.: Using context-window overlapping in synonym discovery 

and ontology extension. RANLP  ’05. (2005). 

2. Azzopardi, L. et al.: Search system requirements of patent analysts. SIGIR  

’10. (2010). 

3. Bollegala, D.: Measuring Semantic Similarity between Words Using Web 

Search Engines. WWW  ’07. (2007). 

4. Briscoe, T. et al.: The second release of the RASP system. Proceedings of the 

COLING/ACL on Interactive presentation sessions -. (2006). 

5. Brody, S., Lapata, M.: Good Neighbors Make Good Senses: Exploiting 

Distributional Similarity for Unsupervised WSD. COLING  ’08. (2008). 

6. Carrell, D., Baldwin, D.: PS1-15: A Method for Discovering Variant 

Spellings of Terms of Interest in Clinical Text. Clin. Med. Res. 8, 3-4, (2010). 

7. Cartright, M.-A. et al.: Intentions and attention in exploratory health search. 

SIGIR  ’11. p. 65 (2011). 

8. Chen, L. et al.: Statistical relationship determination in automatic thesaurus 

construction. CIKM  ’05. (2005). 

9. Clements, M. et al.: Detecting synonyms in social tagging systems to improve 

content retrieval. SIGIR  ’08. (2008). 



 

 

10. Evans, D.A. et al.: E-discovery. CIKM  ’08. (2008). 

11. Ghosh, K.: Improving e-discovery using information retrieval. SIGIR  ’12. 

(2012). 

12. Grigonytė, G. et al.: Paraphrase alignment for synonym evidence discovery. 

COLING  ’10. (2010). 

13. Hagiwara, M.: A Supervised Learning Approach to Automatic Synonym 

Identification based on Distributional Features. HLT-SRWS  ’08. (2008). 

14. Hanbury, A.: Medical information retrieval. SIGIR  ’12. (2012). 

15. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. 

COLING  ’92. p. 539 (1992). 

16. Huang, J.X. et al.: Medical search and classification tools for 

recommendation. SIGIR  ’10. (2010). 

17. Joachims, T.: Optimizing search engines using clickthrough data. KDD’02. 

(2002). 

18. Kanerva, P. et al.: Random indexing of text samples for latent semantic 

analysis. CogSci  ’00. (2000). 

19. Lewis, D.D.: Information retrieval for e-discovery. SIGIR  ’10. (2010). 

20. Lin, D.: Automatic retrieval and clustering of similar words. ACL/COLING  

’98. (1998). 

21. Lupu, M.: Patent information retrieval. SIGIR  ’12. (2012). 

22. McCrae, J., Collier, N.: Synonym set extraction from the biomedical literature 

by lexical pattern discovery. BMC Bioinformatics. 9, (2008). 

23. Nanba, H. et al.: Automatic Translation of Scholarly Terms into Patent Terms 

Using Synonym Extraction Techniques. LREC  ’12. . 

24. Pantel, P. et al.: Web-Scale Distributional Similarity and Entity Set 

Expansion. EMNLP  ’09. (2009). 

25. Plas, L. Van Der: Finding Synonyms Using Automatic Word Alignment and 

Measures of Distributional Similarity. COLING-ACL  ’06. (2006). 

26. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. 

Commun. ACM. 8, 10, 627–633 (1965). 

27. Rybinski, H. et al.: Discovering Synonyms Based on Frequent Termsets. 

RSEISP  ’07. (2007). 

28. Sahlgren, M., Karlgren, J.: Terminology mining in social media. CIKM  ’09. 

(2009). 

29. Solskinnsbakk, G., Gulla, J.A.: Mining tag similarity in folksonomies. 

SMUC  ’11. (2011). 

30. Strzalkowski, T.: Building a lexical domain map from text corpora. COLING  

’94. (1994). 

31. Terra, E., Clarke, C.L.A.: Frequency estimates for statistical word similarity 

measures. HLT-NAACL  ’03. (2003). 

32. Turney, P.D.: Mining the Web for Synonyms : PMI-IR versus LSA on 

TOEFL PMI-IR. EMCL  ’01. (2001). 

33. Wei, X. et al.: Context sensitive synonym discovery for web search queries. 

CIKM  ’09. (2009). 

34. Yates, A., Goharian, N.: ADRTrace: Detecting Expected and Unexpected 

Adverse Drug Reactions from User Reviews on Social Media Sites. ECIR’13. 

(2013).  


