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Database Operations in a Cube-Connected Multicomputer
System

C H A I T A N Y A  K .  B A R U  A N D  O P H I R  F R I E D E R

Abstract-Parallel architectures for database processing should pro-
v ide  para l l e l  I/O as wel l  as  paral le l  CPU capabil i ty .  Two issues that  arise
in such systems are data combination and nonuniform data distribution.
Our recent interest has been in studying distributed memory architec-
tures ,  speci f ical ly  hypercubes ,  for  paral le l  database  process ing.  The cube
interconnections support eff icient data combination for the various database
operations and nonuniform data distributions are handled by dynamically
redistr ibut ing data  ut i l iz ing these  interconnect ions .  Se lect ion and scalar
aggregat ion operat ions  are  eas i ly  supported.  An algorithm for  the  join
operation is  discussed in some detail .  A comparison of the cube and an-
other multicomputer database machine, viz., SM3, is provided and the
performance of  the join operat ion in  these  systems is  described.  The join
performance in a cube is  comparable to that of  SM3 even when the cube
is assumed to have nonuniform data distribution.

I. INTRODUCTION

Early database machines (DBM’s)  were typically special purpose
hardware aimed at relieving the well-known I/O and von Neumann
bottlenecks present in “conventional” architectures (e.g., CASSM,
DBC, and RAP 191, RELACS [3], etc.). More recent DBM’s  have
been based on multiprocessorimulticomputer  architectures, e.g., DI-
RECT 191, NON-VON [8], SM3[1],  MIRDM [13],  GRACE [II],
GAMMA (41,  and TERADATA [15]. While these systems use some
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special purpose hardware, they typically attempt to enhance database
processing by employing parallel algorithms and general multipro-
cessing techniques. Parallel architecture for database processing
should incorporate parallel CPU as well as parallel I/O capabil-
ity. This gives rise to two important issues, data combination and
nonuniform data distribution. First, an appropriate scheme is needed
to combine data across parallel I/O paths. Second, relative immunity
should be provided against the effects of uneven data distribution
across paths. Different queries generate different patterns of distri-
bution for intermediate results; thus, it is important to devise paral-
lel algorithms which can perform well regardless of the distribution
of data. This paper introduces strategies/algorithms that attempt to
nullify the effects of intermediate data distribution by performing
dynamic data redistribution.

A. Data Combination
The parallel Ii0 capability can be exploited by horizontally par-

titioning base relations into disjoint subsets and accessing them in
parallel. Data from the parallel paths need to be combined in or-
der to compute the final result for each of the relational and scalar
aggregation (e.g., max, min. avg, sum, etc.) operations. A simple
concatenation of tuples  from parallel paths is sufficient in the se-
lect operation (assuming that output tuple ordering is unimportant).
A similar data combination scheme would suffice for the join and
project operations if there were no common join project attribute val-
ues across parallel paths. However, such a partitioning of data cannot
always be guaranteed. Thus, for the join operation, data from each
of N parallel paths need to be broadcast to the N - 1 other paths.
For the project operation, data from the ith path, i = N to 2, are
broadcast to paths i - 1 to 1, where duplicate elimination is carried
out. Scalar aggregation operations require data combination across
all parallel paths.

B. Nonuniform Data Distribution
If the base relations are horizontally partitioned and distributed

equally across the parallel I/O paths, then all paths take about the
same amount of time to complete leaf-level operations (such as se-
lection) in a query tree. For the remaining nonleaf  operations, the
distribution of data across parallel paths is dependent upon the pre-
vious operation(s) performed. As the query progresses, it becomes
more difficult to predict and control these distributions. The concept
of dynamic data redistribution, where intermediate data are redis-
tributed on-the-fly. is introduced to handle this problem.

The rest of this paper is organized as follows. Section II discusses
some recent trends in DBM design and also describes the assumed ar-
chitecture of the cube system. The database operations select, scalar
aggregate. join, and project along with the primitive operations tuple
balancing and relation compaction/replication are described in Sec-
tion III. Section IV provides the timing analysis and performance of
the join operation in the cube system and SM3. Finally, a conclusion
is provided in Section V. Part of the material presented in this paper
has appeared in 121.

II. SOME RECENT DBM EFFORTS

Recent trends in DBM design have been toward the use of mul-
tiprocessorlmulticomputer architecture to support parallel database
processing. Three recent machines that fit this description are
GRACE [ 111,  SM3 [l], and NON-VON [8]. GRACE is a multipro-
cessor DBM developed at the University of Tokyo which incorporates
hardware sorters, hashing units, and other special purpose hardware
to support database operations. The NON-VON is a multicomputer
system designed at Columbia University. The system supports paral-
lel 110  and can consist of as many as 1 million simple g-bit processing
elements (SPE’s) and up to one thousand large processing elements
(LPE’s).
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Fig. I. The  swi tchable  main  memory  modules  sys tem [l].

A. The SM3 System
The Switchable Main Memory Modules (SM3) System is a dy-

namically partitionable multicomputer designed at the University of
Florida. The SM3 system is included here since it provides paral-
lel I/O capability as well as supports a variety of data combination
schemes due to its partitionable bus. The SM3 consists of a number
of independent computer systems connected by a physically parti-
tionable common bus. The partitionable bus allows the system to
be dynamically reconfigured into a number of clusters of adjacent
computers thereby supporting MCMD (multiple code multiple data)
processing. The SM3 processors (Fig. 1) are centrally controlled by a
control computer (CC). The CC receives the queries, compiles them
into command sequences, forms clusters based on the query require-
ments, and distributes commands accordingly. Each node contains
a set of dual switchable memory modules which are used to facili-
tate fast data/command/message transfers among the processors and
the clusters. Synchronization and interprocessor communication are
supported via a number of special control lines. The partitionable
common bus in SM3 can be used to support broadcast and tree-
interconnection based algorithms in the system. The analysis in [l]
assumes a 1 MIPS CPU and at least 4 x 13 kbytes of “switchable”
memory at each node. The absolute parameter values are not im-
portant as long as the system performance is “balanced” (i.e., I/O,
CPU, and data transfer rates are matched).

B. The Hypercube System
The cube system consists of N = 2” processors connected in the

form of a Boolean n-cube. An n-cube or n-dimensional hypercube,
Qn, is defined recursively in terms of graphs as K2XQn-,  , with

Ql = K2, where X denotes the Cartesian product of two graphs.
Qu is a single node. Each of the N nodes is connected to n neigh-
bors. The cube topology is attractive for two reasons. First, many
interconnection topologies can be embedded in a Boolean n-cube.
For example, embedding a tree aids in data combination for selec-
tion and scalar aggregation; embedding a ring is useful in the join
operation; and embedding a chain is useful for the project operation.
Second, multiprocessor systems based on the cube interconnection
have been studied extensively for numeric computations. As numeric
processing applications grow in size and nonnumeric (database) ap-
plications increase in complexity, such systems will need to support
both numeric and nonnumeric processing requirements. Thus, it is
interesting to study database processing on a cube. Several paral-
lel computers based on the cube connection are currently in exis-
tence, including Caltech’s Mark III [ 121,  the Intel iPSC/II  [lo],  the
NCUBEilO  [7], the Floating Point Systems (FPS) T-series machines
[S],  etc.

The following assumptions are made regarding the architecture
of the hypercube system. Each node in the system is assumed to
have a CPU, local memory, secondary storage (disks), and n mes-
sage/packet buffers, one for each neighbor. Fig. 2 shows a Boolean
3-cube consisting of N = 8 nodes with a disk attached to each
node. Each node is also assumed to have two tuple count registers,
TCRl and TCR2, which are used to transfer small, fixed size fields
between nodes. Very short, fixed size packets can achieve the same

F i g .  2. Q7  c o n t a i n i n g  e i g h t  nodes  wi th  d i sk  a t t ached  to  each  node .

function in a general hypercube machine. However, assuming the ex-
istence of TCR’s  allows us to ignore the overheads associated with
exchanging tuple counts in the analysis of Section III. Data are trans-
ferred among nodes via variable size packets with an upper bound
placed on packet size. Any one of the cube nodes can be arbitrar-
ily picked to be the host or controller node. However. most cube
systems provide an external node as a controller and user interface
node. A node has its own operating system, utilities, and programs.
The nodes execute identical code but operate asynchronously and
communicate with neighbors as dictated by the program. The hori-
zontally partitioned base relations are stored as simple sequential files
across the nodes of the cube (or subcube). No file access structures
are assumed. The problem of optimal partitioning, distribution, and
storage of data across the cube is part of our current work and is not
addressed here. Also note that this paper discusses the performance
of a single database operation in isolation and does not consider intra
and interquery concurrencies.

III. DATABASE PRIMITIVES

A. Selection
The select operation selects all tuples that satisfy some predicate.

The command is broadcast from the single user or host node to all the
other cube nodes in n = log2  N steps. Local selection at each node
can be supported either in software or by using relatively inexpensive
special purpose hardware (data filters). Collection of the local result
is essentially a sequential operation and takes time proportional to
the size of the output.

B. Scalar Aggregation
Scalar aggregation operations such as max, mitt,  count, avg, etc.,

consist of a local and a global phase. In the local phase, each node
computes the local aggregate value. In the global phase, the final
aggregate value is computed by combining all the local values. The
global aggregation phase takes n steps using recursive halving in the
cube.

c. Join

Dynamic data redistribution is used in performing the join oper-
ation. A parallel version of the nested-loop algorithm is used here
for the join. The sort-merge algorithm has also been studied and
results obtained from a simulation study are summarized in Table II.
In the simple, nested-loop algorithm, the tuples of the smaller (outer)
relation are sent to all processors containing tuples of the larger (in-
ner) relation. This is achieved by embedding a ring in the cube and
transmitting the data of the smaller relation around the ring.

The best performance is achieved when both relations, R 1 and R2.
are uniformly distributed across the nodes. While almost all past
analyses have assumed a uniform data distribution, the algorithm pre-
sented here ensures such a distribution by performing tuple balanc-
ing as the first step of the algorithm. Once R 1 and R2 are balanced,
the efficiency of the operation is increased by replicating one relation
in multiple subcubes  and embedding a ring in each to perform the
same join. The relation replication is achieved in the second step of
the algorithm using relation compaction and replication (RCR).
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The smaller relation is compacted into as small a subcube  as possi-
ble, based on the criterion explained in Section 111-C-2, while it is
simultaneously replicated across subcubes. Finally, in the third step
of the algorithm, tuples of the smaller relation are transmitted around
the ring embedded in each subcube  and the local joins are performed
in parallel at each node.

I) Tuple Balancing: A join typically operates on temporary re-
lations (usually the outputs of a select, project, another join, etc.)
whose data distribution across nodes is generally not known. Tuple
balancing is employed to nullify the effects of such unknown dis-
tributions. For example, consider a 2-cube containing four nodes,
as shown in Fig. 3(a). The nodes of the cube are associated with
an n-bit address, as shown. Let Rli  and R2i denote the number of
tuples of Rl  and R2 at node i, respectively (0 YZ  i rr 3). The tuple
distribution of the two relations is as follows, Rio  = 5, Rl, = 3,
R12 = 2, and Rls  = 1 and R20 = 3, R2,  = 8, R2,  = 9,
and R23 = 7. Tuple balancing proceeds in j stages (1 5  j 5  n)
where nodes that differ in address in the (j - 1)th  bit balance tu-
ples of Rl while, simultaneously, nodes that differ in address in the
k = (n - j)th balance tuples of R2. Thus, each node simultane-
ously balances two relations. Assume that each fixed size packet
can hold a maximum of six tuples. Fig. 3(a) shows the distribution
of R 1 and R2 before balancing. The R li and R2i values are loaded
into the TCR’s  of each node. Nodes exchange tuple counts and, for
example, node 0 determines that it has to transfer 1  tuple of Rl  to
node 1 in order to make R 1, = R 1 t = 4. Simultaneously, node 0
also determines that it should receive three tuples of R2 from node
2 to make R20 = R22 = 6. The distribution of tuples after the
first stage (j = 1) is shown in Fig. 3(b) and the distribution after
the second (and last) stage (j = 2) is shown in Fig. 3(c). The tuple
balancing operation takes n steps. An additional step may be needed
when n is odd and j = k = (n + 1)/2.  The algorithm for balancing
the tuple distribution of a relation R 1 is shown in Fig. 4. The algo-
rithm for balancing the second relation, R2, will be similar to this
with R,  being replaced by R2 and (i - 1) being replaced by (n - i).
If the input relations are already balanced, then the tuple balancing
operation introduces a small overhead proportional to n.

After tuple balancing, if there is a clear difference in the sizes
of the two relations, then each node can independently determine
which of R I and R2 is smaller. However, a problem may arise if R I
and R2 are nearly equal in size. Therefore, a software or hardware
mechanism is used to select the smaller relation. In the sofhvare
approach, two aggregation operations are performed to compute the
total number of tuples of Rl  and R2. The host node then knows
which relation is smaller and broadcasts this information back in the
cube. Alternatively, a global control line (AND or OR) can be used for
this purpose. If an AND line is used, each node sets this line low to
indicate that it has decided to choose, say, R 1 as the smaller relation
based on its local information.

2) Relation Compaction (RC) and Relation Compaction/Rep-
lication (RCR): One of the objectives of data redistribution is to
balance CPU and communication times in the cube. The RC and
RCR operations are used to aid in this. The RC operation compacts
relations RI and R2 so that the overall dimension of the cube used
in the join is reduced. For example, let relation R 1 contain tt tuples
of size st bytes each and relation R2 contain t2  tuples of size s2
bytes each. Let ft x st be less than tZ  x s2,  i.e., RI is smaller than
R2. Assume that the nested-loop algorithm requires approximately
five (VAX-like) instructions to determine whether a tuple of R 1  joins
with a tuple of R2. Let lp represent the number of tuples of RI per
packet, tL  represent the number of tuples of R2 per node, and IPS
represent the speed of the CPU in instructions per second. The time
taken by each processor to join a packet-full of R 1 tuples with its
R2 tuples is then,

CPU = tp x tL x S/IPS. (1)

Let COM represent the transfer rate of the point-to-point interpro-
cessor  communication lines in bits per second and POvhd represent
the overhead involved in packet assembly/disassembly. The time to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 6,JUNE 1989

) 1

(a)

2 1
(b)

compactipfi~
3 - 3

3-2
compactiph~

Cc)

Fig. 3 An example of tuple balancing, RCR, and join of hvo  relations.



IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 6, JUNE  1989 923

F(R1)
dimension of the cube

X
maximum number of tuples of relation Rl  that can be accomodated  in a single packet
n-bit binary address of a node in the cube. Bits are numbered 0 to n- 1 from right
(LSB) to left (MSB).

xi
RI(X)

binary address which is identical to X except in bit i, 05 i < n

(or R 1 (Xi))
number of Rl  tuples in node X (to be. read as “Rl  of X”)

(The following code runs on node X. The same code runs in parallel on all nodes of the cube.)

begin {tuple balancing}
for i:= 1 to n do

begin
Read Rl(  X i-1  ).
Rl  avg := [RI(i

(receive tuple count of relation Rl from the appropriate neighbor)

while (Rl(X  l-1)
l-l)  + RI(X)]  / 2;
<>  Rl(X))  do

begin
if (Rl(X  i-1) <RI(X))  then

begin
send-set := MIN ((Rl-avg  - Rl(Xi-1)).  P(R1));

[form set of tuples that need to be sent to neighbor]
send(send-set,  Xi-l).

i send send-set tuples to neighbor Xi-l  )
Mark and ignore the tuples sent for the rest of the operation;
Rl(X)  := RI(X)  - I send-set I; (decrement the local count of tuples)

(by the amount sent)
end

else
begin

receive (receive-set Xi-l).
’ (receive receive-set tuples from neighbor Xi- 1)

Add the tuples just received to local set of tuples;
Rl(X)  := Rl(X)  + I receive-set I; (increment the local count of tuples)

(by the amount received)
end

Read Rl(Xi-1).
’end {while)

end {for}
end {tuple balancing}

Fig. 4. Pseudocode for tuple balancing operation for relation RI in node
X .

transfer a packet is then,

Comm = (tP x s1 x WCOM)  + POvhd. (2)
The CPU and communication times will be balanced under the

following condition:

tp x tL.  x S/IPS  = (fp x s1 x 8KOM)  + POvhd

Ignoring the packet overhead for the moment,

(3)

tL - (8 x IPS/5  x COM) x sl. (4)

Both IPS and COM are hardware related parameters. The value 5
was obtained based on software/ hardware assumptions. Let

K = (8 x IPS/S  x COM) (5)

then, tL - K x sI.  For example, if the CPU speed is 4 MIPS
and the communication lines can transfer data at 8 Mbits/s, then

K = (8 x 4 x 106/5  x 8 x 106)  = 0.8 Since tL  = t2/N  (tuplcs
of R2 are equally distributed across all N processors after tuple
balancing),

t2 = NxKxs,. (6)
Equation (6) implies that if the number of tuples in the larger

relation is less than K x N XS,  , then the CPU would be idling between
packet arrivals. Conversely, if t2  is greater than K x N x s, , the CPU
takes more time than communication. The optimal value for t2  will
be slightly more than K x N x s, due to the packet overhead that was
ignored in (4). The RC operation can then be used, if necessary, to

compact Rl  and R2 into a subcube  of the required size. The above
equation for t2 can be used to determine the size of the subcube
needed for the join operation.

The RCR operation is applied only to the smaller relation, R 1.
Relation compaction ensures that packets are as “full” as possible.
Relation replication results in multiple subcubes  containing a full
copy of R 1. Therefore, a ring can be embedded in every subcube
to increase the efficiency of the last and most costly step of the join
operation (described in Section 111-C-3). The RC and RCR operations
occur between pairs of nodes at a time. In the RC operation, upon
completion, only one of the two nodes contains the multiset  union
of the tuples originally stored at each node. In the RCR operation,
both the nodes contain the multiset  union.

The RC and RCR operations take a maximum of n steps. In the
jth step (1 I j 5  n), nodes that differ in address in the (i - 1)th
bit combine their tuples. The operation stops when either any pair
of nodes cannot combine their tuples (i.e., the result of the multiset
union is greater than the maximum packet size) or when j = n
(i.e., the entire relation has been compacted into a single node). For
example, in Fig. 3(c), after tuple balancing each node decides that R 1
is the smaller relation. In the first RCR step, nodes are paired based
on the LSB of the addresses, therefore, nodes 0 and 1 and nodes 2 and
3 form pairs. Each pair can combine tuples of R 1 into one packet (or
less). Fig. 3(d) shows the tuple distribution after one step. Compaction
paction  must stop at this point since a packet can hold only six tuples
in this example. The value of j at which the operation stops is de-
noted as k. In this example, k = 1. The justification for stopping
the RCR operation is as follows. Assume that N nodes have one
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ANWW Local AND line value in node X (to be read as “AND of X’)
GLOBAL-AND global AND line value across alI  the nodes  of the cube

(The following code  runs on the node whose n-bit binary address  is X.1
(The same code runs in parallel on all nodes. )

begin {RCR operation)
k:= 1;
AND(X) := 1; (setlocalANDhneinnodeXto1)
while GLOBAL-AND do

begin
Read R1(Xk) (receive the tuple count of relation Rl  from neighbor)

i f  (R1(Xk)+R1(X))IP(R1)
then AND(X) := 1 (if multiset  union of tuples fits in one )

else AND(X) := 0 (packet, then send local tuples and receive )
(remote tuples. Otherwise, set local AND line )
(to 0 to indicate end of the RCR operation )

if GLOBAL-AND then
begin

(cont inue  R C R  o p e r a t i o n )

Send all R 1 (X) tuples to Xk;
Receive tuples from Xk;
Form the multiset  union of local and received tuples;
Adjust the value of RI(X)

end
k:=k+l

end
end; {RCR operation)

Fig. 5. Pseudocode for the RCR operation.

packet each for a total of N packets. Compacting the relation further
will halve the subcube  size to N/2 and correspondingly double the
number of packets per node to 2. Thus, there is no gain in commu-
nication time in the last step of the algorithm (since the number of
packets sent = 1 x N = 2 x N/2). Also, since each node has finite
memory, the RCR operation has to stop at some reasonable point
unless the intermediate data are always written back to disk at each
step. However, under this assumption, the size of memory at each
node obviously affects performance.
A global AND line can be used to efficiently synchronize the termi-

nation of the RCR operation. The RCR operation proceeds as long as
the AND line is high. The first pair of nodes that is unable to combine
tuples sets this line low and the operation stops at this point. The
RCR algorithm is shown in Fig. 5. For the RC operation, only one
node in a pair sends data while the other node only receives data.

3) The Join Step: After the RC and RCR operations, the dimen-
sion n of the subcube  containing R2 and the value k (0 5 k % n),
where the RCR operation stopped for R 1, are known. Subcubes  are
formed based on the n - k least significant bits of the node addresses

and a ring is embedded in each subcube.  Thus, there are 2k  rings

of 2”- k nodes each, with each ring containing a full copy of R 1. If no
relation compaction was possible, then k = 0 and only a single ring
containing all N nodes is formed. If k = n, then each node has
all the tuples of R 1 and maximum efficiency is achieved in the join
step. A ring is formed by setting up a node sequence such that the
addresses form a Gray code.

Since each node can send all its Rl  tuples in one packet, it takes

2”-k  packet transfer time units (or, simply, time units) to circulate
packets around the ring. If each node is able to join a packet of Rl
tuples with its local segment of R2 in one time unit, then the join

is performed in 2n-k time units. For example, in Fig. 3(d), one
step of compaction was performed. Nodes 0 and 1 combine their
tuples resulting in each node having six tuples (one packet) of R 1.
Similarly, nodes 2 and 3 combine tuples resulting in five tuples in
each node. Thus, in this example, k = 1 and n - k = 2 - 1 = 1.
Therefore, in the join phase there are 2k  = 2 rings of 2”-k  = 2
nodes each, with each ring simultaneously performing the join. The

RCR step takes one packet transfer and join takes 2”-k  = 2 packet

transfers, to give a total of three packet transfers. Without RCR, each
node would have to send a packet in a ring of N nodes resulting in
N = 4 packet transfers. The difference in performance obtained as
a result of RCR is more dramatic in a cube of larger dimension. For
example, in a 1024 node cube the corresponding numbers would
be 513 (after one RCR step) versus 1024 packet transfers (without
RCR), about a 50 percent improvement.

D . Project
A brief description of an algorithm to perform the project op-

eration with duplicate elimination is provided here. This algorithm
employs tuple balancing and relation compaction (RC).

PROJECT
1. Perform local Project (with duplicate elimination)

at each node;
2. REPEAT
3 . WHILE (relation compaction is possible) DO
4 . Perform relation compaction and eliminate

duplicates between local and incoming tuples;
5 . IF (subcube  size > 1) THEN Perform tuple balancing
6. UNTIL (relation  compaction is not possible);
7. IF subcube  size > 1 THEN embed a chain in the subcube

and perform a global duplicate elimination;
8. Results are available in the final subcube  of size 2  1.

In the above algorithm, 1) if the subcube  size is 1 then, by def-
inition, relation compaction is not possible, 2) relation compaction
is accompanied by duplicate elimination at each node, 3) the size of
the cube containing the relation being projected reduces by half after
every compaction step, and 4) the algorithm enters step 7 when no
more compaction is possible.

IV. JOIN ALGORITHM  ANALYSIS

This section analyzes the nested-loop join algorithm to highlight
the merits/demerits of dynamic data redistribution. This, however,
may not be the best algorithm to use for join. A simulation study
showed better performance with the sort-merge algorithm, as in-
dicated by the results tabulated in Table II which are discussed in
Section IV-B. The nested-loop join algorithm example worked here



IEEE TRANSACTIONS ON COMPUTERS, VOL. 38. NO. 6. JUNE 1989 925

TABLE I
NESTED-LOOP JOIN TIME COMPARISON TO SM3

Relation Rl:  3,000 NpkS  of 75 bytes each Relation R2:  lO.ooO  tuples  of 100 bytes each

-
T

ONput:  1,200 NpleS  01 ‘5 bytes each

SM3

f  1 7
T

C U B E
-

1
N

2
with data

COkCtiO~

3
witbout

d a t a
xdkction

4
dlec-
tiOtl

time

5 6 7
with witbout Balancing

OllEtiOll Oll&Otl t i m e
-

1 6 9460 8690 770 9615 9114 668

32 5 9 7  1 4753 1219 5939 5359 835

64 4898 2784 2114 4308 3568 1002

1 2 8 5705 1799 3906 3842 2782 1169

256 8797 1629 7168 4139

5193

7933

2439 1336

-

-

2633 1503

024 2813 1670

1

AU times are  in milliseconds
SM3 node: 1 MIPS CPU; at least 52 kbytes of switchable memory; IBM 3330 disk
Cube node: 1 MIPS CPU; at least 141 kbytes memory; 4 Mbits/xc  lines; IBM 3330 disk

TABLE II(a)
CHARACTERIZATION OF INPUT DATA DISTRIBUTIONS

(b) SORT-MERGE JOIN TIMINGS IN A CUBE WITH
AND WITHOUT TUPLE BALANCING

Above timings are for a 16 node  subcube  with 64 kbytes maximum
packet size, 4 MIPS CPU, and 20Mbits/sa  communication lines

(b)
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assumes a 1024 node system with 2 MIPS CPU’s, 64 kbyte packets,
and relations Rl  and R2, each containing 64K tuples of 128 bytes
each. It is assumed that an average of five instructionsituple  are re-
quired for the nested-loop join algorithm. From (3), the CPU and
communication times are balanced if the point-to-point serial lines
can transfer data at -6.8 Mbits/s.

Relation R 1 will be treated as the “smaller” relation. After balanc-
ing, each node has 64K/1024  = 64 tuples each of RI and R2. This
is already greater than the “optimum” for R2 (from (5), K = 0.47
and tL = 0.47 x 128 = 60) thus R2 need not be compacted any
further. R 1, on the other hand, needs to be compacted thrice to give
512 R 1 tuples per node (tp = 64 kbytesil28  bytes = 512). Thus,
Rl  is replicated in eight subcubes  of 128 nodes each and the join
is performed in parallel across all subcubes. The time to transfer a
packet of 64 kbytes is 64K x 8/6.8  Mbits/s = 77.1 ms plus ar
assumed packet and synchronization overhead of 5 ms resulting in
82.1 ms (note that the 5 msipacket  overhead assumed here is rela-
tively high). In the RCR operation, the packet sizes used in the first
three steps are 8K (64 tuples), 16K, (128 tuples), and 32K bytes

(256 tuples), respectively. The time taken in each step is 14.6, 24.3,
and 43.6 ms, respectively, to give a total of 82.5 ms. Using (l), the
CPU time to join a packet (5 12 tuples) of R 1 with 64 tuples of R2
is 512 x 64 x .5/2  x lo6 = 81.9 ms. Therefore, the join performed
in parallel in cubes of 128 nodes, takes 128 X 8.19 = 10 483 ms.
The RCR time + join time = 82.54 + 10 483 = 10.6 s.  Tuple
balancing is assumed to take a “worst case” log2  N = 10 steps
with a full 64 kbyte packet being transferred in each step. Thus, the
“worst case” tuple balancing time is 10 x 82.1 = 821 ms and the
worst case join operation time is 0.821 + 10.6 = 11.4 s.

A. Comparison to SM3
The timing equations that were derived for the SM3 system in

[13] were used to compare the SM3 and cube algorithms. The two
relations to be joined are R 1 and R2, where R 1 has 3000 tuples and
R2 has 10 000 tuples. The values for SM3 are shown in columns 2, 3,
and 4 of Table I. The values in column 2 assume no overlap between
join processing and final result collection although, one can nor-
mally expect some overlap between these two steps. The CPU and
data collection components are shown separately in columns 3 and
4, respectively. The values for SM3 are computed for N = 16, 32,
64, 128, and 256. Beyond N = 64, the data collection component
determines the overall time.

Assuming the same query compilation overheads as in SM3, tim-
ings for the nested-loop join in a cube are computed and shown in
columns 5, 6, and 7. The join operation time in column 5 is the sum
of the time for (worst case) tuple balancing, RCR, local join, and
output collection. Column 7 shows the worst case time for the tuple
balancing operation. For 16 5 N 5 256, Rl  is compacted into a
four-node subcube  (= 752 tuplesinode) and the join is performed in
2”,  2 5  n 5  6, parallel subcubes, respectively. For N = 512 and
1024, R2 is compacted once and twice, respectively, and the join
is performed as in the case when N = 256. Column 6 shows the
join time excluding the output collection time. Collection is an im-
portant and time-consuming operation in database processing and is
ultimately bound by the bandwidth of the final device (e.g., a user’s
terminal, disk, etc.) at which the result is collected. In SM3, the
output is switched to the control computer (C) via the switchable
memory modules and the operation is serialized at the CC.

The output collection time, in column 5, is computed based on the
following assumptions. First, the result is collected at one of the
processors involved in the final join step. While the join is being
performed in parallel rings formed by the multiple subcubes, the
result is collected along a single ring consisting of the nodes of all the
subcubes. Second, every node produces the same amount of
output. Thus, (N - 1) packets need to arrive serially at the point
of collection. Third, the collection step is not overlapped with pro-
cessing. Ideally, some hardware support may be provided to overlap
collection with processing. A better measure of relative system per-
formance can be obtained by comparing the values in columns 3 and
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6 which give the join times without data collection for SM3 and the
cube, respectively. The cube times, including balancing are a little
more than those of SM3. After subtracting of the balancing time
component for the cube, the cube consistently performs better than
SM3 due to the increased efficiency resulting from the multiple sub-
cubes used in the last join step (note that the RCR operation time
is included in this timing). The dynamically partitionable common
bus structure of SM3 can be utilized to support dynamic redistribu-
tion. This problem is currently under study. A similar comparison as
above has also been done for the NON-VON system and is available
in [6].

B. Simulation

The effect of tuple balancing on operation performance was mea-
sured via simulation. However, the simulation employed a sort-
merge join algorithm where R 1 and R2 are sorted after tuple balanc-
ing and the RCR operation preserves the sorted order. This results
in a much faster join operation at each node. A 16 node subcube
was assumed with 4 MIPS CPU’s and 20 Mbit/s communication
lines. These parameter values were chosen because they are closer
to currently available technology. Eight different input data distribu-
tions were used, five random and three selected to represent highly
skewed initial distribution. The relations Rl  and R2 contain 3000
and 10 000 tuples, respectively. Table II(a) characterizes each of the
eight different data distributions showing the maximum and mini-
mum number of tuples at a node for Rl and R2, before balancing.
Table II(b) shows the sort-merge join times with and without balanc-
ing and the corresponding improvement (computed as (unbalanced
- balanced)iunbalanced  x 100). Note that when all the data are in a
single node, SM3 should perform as well in dynamically redistribut-
ing the data.

V. C O N C L U S I O N

This study was initiated to study issues in database processing
in distributed memory multicomputers with a disk attached to each
node. The particular architecture considered is a cube-connected
multicomputer system. Nonuniform data distribution across parallel
paths was mentioned as a source of inefficiency in such systems and
some simple data redistribution schemes, tuple balancing, relation-
compaction, and relation-compaction-replication, were suggested to
handle this. Simple timing equations were used to obtain execution
times for the join operation using the nested-loop algorithm and these
were compared to the times in SM3. Results from a simulation to
study the effects of tuple balancing were also reported. Many issues
remain to be studied in this system. There is interest in studying
hash-based join algorithms and data collection methods in the hyper-
cube database system. Study of dynamic data redistribution in SM3
is of interest also. Issues related to intra- and interquery concur-
rency are currently being studied along with a further study of the
effects of initial and intermediate data distributions.
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Correction to “Line (Block) Size Choice for CPU
Cache Memories”

ALAN JAY SMITH

The formula on page 1069 of the paper’ should read as follows:

e l+
(

a

b - 1 +f*log  Csize - loglinesize 1

. (1 + c*(loglinesize  - 1)“).

Also, a line should be inserted into the top (unified cache) section
of Table IV which reads as follows:

4096 0.57 0.63 0.70 0.77 0.86.

My thanks to H. Stone of IBM, who discovered the error in the
formula. The error was due to a transcription error, compounded by a
typesetting error.
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