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1. Abstract
We present a novel proactive routing algorithm that consistently searches for failures via frequent
ICMP echo requests.  Our algorithm differs from its predecessors in that it is proactive instead of
reactive by looking for failures before they affect message transmissions.  When a failure is
detected, an alternative route is identified and used.  Our algorithm is currently deployed by a
leading telecommunications company.  In production use, the net result has improved availability
by a 13% increase.
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2. Introduction

With the current trend in distributed computing, large supercomputers are becoming
scarce. These large centralized solutions of yesterday are being replaced by smaller
computers coupled together by networks to achieve the same objective at substantially
lower cost. The Berkley NOW (Network Of Workstations) project [29], PVM (Parallel
Virtual Machine) [32, 33] and MPI (Message Passing Interface) [30] approaches use the
network to provide a communication interface to link computers to act as a single large
supercomputer. New operating systems, like Spring from Sun [31], focus on distributed
computing via the network, both these approaches have one thing in common - the
network.

We developed a network routing algorithm to provide fault-tolerance to relatively small
networks  by proactively monitoring network communication links between servers rather
than reactive routing techniques.   A reactive technique waits for a failure to occur and
then reacts by finding an alternative route.  Our proactive algorithm constantly looks for
errors via continuous ICMP echo requests – when a failure is identified, a new route is
selected around the failed portion of the network.

We have deployed this system in a production environment in over 25 separate
installations running distributed server applications. The need to ensure that these servers
are able to communicate with one another is of mission-critical concern.  The DRS
(Dynamic Routing System) is built on-top of existing hardware and a variety of operating
systems (Solaris, SunOS, LynxOS) making its use and deployment economical. The DRS
has been deployed in a distributed commercial application of a major telecommunications
vendor for 24 months.  During that time, outages due to networks hardware failures were
averted. We achieved a 13% increase in availability of the network with the use of the.

Our algorithm further improves reliability via two network interface cards per server to
provide an alternate method of physical communications in case of hardware failure.  The
DRS works by frequent link checks between all pairs of nodes to determine if the link
between pairs of computers is valid.  This algorithm is redundant because multiple links
between two nodes are defined.  When one link fails the second direct link is used.
However, if no link exists, a broadcast is done to identify whether or not some other node
is able to act as a router to create a path between the sender and the proposed recipient.
Our algorithm differs from others in that links are constantly being checked.  Other
approaches [1, 2, 3, 4, 5, 6] take a more optimistic approach and simply re-route when
“discovery” messages are not received for a specified time.  Our algorithm discovers the
failure before application performance is affected.  The essential goal of our algorithm is
to hide network failures from distributed applications.
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Based on our actual implementation, we developed an analytical model of the DRS to
evaluate its potential use for large networks.  Using this model, we computed for various
network sizes the fault identification times given a percentage of network usage.  For a
typical 10Mbs Ethernet, we compute that a sixteen node network has sub-second fault
identification when using 10 percent of the total theoretical packet throughput of a
ethernet network.  Sixteen nodes seems small given that large corporations often have
tens of thousands of workstations all on various LANs, where each LAN has 50-100
workstations.  However, the application domain of this solution is distributed server
applications running on a separate network.  A characteristic of DSA (Distributed Server
Applications) is a tightly coupled server node array, where clients exist apart from the
server network and the server array appears as a single serving entity.  Examples of this
are large scale DNS server handling distributed data and requests. A word processor
running off a file server is not a DSA.

In Section 3, we overview previous related efforts.  In section  4, we describe the DRS
algorithm details.  In Section 5 we highlight our results obtained using a simulation of the
DRS.  Finally, in Section 6, we conclude and outline directions for future work.

3. Prior Work

There is an abundance of literature on routing algorithms and protocols. Research dealing
with hardware fault tolerance has been studied in particular by the telecommunications
industry. Prior literature can be partitioned into routing algorithms, routing demons, and
hardware solutions. We first discuss routing algorithms developed for network
communications, then the routing demons that implement them, and finish off with
hardware solutions provided and developed by the telecommunications industry.

3.1 Routing Algorithms

The most common routing solution today is the Routing Information Protocol (RIP) [1,
2].  RIP automatically creates and maintains network routes. RIP is a dynamic routing
protocol that is commonly employed in the Internet since it is included in most versions
of UNIX.  RIP, although popular, has many shortcomings. Several key problems with RIP
is that failed network links will take minutes to fix, RIP does not work with subnets, and
RIP is a reactive routing protocol to network failures. [7, 8]

Open Shortest Path First (OSPF) is a routing protocol for IP networks based on the
DARPA Internet Protocol (IP) network layer. The basic routing algorithm is called the
Shortest Path First Algorithm [3].  OSPF is an Interior Gateway Protocol and is intended
to be used within an IP network under common administration, such as a campus,
corporate, or regional network.  The OSPF approach is a passive approach.  Therefore, an
OSPF routing demon does not know that a problem has occurred until a time-out value
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has been reached, meaning a node has not sent a discovery message in the specified time
period, before a new route is sought out. [9, 10, 11, 12, 13, 14]

The External Gateway Protocol (EGP), sometimes referred to as BGP (Border Gateway
Protocol), enables networks to exchange information on how to reach other networks.
This is useful in constructing Wide Area Networks, however, it does not provide fault
tolerance to a small server network. [15, 16, 17, 18, 19, 20, 21, 22, 23 ]

3.2 Routing Demons

Routed, gated, in.rdisc, [1, 2, 3, 4, 5, 6] are routing demons that implement RIP, OSPF,
EGP, and BGP.  Given the algorithms they are based on, however,  they  do not provide a
proactive fault detection schema that protects distributed applications from network
failures.

3.3 Hardware Routing

The telecommunications industry has been interested in fault tolerance for their networks
of systems for many years. Telecommunications protocols are inherently different from
routing protocols in that they focus predominantly on hardware solutions.  The most
widely used solutions are SONET and DXC [26, 25].  Others include double-loop,
forward hop, and fiber. Survivable network architectures for traffic restoration are
generally divided into two categories: ring-based dedicated restoration and mesh
restoration. Rings with redundant capacity and automatic protection switching are capable
of healing by themselves and hence, are called self-healing rings (SHR).  Mesh
restoration uses digital cross-connect systems to reroute traffic around a failure point.

There are two types of self-healing rings, unidirectional self-healing rings (USHR) and bi-
directional self-healing rings (BSHR).  They both restore 100% of the traffic under a
single network failure condition. In USHR’s, working traffic is carried around the ring in
one direction while a second communications ring is for protection.  This second ring
transmits in the opposite direction of the working ring and is only used in times of failure
of the first ring.  In BSHR’s, working traffic travels in both directions around the ring
[24].  Two rings exist in BSHR as well; however, either ring may be used at any time; no
ring is set aside for fault tolerance.

The self-healing mesh network architecture using Digital Cross-Connect systems
(DXC’s) [25] is a crucial part of some integrated network restoration systems.  The mesh
is constructed such that each node has two connections to each neighboring node.
Message passing is fundamentally different from routing protocols because switches are
used at each node such that a direct connection exists between the sender and the
recipient.  The message travels over the direct connection; it is not subdivided into



5

individual packets. The primary connection is used until a failure occurs, at which time,
the backup connection is used.

A conventional DXC self-healing network using logical channel protection requires
substantial network hardware because for n nodes, there are two physical connections
among each pair of nodes, or (n*(n-1)) total connections.  This is a large amount of spare
capacity for network components.  Originally, self-healing meshes used a centralized
database to track failures and reconfigure in the event of a failure for the entire mesh.
This centralization was a bottleneck and was itself prone to failure.  Hence, a distributed
approach is now used.  With a distributed approach, each node determines rerouting
patterns and fault detection [25].

In the class of double-loop networks, referred to as forward-loop backward-hop (FLBH)
[26], each node is connected via unidirectional links to the node one hop in front of it and
to the node X hops in back of it. This type of system is similar in topology design to FDDI
and other fiber type hardware solutions. These hardware solutions run on the order of tens
of thousands of dollars to implement.

A variety of hardware solutions have been used by the telecommunications industry to
route phone calls.  These include SONET, DXC’s, FDDI, and SHR.  Each of these is
highly fault tolerant due to the numerous paths that exist between every source and
destination node.  Fault tolerant routing is provided via hardware mirroring, rendering
this approach as very expensive.  Such solutions have not been implemented for use with
computer networks using IP protocols.

4. DRS Algorithm
DRS improves fault tolerance via proactive failure recognition and the use of a
completely redundant network.

Canonical
Name
“A”

Canonical
Name
“B”

Network Interface #2

Network Interface #1

Network #2 - 193.1.2

Network #1 - 193.1.1

IP 193.1.1.1

IP 193.1.2.1

IP 193.1.1.2

IP 193.1.2.2

Figure 1: Dual Network Setup Details

The diagram above illustrates a dual network setup for two computers. Each computer
has two network interface cards connected to two separate networks. It is the task of the
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routing demons  to monitor the connections between “A” and “B”. If a failure occurs, the
demons set up routes to route around the problem before network applications are aware
that a problem occurred.

The DRS runs on every node in the server array.  Each DRS demon is configured to
monitor hosts on the networks and executes a two stage run process. In the first phase, the
communications links between the local host and all other hosts that is it has been
configured to monitor are checked. These checks are accomplished using  the ICMP
(Internet Control Message Protocol) echo request [7, 8].  Host “A” sends an ICMP echo
request to host “B” via the first network.  If the echo is returned, the DRS can assume that
the hub, wiring, network interface card, device driver, network protocol stack, host
kernel, and the DRS Demon are all operational. The DRS then tests all known hosts and
all known networks in the above example.  The next check is for host “B” network
number two.

Hub

W iring
Interface card

Driver
Network Stack

Host Kernel

DRS Deamon

A B

Figure 2:  DRS Network Stack

Each demon keeps track of which hosts to monitor and the state that they are in, (i.e.,
“up”, “down”). If a failure occurs, the DRS demon must determine  a new route of
communication between host “A” and “B”. The next section describes different failure
scenarios and how the new route is calculated and resolved. Figure 3, gives a high level
overview of the execution flow of the DRS algorithm.
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Figure 3:  DRS Architecture

The following is a detailed description of each step in the DRS execution.

Step 1. System Initialization. All DRS system variables are initialized, i.e., read in
configuration variables, setup network communication modules, etc.

Step 2. Initial Sleep period. Each DRS is dormant at startup. The dormant initial
condition prevents false negative results of a ping at startup. Periodically a system could
be powered down during routine maintenance. When the servers are restarted, not all may
start at the same time or boot at the same speed.  By having the DRS demon sleep for a
predetermined amount of time at start-up,  false failures are not  reported.

Step 3. Listen for incoming “Request” or “Discovery” messages.  The DRS is a
routing demon.  Thus, part of its job is to handle requests for information or to add new
information to its internal database of network hosts and configurations. “Request for
information” may be an administrator contacting the demon and requesting a view of its
routing tables, or a remote server may be unable to contact another server and is asking
all other servers if they are able to communicate to the server in question. “Discovery”
messages are used for detection of fixed routes and new servers on the network. This is
covered in more detail during step 6.
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Step 4. Check all communication links. Link status verification, the key to the DRS,  is
the proactive monitoring of communication links between each server. This verification
enables the DRS to quickly find and fix network failures. The DRS starts with a list of
hosts to monitor. This list is known at start time, but may be added to in the future by a
“Discovery” message. The DRS sends an ICMP echo request to the host in question. If
the echo is successful, the route is marked as “up”; if it is unsuccessful, several more
attempts are made. If none are successful, the route is marked as “down”.  All links are
continuously monitored.  Checks occur every X seconds where X is a configurable setting.
Note that X affects the speed an error is detected and also effects the amount of network
utilization that will occur.

Step 5. Fix identified communication errors. In this step, the DRS’s attempts to fix
known “down” routes. Each host has two network interfaces. Once one interface is not
responding, the second interface is sent an ICMP echo request to verify that it is working.
If that is successful, the DRS modifies its internal routing tables to move all
communication to say “B” network 1 to “B” network 2. Note that in step 4, the new route
was checked. The second check  guarantees that a failure did not occur in-between steps.
If the second interface did not respond to the ICMP request, a broadcast is sent on all
connected networks. This broadcast asks all other DRS demons to see if they can
communicate with the host  or network in question. The first DRS demon to respond is
used as a router to the lost host. If no one responds, the host in question has suffered at
least two hardware failures and has become completely separated from the network.  If
this has happened, the only thing left to do is to send an alarm message to the system
administrator notifying him/her of the catastrophic failure.

Step 6. Send “Discovery messages”.  This stage runs as a separate thread of execution in
the demon.  The DRS sends out a broadcast message on all of its network interfaces
stating the server, and the server’s network interfaces. This message has several functions
for the DRS. The most important is that if a network failure did occur and was fixed, the
DRS would never know, because “down” routes are not checked. By sending this
message, the other DRS demons become aware that a “down” interface is now working
again, and the demon corrects all rerouted communications of that host to the original
routes.

The DRS loops through this six step cycle monitoring communication links, answering
requests, and fixing problems as they occur.

4.1 DRS in the presence a single network failures

We now describe the action of the DRS in the presence of a single failure.  Upon startup
(before the network error occurs), the DRS establishes communication links to each host.
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Consider a failure to node B’s interface #1. Since every node on the network is
implementing the same algorithm, we only discuss the events as they happen for node A.

Figure 4: Single Network Failure on Node B

Node A sends an ICMP echo request for each node and link in its routing table (part of
step 4). The ICMP echo request is not responded to by node B for network #1 because of
the failure. Node A then looks for another route.  Note that one does exist because node
B’s second interface is operational.  Node A now identifies that this is a potential route
because it is listed as being in the UP status.  However, this status is not guaranteed to be
current so an additional check of the proposed alternative route is made in the later phase
of step number four.  In this case, an ICMP echo request (or ping) is sent to host B along
the alternative route.  If this succeeds,  A’s routing table is updated to reflect the newly
identified static route that circumvents the failure.

At this point, network communication is not impeded by the failure.  However, it is
important to identify where the failure exists so it may be repaired.  The fault is isolated
by examining the routing tables of each node.  Looking at node A, C, and D’s routing
table, it becomes apparent that each node of these two nodes is able to communicate with
all other nodes directly on network #1.  However, A, C, and D’s routing tables now
contains an alternative route to node B.  For diagnostic purposes, it is reasonable to
assume that the routing tables are current enough to isolate the problem.

For nodes A, C, and D, the only failure is the route to B for interface #1, while host B has
failure for every interface on the first network. This tells us that the error has occurred
with host B’s network interface, ethernet wire, or network hub port. At this point, node B
is examined and the exact nature of the problem (i.e., interface card, network cable, hub
port, etc.)  is determined and  repaired.

Alarm Management for the DRS has been implemented on a proprietary system that has
the ability to page system administrators and send e-mail messages in the case of
problems.  The DRS also logs errors and messages to a log file.  The DRS is easily

Network # 1

Network # 2

External Router

Host A Host B Host C Host D
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modified to use any other alarm management system that uses standard inter-process
communication facilities provided by most UNIX systems.

4.2 Multiple Failures

A single failure is the most common.  However, multiple failures do occur, and the DRS
is resilient to them.  There are two kinds of multiple failures.  Those that are equivalent in
algorithm perception and handled by the DRS as any single network failure  (i.e., do not
require a router) and those where each failure is routed via a routing element.

4.3 Non-Router Failures

A hub or a situation where all interfaces on a single network fail at once is treated by the
DRS algorithm as a single failure. All these failures are handled in the same fashion and
appear like the single failure example above. All network communication for the first
network is  rerouted to the second network via each host’s second interface card.

4.4 Multiple Network Failures

Multiple failures, although unlikely, are not always as well behaved.  The likelihood of an
error occurring on the primary or secondary network only is smaller than the possibility of
it happening randomly to both networks.  Thus, the DRS must be able to handle staggered
network failures.  Here is an example of a staggered multiple network failure.

Figure 5: Dual Network Failure on two different networks

Network # 1

Network # 2

External Router

Host A Host B Host C Host D
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In this example, a dual network failure occurs.  A port on the network hub one to host A
interface 193.1.1.1 has failed, and, at the same time, the network interface card for host C
interface 193.1.2.3 has failed.

The problem is that host A and host C cannot directly communicate to each other.  Host
A cannot communicate on network #1 and host C cannot communicate on network #2.

We only discuss the details of host A and its procedure in correcting the network
communication from failures since the same algorithm is applied to each host.

In step 4, each host’s communication link that is in an “UP” state is checked.  Every host
that is on network #1 fails because the problem is with the hub.  Host A is then placed in
the “DOWN” state. Host C’s interface on network #2 also failed and is placed in the
“DOWN” state. This reflects the new information that shows many communication paths
have failed.  At this point the “Fix Identified Communication Errors” step is executed.
Host B and host D have direct routes (using interface 2)  that appear to be usable.  This
corrects the communication link failure on network #1 from A to B and from A to D

Notice that we still do not have a means of communicating from A to C. The reason for
this is that the interface card on network #2 for host C is identified as failed for both
interface one and interface two (this is our second failure).

Host A now attempts to find some means of communicating with C on interface #1.  It
broadcasts a routing request along both network #1 and network #2.  The first
“CANYOUROUTE” broadcast is blocked by the failure on node A interface one.  The
second “CANYOUROUTE” broadcast is sent out as a routing request for node C on the
second network.  The first node to respond to the plea for help is used as a router for
communication to host C.  Assume B is the first node to respond for communications
routing for host C interface one.  A static route using node B is added to node A’s routing
table. See Figure 6.

Since two routes must be know for each node, A must find a route for host C interface
number two.  The DRS does not distinguish that the different interfaces are connected to
the same host in this instance.  Again a broadcast is issued on both networks.  The first
broadcast goes unacknowledged.  Assume node D answers the second request for help in
routing to node C. See Figure 7.  Now all communication routes to host C were restored
using a remote host as routers between the nodes.
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Figure 6: Communication route diagram for route from A to C via B

Figure 7: Communication route diagram for route from A to C via D

4.5 Detection of Network Repairs

The DRS algorithm has the ability to detect the reconnection or repair of a failed network
route.  In the previous example, assume the cause of node A’s problem is that the port on

Network # 1

Network # 2

External Router

Host A Host B Host C Host D

Network # 1

Network # 2

External Router

Host A Host B Host C Host D
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hub one was accidentally turned off.  Further, assume the problem was detected,
circumvented and an alarm was sent by the DRS demon.

The system administrators resolve the problem by turning the port back on.  Once this is
done, they do not need to examine the routing tables of the hosts because the DRS is self-
correcting.  That is, the DRS uses discovery messages to identify the correction and return
the routing tables to their original state (i.e., direct network routes instead of static
alternative routes).

The self-correcting recovery occurs because each host periodically broadcasts its own
discovery message on all of its network interfaces.  When node A  receives discovery
messages on interface 1 from B, C, and D, it examines the routing table to determine if
any corrections or updates are needed.

The DRS identifies that static routes exist for nodes B, C, and D.  The DRS now removes
them from the local kernels routing table.  This removal is to restore the original routing
tables state after a failure has been fixed.  The DRS’s routing table is then updated to
reflect the newly repaired communication path.

Notice that host C interface #2 is still down.  Host A has not received a status discovery
message from that link because the network link is still not functioning correctly.
With this algorithm when network failures are corrected,  the system is able to return to
its original state without manual intervention.

4.6 Network Failures not addressed by the DRS

There are some sequences of failures that even the use of an external router does not
address.  The DRS cannot resolve network failures that entail the complete separation of
a network node.  A total network failure means that there are no physical connections to a
particular host available.  Below is an example of a complete network failure for host A.
In this case, A cannot communicate on any interface and has suffered a non-repairable
network failure.  Note that B, C, and D will alarm the system administrator that this error
has occurred.
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Figure 8: Total Network Isolation of node A

5. DRS Performance Results

5.1 Scaling Results

The DRS checks each “up” link it is attached to (Step 4).  Therefore, on average, the
fastest a failure in a communication link can be determined is the amount of time it takes
to check all links divided by two. When scaling the DRS, it is important to examine the
time needed to determine that a failure has occurred and the amount of bandwidth the
DRS will use to achieve that goal.  A trade-off exists between how quickly a failure is
discovered and how much network overhead (bandwidth) is required.

5.2 DRS Model System

We developed an analytical model to estimate the network usage of the DRS given the
number of nodes on the network and delay time between node checks.  The DRS model
achieves many levels of performance, as shown below, by modifying the frequency (time)
at which hosts are checked. Details of this model can be found in “A Fault Tolerant
Network Routing System For Mission Critical Distributed Applications”, masters thesis
[33].

Network # 1

Network # 2

External Router

Host A Host B Host C Host D
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Figure 9: 10Mb Network Performance

The graph above shows that as the number of nodes increases the rate of network
monitoring must decrease to maintain a constant network usage.  The results presented in,
Figure 9, and Figure 10 were obtained using the DRS model.  A comparison of actual
performance versus the performance predicted by our simulation is presented in Figure
11.

Figure 9 shows that on a 10Mb network, 32 servers can coexist while still being able to
detect network failures in around one second.  If there is a need for more servers, either a
higher network utilization factor is used or a higher bandwidth network is required. In
Figure 10, the DRS performance using a 100Mbs ethernet network, is shown.
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Figure 10: 100Mb Network Performance

By using a 100Mbs network the performance of the DRS greatly improves.  As seen from
Figure 10, 254 nodes can be monitored by the DRS with less than 10% network usage,
and failures are detected in less than 10 seconds.  Ninety nodes are able to detect an error
in less than 1 second.  The number 254 was chosen because it is the size of a class “C”
network.

5.3 DRS Network Measurements

We evaluated the performance of the DRS system and compared our expected network to
actual network usage.  We did this to (a) find an acceptable level of performance for our
system that allowed for sub-second error detection and  (b) find a level of network usage
that did not adversely affect the other applications performance.
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Figure 11: Bandwidth Usage VS Delay

Figure 9, and Figure 10 show that as the number of nodes increases the time between
checks decreases to maintain a constant network usage. We tested that hypotheses by
counting bytes sent on the network and averaging over time.  Figure 11, shows the tested
results.  Note that 10% usage is usable by a network of less than 16 nodes and provides a
less than one second error detection rate.

5.4 Hardware Failure Rates:

The DRS has been implemented in a commercial system.  The primary goal of the DRS
was to provide a fault tolerance for network hardware failures.  The commercial system
does not have any system administrators on premises. In fact the closest repair engineer is
at least one day away.  Because of the mission critical nature of the system, downtime of
one day is very expensive.
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Figure 12: Percentage of failures by type

Over a 12 month period, hardware failures were tracked to determine the usefulness of
the DRS.  Hardware failures were categorized into seven classes.
• System Boards ( mother boards, CPU chips, etc.)
• Mass Storage (SCSI controllers, hard drives, tape drives)
• Network hardware (hubs, ethernet cards, ethernet wires, etc.)
• Terminal Servers
• Accessories (specialized hardware)
• Memory (RAM)
• Power Supplies
 

Examining 50 systems, we experienced 70 hardware failures over a 12 month period.
These failures showed us that 13% of our hardware failures were network related.

By using the DRS the network failures did not affect system performance, effectively
eliminating this class of failures.  A reduction of system down time of 13 percent was
considered useful and worth the added cost of hardware and network bandwidth.  It is
reasonable to expect the same amount of hardware failures in the future.

6. Conclusion and Future Work

The DRS is a routing protocol that uses existing hardware and networking protocols to
provide a fault tolerant network system for distributed applications and operating systems.
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The DRS is unlike routed and gated approaches which passively monitor network links,
because it proactively monitors each host and its communication links.  The DRS also
checks alternate routes before using them to achieve an additional level of fault tolerance
without the use of special hardware.  This fault tolerance comes at the price of some
network bandwidth usage.  We found this to be a reasonable trade off given that tightly
coupled server arrays tend to be smaller than client server networks.  Our production
implementation ran on a four node system and created no network problems. We have
calculated that the same system could be run with 32 server nodes and still achieve sub-
second response time to network failures. The DRS is designed for the current trend of
distributed computing systems.  By using the DRS in a tightly clustered server system
remote clients are unaffected during a network failure. The future of this research will
focus on the need for a more efficient means of checking a large amounts of servers, i.e.,
lower than (n* (n-1)) messages. Also we will explore the use of RIP II in conjunction
with DRS to add support for nodes outside of the network.
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