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ABSTRACT

In this work, we propose a novel approach to extract sentiment-bearing expression features

derived from dependency structures. Rather than directly use dependency relations generated

by a parser, we propose a set of heuristic rules to detect both explicit and implicit negations in

the text. Then, three patterns are defined to support generalized sentiment-bearing expressions.

By altering existing dependency features with detected negations and generalized sentiment-

bearing expressions we are able to achieve more accurate sentiment polarity classification.

We evaluate the proposed approach on three labeled collections of different lengths, and

measure the gain from the generalized dependency features when used in addition to the

bag-of-words features. Our results demonstrate that generalized dependency-based features are

more effective when compared to standard features. Using these we are able to surpass the

state-of-the-art in sentiment classification.
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1 Introduction

With the proliferation of Web 2.0 tools and applications on the Internet, there is an exponential

increase in the number of online postings submitted by web users on their opinions, experiences,

etc. This trend drawn the attention of organizations, companies and researchers who are

interested in opinions expressed by people on various topics. Sentiment analysis, the task of

identifying sentimental aspect of a text, has been a popular direction in the field of language

technologies.

Recent work in supervised sentiment analysis has focused on innovative approaches to feature

creation, which aim to improve the performance with features that capture the essence of

linguistic constructs used to express sentiment. A straightforward way to extend the traditional

bag-of-words representation is to heuristically add new types of features, such as fixed-length

n-gram (e.g., bigram or trigram) or pairwise syntactic relations (e.g., typed dependencies).

However, the performance of joint features is still far from satisfactory. N-grams which cover

only co-occurrences of N continuous words in a sentence has problems with capturing long

dependencies, and the performance of a dependency relation feature set is reported to be

inferior to N-grams. We conjecture that this reduced performance is in part due to the following

two reasons: 1) pairwise dependency features sometimes fail to reflect the correct sentiment

polarity by neglecting to consider the influence of other terms, especially negations, in the given

sentence; 2) in dependency relation features, features lack sentiment oriented generalizations.

The main contribution of this paper is in the construction of more accurate generalized

sentiment-bearing expression features for the sentiment classification. We propose a set of

heuristic rules to detect implicit negation relations and propose three patterns as the basis for

generalized dependency-based sentiment oriented features:

Explicit patterns Many terms directly reflect the sentiment. e.g. “great camera”, “love this

movie”. The parsed dependency relations amod(camera, great), and obj(love, movie) can

already capture these explicit sentiment expressions.



Range patterns In some cases, there is an assumed standard and sentiment is indicated by

describing the distance from the standard. For example, in the sentence “The quality of

this product is above average”, “above average” indicates distance from the standard.

Trend patterns In some cases, sentiment is conveyed by describing the trend of how the object

changes. For example, in the sentence “The popularity of this band have continuously

decreased from their peak in 2000”, “decreased from” indicates a trend.

For each type of sentiment expression, we propose a corresponding generalization strategy. We

show that when trained on such revised generalized features, machine learning classification

algorithms achieve better sentiment classification accuracy.

The remainder of this paper is organized as follows. Section 2 presents related work on the

topic of sentiment analysis. Section 3 introduces the proposed approach using some motivating

examples and a set of heuristic rules with generalization strategies. Experimental results are

discussed and compared to known techniques in Section 4. Section 5 concludes the paper and

outlines future directions.

2 Related Work

Sentiment has been studied at three different levels: word, sentence, and document level. On

document level, previous work (Pang et al., 2002) (Pang and Lee, 2004) have shown that

traditional text classification approaches can be quite effective when applied to sentiment

analysis. On word level, Wilson et al.(Wilson et al., 2005) extract phrase-level clues by

identifying polarity shifter words to adjust the polarity of opinion phrases. Kim et al.(Kim

et al., 2009) shows how various term weighting schemes improve the performance of sentiment

analysis systems. Choi et al.(Choi et al., 2009) validated that topic-specific features would

enhance existing sentiment classifiers. On sentence level, linguistic approaches are used to

discover the interaction between words that may switch a sentence’s sentiment polarity (Wilson

et al., 2004) (Choi et al., 2005).

A prominent polarity shifter clue in sentences is negation. Pang et al. (Pang et al., 2002) employ



the technique of Das and Chen (Das and Chen, 2001) to add the tag “NOT_” to every word

between a negation word and the first following punctuation mark. Negation and its scope

in the context of sentiment analysis has been studied in (Moilanen and Pulman, 2007). Choi

and Cardie (Choi and Cardie, 2008) combine different kinds of negations with lexical polarity

items through various compositional semantic models to improve phrasal sentiment analysis. A

recent study by Danescu-Niculescu-Mizil et al. (Danescu-Niculescu-Mizil et al., 2009) looked

at the problem of finding downward-entailing operators that include a wider range of lexical

items, including soft negation such as adverbs “rarely” and “hardly”. Councill et al. (Councill

et al., 2010) focus on explicit negation mentions and investigate how to identify the scope of

negation in free text.

There have been some attempts at using features for polarity classification from dependency

parses. Dave et al. (Dave et al., 2003) found that adding adjective-noun dependency rela-

tionships as features does not provide any benefit over a simple bag-of-words based feature

space. Arora et al.(Arora et al., 2010) use a subgraph mining algorithm to automatically derive

frequent subgraph features in addition to the bag-of-words features. Moilanen et al.(Moilanen

and Pulman, 2007) discuss sentiment propagation, polarity reversal, and polarity conflict

resolution within various linguistic constituent types. Ng et al. (Ng et al., 2006) proposed

that the subjective-verb and verb-object relationships should also be considered for polarity

classification. However, they observed that the addition of these dependency relationships does

not improve performance over a feature space that includes unigrams, bigrams.

To solve the sparse-data problem for machine learning classifiers, there were attempts at

finding better generalized dependency features. (Gamon, 2004) back off words in N-gram (and

semantic relations) to their respective POS tags. (Joshi and Penstein-Rose, 2009) proposed a

method by only backing off head word in dependency relation pairs to its POS tag. Xia and

Zong (Xia and Zong, 2010) further propose to back off the word in each word relation pairs to

its corresponding POS cluster to make the feature space smarter and more effective.



3 Methodology

In this section, we first motivate our approach using sample sentences. We then demonstrate

the application of heuristic rules for negation and pattern detection. Finally, we describe how

to generalize the extracted sentiment-bearing expressions.

3.1 Motivation for our Approach

To facilitate the discussion, consider the following examples:

1. Avatar is a great movie!

2. This is not a great movie.

3. No one likes these extra functions.

4. This news is too good to be true.

5. The leading actors’ sterling performances raise this far above the level of the usual maudlin

disease movie .

6. The lack of training exposed truck drivers to an increased risk of injury.

7. This accessory can abate the damage.

8. New regulations increase accountability and boost quality in head start.

By applying the dependency parser to the first two sentences, the extracted dependency relations

in both sentences contain the dependency relation amod(movie, great) which is used to express

both positive (in the first sentence) and negative (in the second sentence) sentiments. If all

pairwise dependency relations are directly appended to unigram features, amod-movie-great

becomes a common feature for positive and negative examples and the sentiment classifier

cannot benefit from it. We propose to keep all negated word as negation indicator terms and

present them in their negated status as composite dependency features (e.g. not-amod-movie-

great for the second sentence).



Besides explicit negation relations that can be detected by a dependency parser directly, implicit

negation which does not use negation terms is hard to detect. For example, “no one” in the

third sentence shifts the polarity of the verb “likes”, and “too” in the fourth sentence shows the

implicit negation for the term after the word “to”. To construct accurate dependency features

for sentiment classification, we propose a set of heuristics for the detection of implicit negation

relations.

Sentiment may be expressed implicitly by referring to an assumed standard. For example,

consider the fifth and sixth sentences where sentiment information is expressed by describing

the target object as being above or below an ordinary level. In the seventh and eighth sentences,

sentiment may also be expressed by describing how an object changed. For the construction

of composite back off features for the range and trend patterns, related indicator terms are

backed off as status info instead of its POS tags (e.g. “prep(lack, training)” backed off as

“prep-blw-training” and backed off as “dobj(abate, damage)” as “dobj-dec-damage”).

3.2 Heuristics-Based Sentiment Detection Methods

This section describes a set of heuristic rules for detecting sentiment-bearing expressions. For a

given sentence, we first parse it and get its corresponding dependency tree represented as a

list of dependency relation list. We then attempt to detect negation, range, and trend indicator

terms. These are used for generalized sentiment expression construction in the next step.

WordNet 1 is used to construct range and trend pattern indicator term synset. e.g. all the

synonyms of “above” will be included in the range indicator synset and all the synonyms of

“increase” will be in the trend pattern indicator synset.

Table 1 shows the definition of sentiment indicator detection rules along with motivating

examples. In order to apply a rule, we first detect the a dependency relation and then apply the

Detect function as defined in Table 2. The Detect function first checks whether the first argument

is a negation indicator term, and if so, insert a negation dependency relation for the second

argument. If the first argument is a range or trend indicator term, we keep it in the indicator

1http://wordnet.princeton.edu/



term list for the next step of generalized feature construction.

Rules Examples
1 neg(ar g1, not) = ¬(ar g1) not [bad]ar g1

2 sub j(V, N) = Detect(N , V, sub j) [Nobod y]N[l ikes]V this product
3 ob j(V, N) = Detect(N , V, ob j) He is [suppor ted]V by [none]N .
4 advmod(V, R) = Detect(V, R, advmod) PM2.5 [rarel y]R[decreased]V recently.
5 ccomp(J , V ) = Detect(J , V, ccomp) It is [impossible]J to [over rate]V it.
6 xcomp(J , V ) = Detect(J , V, xcomp) This news is too [good]J to [bel ieve]V .
7 amod(N , J) = Detect(N , J , amod) [high]J[interest rate]N .
8 advmod(J , R) = Detect(J , R, advmod) [too]R[ f ast]N .
9 prep(N1, N2) = Detect(N1, N2, prep) [lack]N1

of [t raining]N2

10 ob j(V, N) = Detect(N , V, ob j) This accessory can [abate]V [damage]N .

Table 1: Sentiment indicator term detection rules

if(ar g3== sub jAN Dar g1 ∈ negatedsub jec t) then insert neg(arg2, not)
else if(ar g3== ob jAN Dar g1 ∈ negatedsub jec ts) then insert neg(arg2, not)
else if(ar g3== advmodAN Dar g2 ∈ negatedadv) then insert neg(arg1, not)
else if(ar g3== ccompAN Dar g1 ∈ negatedad j) then insert neg(arg2, not)
else if(ar g3== xcompAN Dar g1ex ist inadvmod(ar g1, too)) then insert neg(arg2, not)
else if(ar g3== amodAN Dar g2 ∈ aboves ynset) then label arg1 as abv
else if(ar g3== amodAN Dar g2 ∈ belows ynset) then label arg1 as blw
else if(ar g3== advmodAN Dar g2 ∈ aboves ynset) then label arg1 as abv
else if(ar g3== advmodAN Dar g2 ∈ belows ynset) then label arg1 as blw
else if(ar g3== prepAN Dar g1 ∈ aboves ynset) then label arg2 as abv
else if(ar g3== prepAN Dar g1 ∈ belows ynset) then label arg2 as blw
else if(ar g3== ob jAN Dar g1 ∈ increases ynset) then label arg1 as inc
else if(ar g3== ob jAN Dar g1 ∈ decreases ynset) then label arg1 as dec

Table 2: Definition of Detect(arg1, arg2, arg3)

3.3 Generalized Sentiment-bearing Expression Features

In order to make a further generalization, we conduct POS and grammatical relation clustering.

The POS tags and grammatical relations are categorized as shown in Table 3

For negation indicator terms, we add the tag “not-” to all the dependency relations where it

occurred. For the range and trend pattern indicator terms, a status tag based on its semantic

meaning will used in the corresponding relations. Table 4 present some examples for these type

of specific generalizations.



POS-cluster Contained POS tags
J JJ, JJS, JJR
R RB, RBS, RBR
V VB,VBZ, VBD, VBN, VBG, VBP
N NN, NNS, NNP, NNPS, PRP
O The other POS tags

Relation-cluster Contained grammatical relations
mod amod, advmod, partmod, rcmod, acomp
subj nsubj, nsubjpass, xsubj, agent
obj dobj, iobj, xcomp

prep prep, prepc

Table 3: POS clustering (the Penn Corpus Style) and grammatical relation clustering.

Dep Indicator G-Feature
amod(camera, great) not-great not-mod-N-great
amod(interest, high) high mod-abv-interest
prep(level, below) below prep-blw-level

dobj(abate, damage) abate obj-dec-damage
dobj(improve, quality) improve obj-inc-quality

Table 4: Different types of generalized sentiment-bearing expression feature.

4 Experiments

Details of our experimental evaluation and results follow.

4.1 Experimental Setup

Datasets: Three datasets are used in our sentiment polarity classification experiments:

1. NPS survey dataset v1.0 to which we refer to as “surveys” (3000 promoter and 3000

detractor survey entries, with avg. 10 words)

2. sentences/snippets polarity dataset v1.0 (Pang and Lee, 2005) to which we refer to

as “short reviews” (5331 positive and 5331 negative reviews, with avg. 21 words)2.

3. polarity dataset v2.0 (Pang and Lee, 2004) to which we refer to as “long reviews”

(1000 positive and 1000 negative reviews, with avg. 780 words)3.

2http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz
3http://www.cs.cornell.edu/people/pabo/movie-review-data/review-polarity.tar.gz



Negation Range Trend
review 261 142 8
survey 308 162 47

Table 5: Negation, Range, Trend Pattern Occurrence Information

The three datasets are of different lengths. The polarity dataset is composed of relatively

long movie reviews. The sentence/snippets polarity dataset v1.0 is composed of formal

written sentence level examples and text in survey sentences are usually short and

incomplete. We conduct polarity classification experiments over these three datasets to

evaluate the proposed method and investigate the effect of text length on classification

performance.

Classifier: We performed n-fold cross-validation experiments on the above datasets, using

Joachims’ SVM-light (Joachims, 1999) 4 package to train an SVM polarity classifier. All

learning parameters were left at their default values. Following (Pang et al., 2002), we use

frequency to determine word presence. Each document is first tokenized and downcased,

and then represented as a vector of features with 2-norm. A χ2 feature selection strategy

(Yang and Pedersen, 1997) is applied to back-off sentiment-bearing expression features,

where we reject features if their χ2 score is not significant at the 0.2 level.

4.2 Pattern Detection Evaluation

Considering the critical role of sentiment-bearing expression detection in the proposed approach,

we evaluated the accuracy of this step separately. For this purpose, we annotated several subsets

of the datasets. Specifically, we created a subset which consists of 200 positive and 200 negative

sentences from the sentences/snippets polarity dataset v1.0 and a subset which consists of

200 positive and 200 negative sentences from the NPS survey dataset v1.0. Table 5 presents

information of negation, range, and trend patterns in the labeled subsets. We see that negation

patterns are in general the most frequent, and occur in a majority of the documents whereas

trend patterns are in general less frequent.

4http://svmlight.joachims.org



Patterns Precision/Recall(%)
review survey

Negation 74.9/70.9 88.3/75.6
Range 75.8/79.6 82.4/86.4
Trend 88.9/100.0 100.0/97.9

Average 75.6/74.5 87.3/81.0

Table 6: Negation, Range, Trend Pattern Detection Accuracy

The Stanford parser5 was used to extract dependency relations in our experiments. Table

6 shows the performance of the sentiment-bearing expression detection component. As can

be observed, our detection component performs better on sentences of the survey dataset

compared with the review dataset. This is related to fact that sentences from the review set

are longer and more complex compared with sentences from the survey set, which indicates

increase in complexity for the review set.

4.3 Results and Discussion

Finally, the accuracy of an SVM classifier using different sets of features is shown in Table

7. We used the the SVM-light classifier over unigram (uni), unigram with bigram (uni+bi),

unigram with all dependencies (uni+dep), and an ensemble with the proposed sentiment-

bearing expression features (uni+gdep) using 10-fold cross-valuation. As can be observed the

proposed feature set yields the best results when compared with several baseline techniques.

Compared with the baseline of bag-of-words expression, the proposed feature set yields a

significant performance improvement with the sentence and review datasets. And a minor

improvement is achieved by both bigram and generalized sentiment-bearing features for the

survey dataset. The minor improvement in the survey dataset is due to the fact that sentences

in this dataset are simpler and shorter, and some of the negation, range, and trend pattern have

already been captured by bigrams.

A comparison between our results and results reported in the literature for the movie review

polarity dataset v2.0 (Pang and Lee, 2004) (Ng et al., 2006) (Matsumoto et al., 2005) indicate

that our results surpass the known state-of-the-art regarding this dataset.

5http://nlp.stanford.edu/software/lex-parser.shtml



Features Accuracy(%)
survey sentence review

uni 90.4 76.6 87.1
uni+bi 91.5 77.8 88.0

uni+dep 91.1 77.4 87.7
uni+gdep 91.7 84.4 93.3

Table 7: Sentiment Classification Accuracy using 10-fold Cross-evaluation
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Figure 1: Sentiment classification accuracy using variable cross-validation

To evaluate the influence of the training set size on performance, we performed evaluation

using from 2 to 10-fold cross-validation using three datasets. The results shown in Figure 1

indicate that the accuracy of the proposed approach improves with increase in the training set

size. As can be observed, the precision fluctuates under 4 folds and stays steady above the 5

folds.

5 Conclusions

The focus of this paper is the construction of more accurate composite sentiment-bearing

expression features for sentiment classification. Three patterns are defined to cover more

sentiment-bearing expressions and we investigate how to construct more sentiment feature by

considering both explicit and implicit negations in the sentence. We propose a set of heuristic

rules to detect negations and sentiment-bearing expressions and a dataset is manually annotated

for the evaluation of the pattern detection component. Results show that the performance of

the pattern detection components can meet the practical applications’ requirement and the

proposed methods can improve the accuracy significantly.
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