
Query Scheduling and Site Selection Algorithms for a
Cube-Connected Multicomputer System

Ophir Frieder Chaitanya K. Baru

Bell Communications Research, Advanced Computer Architecture Lab
435 South Street, Morristown, NJ 07960 Dept. of EECS, The University of Michigan

Ann Arbor, MI 48109

Abstract

Query scheduling and site selection algorithms for read-only
quenes on a cube-connected multicomputer are presented. The
assumed global system architecture was initially presented in
[Fri87]. An architecture model for the system is provided, and
via this model, a site selection algorithm which determines
where to execute the upcoming operation sequence is
developed. The query trees of queries entering the system are
converted into operation sequence trees. Operation sequences
belonging to a query are queued until the query is initiated.
Two query selection policies are presented. A simulation
comparing the two policies is described, and the simulation
results are discussed. The scheduling restrictions which
guarantee the avoidance of deadlock in both algorithms are
presented.

1. Introduction

There is much current interest, in both the research and

indust r ia l communi t ies , in studying hypercube
multiprocessors. A hypercube is an n-dimensional boolean

cube, Q,, defined as a cross product of the complete graph

K, and the (n-l)-dimensional boolean cube Qn-l, with Q1 =

K,. Each node is connected (or adjacent) to each of its n =

log2N neighbors, where N is the number of nodes. For

example, in a 4 dimensional cube, Qq, node 0000 is adjacent

to nodes 0001, 0010, 0100, and 1000. Several existing

hypercube based machines include INTEL’s IPSC [Int85],

NCUBE’s NCUBE [Hay861 and Floating Point Systems’

(FPS) T/1000 series [Fre86].

Despite their common interconnection topology, these

machine differ greatly in their hardware implementation. For

example, INTEL’s IPSC can be assembled in a Q5 (32 node),

a Q6 (64 node), or a 47 (128 node) configuration; the

NCUBE machine can contain up to 1024 nodes and the FPS

configuration is designed to contain over 16,000 nodes. The

disk configuration and the I/O bandwidth also differs greatly

among these machines. In the NCUBE, a disk controller is

connected to a subcube of processors with the associated

processors sharing access to the common disk. On the other
hand, the FPS T-Series supports a disk at each node. Despite

their architectural differences, however, most applications

targeted for these systems are similar, concentrating on large
scale, computationally intensive, numerical applications.

Recently, some algorithms for relational database

operations on a hypercube connected multicomputer system
w e r e s u g g e s t e d i n [Bar87a, Bar87b, Bar87c]. A

multicomputer is defined as a system consisting of an

interconnection of multiple independent computers each with

its own CPU, independent operating system, main memory,
secondary storage, software utilities, etc. A 3-dimensional

cube multicomputer system (i.e., number of nodes, N = 8)

with a disk attached to each node is shown in Figure 1.

The database algorithms presented are unique in that they

dynamically or on-the$y account for poor intermediate data

distribution by balancing relation tuples roughly evenly across
all nodes. The time involved in performing some common

database operations were calculated in [Bar87c] and compared

favorably with other database multicomputers such as the

SM3[Bar86, Su84] and the NONVON [Hil86,Sha82].
This paper presents an approach to query processing in a

cube system. Query scheduling strategies that support intra-
and inter-query concurrency for read-only queries are

discussed. The scheduling assumes a global system

architecture and an initial data distribution as described in

[Fri87]. The remainder of this paper is organized as follows.

Sections 2 and 3 provide overviews of the cube-based,

relational database algorithms and the initial data distribution

and proposed global system architecture, respectively. Section
4 describes in detail the query scheduling algorithm. A brief

summary concludes the paper as section 5.

2. Relational Database Algorithms on a Hypercube

The database operations introduced in [Bar87a, Bar87c]

are divided into those that implement the relational operations,

94
CH2541-1/88/0000/0094$01.00 0 1988 IEEE

such as Select, Join, etc., and others that are used to support
dynamic data redistribution, i.e., the “on-the-fly”
reorganization of data to promote a more balanced workload.
Brief descriptions of the data redistribution and database
operations are provided here.

Tuple Balancing: redistributes relation tuples to a
roughly even distribution across all the nodes of a cube
or subcube.

Relation Compaction & Replication (RCR):
replicates a relation stored in a cube of dimension n,
such that after the operation each of the two,
eaual-sized. dimension n-l. subcubes of the original
c&e contain a copy of the relation.

Relat ion Compaction (RC): same as RCR except that
only one of the two logical subcubes finally contains the
data.

Cycle: embeds a ring within each subcube formed as a
result of the RCR or RC operations, and pipelines data
packets around the ring.

Selection: Each node performs selection on a local
segment of a relation in parallel. If the results are to be
collected, then an output collection step is incorporated,
otherwise no global operation is necessary. As with all
the operations, operation termination is signaled via the
use of global control lines [Pet85].

Scalar Aggregation: First, all the nodes compute their
local aggregate value. Next, the global aggregation
phase commences. In the kfh step, k = 1 to log*N,
nodes whose rightmost k address bits are equal to the
rightmost k bits of the host address, obtain the
aggregate value from the nodes which differ in address
from the host in the kth bit and compute the next local
aggregate.

Project: Initially, a local projection (removing non-relevant
columns from each tuple and eliminating local
duplicates, if neccesary) is performed. The tuple
distribution across nodes may become skewed as a
result of this step. In this case, tuple balancing is
performed as the first step. The optional tuple balancing
step is followed by one or more RC steps in each of
which, nodes eliminate duplicates between the local and
incoming tuples. If an RC step cannot be performed,
then tuple balancing is performed and the RC is retried.
The algorithm enters the cycle step if RC is not possible
even after tuple balancing. Global duplicates are
eliminated in this last step.

Join: The relational join operation is always preceded by
tuple balancing and the RCR operation. This ensures
that the data are evenly distributed and the subcube size
used in the cycle step is reduced as much as possible.
Finally, the cycling operation is used to send the tuples
of the smaller relation around in a ring and perform local
joins at each node.

It is appropriate to comment on the use of semi-joins, at
this point. Semi-joins are useful in situations where the

communication time clearly dominates over the computation
time. The semi-join reduces the amount of remote data
transfer (communication) at the expense of additional
computational burden (performing the join computation several
times). However, preliminary results show that semi-join
algorithms perform very badly in hypercubes [Men87]. For
additional details concerning the data redistribution and
relational database operations see [Bar87c].

3. System Architecture and Initial Data Distribution
The system architecture consists of a single directory node

called the control node, CN, (a O-dimensional cube, Qo),

connected via a bus to a larger cube (Qm) of Output Collection

Nodes, OCN’s. The cube of OCN’s is called the Control
Cube, CC. Each OCN in Q, is in turn connected via a bus to

one of m disjoint subcubes, called Initial Storage Subcubes,
IS%, of size Qn-, where n is the cubical dimension of the

base cube. Note that each node in the base.cube is connected
via a bus to exactly one OCN. Finally, the nearest neighbor
links which connect the ISS’s to one another am called the data
routing links. Figure 2 shows a 64-node base cube controlled
by an 8-node control cube, which in turn, is controlled by the
control node. The lines connecting the circles (ISS’s) signify
the data routing links. A relation is contained entirely within
an ISS, with the tuples evenly distributed. Each relation is
uniquely identified with one ISS. A global relation directory is
maintained for the entire system at the CN. For each entry
there are four fixed size fields-relation name, tuple size in
bytes, number of tuples, and the ISS number.

4. Scheduling and Site Selection
Query processing is initiated by the arrival of an

“optimized” query tree at the Control Node (CN). The query
tree is transformed into an operation sequence tree (OS-tree)
(operation sequences are defined in section 4.1). The CN
directs the necessary disk I/O commands to the relevant OCN
which queues disk requests and broadcasts them on a
first-come-first-served basis to the ISS nodes. The disk I/O
requests are accompanied by the qualifiers required for any
selection to be performed on the base relations. Since the base
relations are evenly partitioned across all the nodes of the ISS,
the disks in the ISS nodes complete their service at about the
same time. Further operations in the query are scheduled at
the neatest idle ISS. An idle ISS is one in which the CPU’s of
all the nodes are not busy (see 4.3). If d represents the

95

number of data routing links to be traversed from the current
ISS to a given ISS, then the nearest ISS is the one for which d
is a minimum. Note that when d = 0, the current ISS is itself

the nearest ISS.

4.1 Operation Sequences
An operation sequence, OS, is a list of consecutive,

relational operations in a query tree with all the operations,

except possibly the first, being unary operations. The OS is

the smallest schedulable unit in a query The fiit operation in
an OS can be a unary or binary operation. The length of an

OS, L, is defined to be the number of unary operations in the

sequence. Three types of sequences are defined, selection,

simple, and join. A single selection operation performed on a

base relation is called a selection sequence (sel-seq).

Therefore, the length of a sel-seq, Lsel = 1, always. All

sel-seqs are executed at the ISS storing the base relation. A

simple sequence, sim-seq, is defined as a sequence of unary

database operations immediately following a selection. The

length of a simple sequence, Lsim 2 1. A join sequence,

joingeq, is any sequence in which the first operation is a join.
By definition, a join sequence which is not followed by a

unary operation (other than output collection), has a length,

Ljein = 0. Additionally, a base join sequence, bjoin-seq, is

defined as a join sequence with at least one of its inputs being

a simple or selection sequence. The particular significance of

the base join sequence is discussed in section 4.6.

Figure 3 shows a query with three sel-seqs consisting of
the selections Sl, S2, and S3; two join-seqs, one consisting

of Jl followed by Pl and the other of only a single join, J2;

and one sim-seq consisting of P2. Both the join sequences in
this query are base join sequences. In general, a query

consists of at least one selection sequence and zero or more

join or simple sequences. By scheduling operation sequences

and not individual operations, the number of scheduling

messages and the data movement during query execution is

reduced. Furthermore, the evaluation of the individual

operations within a sequence can proceed in a pipelined
manner, further reducing the query execution time.

4.2 Site Model
For the purposes of scheduling and site selection, the

system can be viewed as a set of independent nodes consisting

of a CPU and I/O processor pair, i.e. NODE = (CPU, I/O).

The main memory of a NODE is sufficient to accommodate at

most two input relations, partial results of an output relation,

and possibly, a single output block per node from the selection

sequence executing in the subcube. The NODE’s are assumed
to be connected via a point-to-point ring, with all scheduling

decisions determined by a central node, CN, adjacent to all the

NODE’s as shown in figure 4. In the case of the cube system,

each NODE is actually a subcube; the point-to-point ring is

simulated via the data routing rings; and the CN is replaced by

the 2-level hierarchy of the CN and CC. The assumption on

the NODE memory size is justifiable since hypercubes with

nodes containing up to 8 Mbytes of user memory have been
implemented pet851. Thus, a 16-node subcube would have a

total memory of roughly 128 Mbytes.

4.3 The Sequence Directory
The CN maintains a sequence directory which stores all the

information contained in an OS tree for each active and inactive

query in the system. Figure 5 illustrates a sequence directory.

Each entry in this directory has a distinct sequence number

(Seq #), sequence type (Seq Type), query submission/
initiation time (Init Time), input relation(s) required (Input 1,

Input 2), sequence number of the successor sequence or

number of the host if this is the last sequence in the query

(Succ), the ISS on which it is/was scheduled (ISS run) in the

case of an active query, and an indication whether the query is
active or inactive (Active Query). A zero in the Active Query

column indicates that the query has not yet been scheduled,

while a 1 indicates that the query is currently in execution.

A Subcube Activity Table (SAT) is also maintained which

provides information about which subcubes are busy/free.
Whenever a subcube is freed the CN scans the sequence

directory and schedules the first “ready” sequence. A sel-seq

is ready if the ISS containing the required base relation is free.

A sim-seq or join-seq is ready when the required input/s is/are

available. If there is no ready sequence and there are sufficient

resources (i.e. subcubes) to execute the next query, then a new

query is activated. Once a query terminates, the corresponding

row entries are logged and deleted from the Sequence

Directory.

4.4 Intra- and Inter-query Concurrency
Operation sequence scheduling to support intra-query

concurrency is explained here assuming only a single active

query present in the system. Fist, all sel-seqs are scheduled
at the appropriate ISS’s containing the base relations. All

sequence scheduling decisions, except for sel-seqs, are

9 6

dynamic. That is, site selection decisions are made during
runtime, as and when required by the query and not in
advance. Figure 6 shows an OS tree for a query that will be
used in explaining the scheduling algorithm. There are three
sel-seqs, Sel, Se2, and Se3, one sim-seq, Sil, and two
join-seqs, Jsl and Js2, in this query. The sel-seqs operate on
inputs Rl, R2, and R3, respectively. Both, Rl and R3 reside
on ISS 1, and R2 resides on ISS 3.

All sel-seqs are scheduled first. The output of a se&q is
the input for either a sim-seq or a join-seq. In the case of a
sim_seq, the sequence is scheduled on an idle ISS which is
nearest to the ISS executing the sel-seq. The join-seq, on the
other hand, has two inputs, say X and Y. If input X becomes
available frost, then the join-seq is scheduled on an ISS which
is closer to Y and vice-versa. The moment a site is selected
for a join-seq, both inputs X and Y (in partial or full form) are
routed to that site and tuple balancing of both begin. In figure
4, if Se2 completes first, then the join-seq, Jsl, is scheduled
near Sel. The details are as follows. Assuming that Jsl is
scheduled on ISS 1, the output of Se2, R2’, is routed to ISS
1. Since ISS 1 has been chosen for Jsl, the two inputs Rl’
and R2’ are balanced at ISS 1. Thus, the balancing involves
all the R2’ tuples and the Rl’ tuples that are currently
available. Upon the completion of Sel, the balancing taking
place at ISS 1 is terminated and Jsl is initiated. Since both
input relations of Jsl were being balanced, the tuple
distribution is expected to be roughly even across all nodes.
Thus, the tuple balancing step of Jsl will take less time.

Similarly, when sel-seq Se3 terminates, the sim-seq Sil
is scheduled for execution on ISS 5 (ISS 1 is assumed to be
busy). Finally, join-seq Js2 is scheduled as follows. The
first input sequence to terminate (say, Sil), notifies the CN of
its completion and initiates tuple balancing on its output. This
continues until the second sequence (Jsl) terminates. When
the output from Sil and Jsl is available at ISS 1, the join-seq
Js2 is initiated. Output collection is overlapped with result
computation via the OCNs.

4.5 Site Selection for Join-seqs
Further details on site selection for join-seqs are

considered here. Assume that the two input sequences to a
join sequence are SEQl and SEQ2. Furthermore, assume that
SEQl is scheduled at ISS X and SEQ2 is scheduled at ISS Y.
Since each of the two inputs to the join can either be selection
or simple/join sequences, there are four possibilities to be
considered. In each of these cases SEQ 1 is assumed to

block/terminate fust. A sequence blocks if one or more nodes
in its ISS produces more output than the memory of that node
can hold. It is assumed that is at least one ISS is available to
execute the upcoming operation sequence. This is ensured by
the query selection policies described in section 4.5 below.
The four possible cases are as follows.

Both SEQ 1 and SEQ 2 are executing selection
sequences.
SEQ 1 is executing a selection sequence, and SEQ 2 is
executing either a simple or a join sequence.
SEQ 1 is executing either a simple or a join sequence,
and SEQ 2 is executing a selection sequence.
Both SEQ 1 and SEQ 2 are executing either a simple or a
join sequence.

The site selection decisions are explained below, in
semi-formal language, for the four cases. In each case, the
ISS at which the join-seq is scheduled is called, Z, and the
join-seq is initiated only after both its input sequences have
terminated and all the data has arrived at Z. However, the
balancing of input data can be begun in advance as indicated in
each of the cases below. Note that the node CPU’s are
involved in the tuple balancing operations. Thus, balancing
can be done only by those ISS’s whose CPU’s are idle. If an
ISS is executing a sel-seq and its CPU’s are busy, then the
output of the sel-seq is routed directly, without being
balanced, to the ISS where the next sequence is executed.

Case 1.
SEQl is a se&q executing on ISS X,
SEQ2 is a se&q executing on ISS Y,
if SEQl blocks first then

beg in
Estimate the completion times of SEQl and SEQ2
based on their respective start times and relation sixes;
Choose ISS Z to be closer to the slower sequence

e n d
else if SEQl terminates first then

Choose ISS Z to be closer to ISS Y,
Route the current outputs from X and Y to Z and start
balancing at Z;

C a s e 2
SEQl is a sel-seq executing on ISS X,
SEQ2 is a sim-seq or a join-seq executing on ISS Y;
if SEQl blocks first then

9 7

Since it is not possible to easily estimate the completion
time of SEQ2, choose ISS Z to be closer to X;

else if SEQI terminates first then
Choose ISS Z to be closer to ISS Y,

Route the current outputs from X and Y to Z and start

balancing at Z;

Case 3 .
SEQl is a sim-seq or join-seq executing on ISS X;
SEQ2 is a se&q executing on ISS Y,

if SEQl blocks fit then
Balance data in ISS X until block is cleared and continue

with SEQl

else if SEQl terminates first then
beg in

Choose ISS X itself to be the site for the upcoming

jobeq;
Route the current output from Y to X and start

balancing the data at X,

end;

Case 4 .
SEQl is a sim-seq or join-seq executing on ISS X;

SEQ2 is a sim-seq or join-seq executing on ISS Y;

if SEQl blocks first then
Balance data in ISS X until block is cleared and continue

with SEQl

else if SEQl terminates first then
beg in

Choose ISS X itself to be the site for the upcoming

join-seq

Start balancing data at X until SEQ2 terminates;

When SEQ2 terminates, tranfer data from X to Y

(since the data at X is already partially (or fully)

balanced, this will be more efficient than transferring
Y’s unbalanced data);

end;

Thex is one exception to the above site selection algorithm

in the case when both inputs to a join-seq are sim-seqs. It is

stated above that a sim-seq should be scheduled at an ISS

which is nearest to its input. However, in this case, the

slower sim-seq should be scheduled at the same site where the

faster sim-seq is executing. This scheme reduces the number

of ISS’s needed to execute a query (i.e. reduces the ASC of a

query, see 4.6) and the expected data routing time.

4.6 Query Selection Policies
When several queries are waiting for execution, the order

in which they are selected can influence performance. This

section describes and compares two query selection policies

for the cube-connected multicomputer. Queries are selected

for execution based on their resource demands. A resource is
considered to be an ISS used to execute a simple or join

sequence (note that the loading caused by selection sequences

is assumed to be zero) The maximum number of concurrent

operations at any level of a query tree decreases as one
proceeds from the leaves to the root of the tree. As one

proceeds up the levels of the tree, the number of join and/or

simple sequences at each level decreases. In fact, the number

of base join sequences in a query provides a measure of the

maximum number of concurrent resources (IS%) required to

execute the query. Assigning this number of ISS’s to a query
permits maximum concurrency at the lower levels of the query

tree. Thus, the resource demands of a query are modelled in

terms of the number of base joins in a query. In addition,

queries consisting only of a simple sequence also require a

single resource (ISS). As the operation sequences at the lower
levels terminate, ISS’s are relinquished by a query. Finally, in

keeping with the above assumptions, queries with only

selection sequences make no demands on the resources of

interest and are selected accordingly in each of the four

selection policies discussed below.

Each query is assigned a count indicating its maximum

resource demands. This count is called the Active Sequence

Count (ASC). The sum of all the AK’s of all currently active

queries is called the Total Active Sequence Count (TASC).
The number of available IS& at any time is = the total

number of ISS’s in the system - TASC. A query is selected

for execution only if its ASC does not exceed the number of

available ISS’s in the system. Two policies which select the

next query to execute from among the set of waiting queries

are investigated

1. Maximum Active Sequence Count (MASC) policy, i.e.

select the query with the greatest ASC fit.

2. Least Active Sequence Count (LASC) policy, i.e. select
the query with the least ASC first.

The results obtained by simulating the system using these

query and site selection policies are provided in section 4.5.

98

4.6.1 Indefinite Wait and Deadlock Prevention
Mechanisms

The query selection policies must insure that both system
deadlock and indefinite wait conditions are avoided. Indefinite
waits are prevented by timestamping queries with arrival
times. Once a query has “sufficiently aged”, it is placed at the
head of the query selection queue, and no additional queries
are selected ahead of it. When the resources required to
execute the query become available, the aged query is initiated.

System deadlock is avoided by limiting the number of
active queries in the system. Since only a limited number of
relations can simultaneously reside within a subcube’s local
memory, too many operations/telations simultaneous1y present
in the system (too many queries initiated) may lead to
deadlock. A deadlock state may arise if an ISS X blocks as a
result of sel-seq computation, but all the ISS’s are currently
busy/active awaiting the arrival of the slower sequence
required to execute the join-seq already scheduled at ISS X.
This deadlock is prevented by maintaining a running TASC
count and ensuring that the TASC never exceeds the number
of subcubes in the system. The following TASC update
algorithm is used in the CN.

TASC Incrementat ion :
The TASC is incremented by the ASC count whenever a

new query is scheduled, i.e. TASC := TASC + ASC of new
(active) query.
TASC Decrementat ion :

The TASC is decremented by 1, TASC := TASC-1,
whenever (1) a query containing at least one simple or join
sequence termlnates or (2) a join sequence with at least one
join sequence as input terminates.

4.7 Simulation Study
A simulation was developed to evaluate the proposed

query selection policies. As input, the simulation is provided
with a set of base relations and queries and returns as output
the global and the average query completion times, as well as
the average initiation delay for all the queries in each query
mix. The global query-completion time is the time from the
arrival of the first query set until the completion of the last
query; the average query-completion time is the average of the
individual completion times of all the queries in the ses and the
average initiation delay is the average of the time each query in
the set must wait from its arrival time to the time it is actually
scheduled.

For this simulation it was assumed that the system consists
of a 1024-node base cube, divided into 64 ISS’s of 16nodes
each. Each node was assumed to contain a 2 MIPS CPU with
internode communication handled by the communication
processors using 20 Mbit/set nearest neighbor links. A
maximum limitation of 65,536 bytes was imposed on the
packet size. A total of 100 different base relations were
generated, with each relation consisting of between 2000 and
10,000 tuples. All tuples were of 128 bytes, and the exact
number of tuples in each of the 100 relations was randomly
generated. The relations were distributed across the 64 (16
node) subcubes, such that each of the 36 lower numbered (0 -
35) subcubes housed two relations, and the remaining 28
subcubes stored only one relation each. Within each subcube,
the relations were evenly partitioned across all the subcube
nodes.

To obtain reasonable results, one should generate a query
mix that is representative of a typical work-world. However,
as reported in [Bor84], [Dew85], [Eic85], and [Haw851,
characterizing a “typical” query mix is quite difficult. The
query mix chosen here included eight query types of varying
complexity. The base relations accessed by a query were
determined by generating random numbers that linked queries
to relations. The query mix consisted of 200 queries
distributed as follows :

Type 1.

Type 2.

Type 3.

Type 4.

Type 5.

Type 6.

Type 7.

Type 8.

60 queries, each consisting of only a single selection
operation.
50 queries, each consisting of only a single join
operation.
35 queries, each consisting of a 2-join chain. At
least one of the inputs of each join is a selection
operation.
15 queries, each consisting of a 3-join chain. At
least one of the inputs of each join is a selection
operation.
12 queries, each consisting of a 4-join chain. At
least one of the inputs of each join is a selection
operation.
8 queries, each consisting of a 6-join chain. At
least one of the inputs of each join is a selection
operation.
12 queries, each consisting of 3 joins in the shape of
a full binary tree.
8 queries, each consisting of 7 joins in the shape of
a full binary tree.

9 9

Results from running the simulation on six different

data sets (the same set of queries, with the base relations

involved in each query differing from set to set) are presented

in figure7. For all six data sets, and for both query
scheduling policies, the global and the average individual

query completion times, as well as the average query initiation

delay, are computed (the first, second, and third row entries

per data set, respectively). The six data sets should not be

compared against one another since they represent different

base relation access requirements. However, it is always the

case that the MASC policy results in lower global completion

times but higher average processing times and average
initiation delays. The lower global completion times of the

MASC policy is directly related to the availability of the system

resources. At startup, or under low resource utilization, all

system resources am available. Thus. it is possible to initiate
many complex queries without incurring long initiation delays.

Since the simple queries can be readily scheduled without

introducing long query initiation delays (few resources are

required to execute them), scheduling them later reduces the

overall processing time. On the other hand, if the simple

queries are scheduled ahead of the complex queries (utilizing
LASC), then when the complex queries are actually scheduled,

relatively long initiation delays result

The longer average completion time and initiation delays

introduced by the MASC query selection policy is the result of
the long time duration required to execute the complex queries

which are executed ahead of the simple queries. Similar to the

proofs concerning the CPU job scheduling algorithms

presented in [Pet83], it is possible to prove that if the shortest

jobs (simple queries) are executed first, the average execution
rate and initiation delays will be optimally low. The simulation

results obtained agree with this claim,

5. Summary
This paper presented an approach for scheduling

read-only queries in a cube-connected multicomputer. Similar
policies can be used, in general, in a highly parallel,

distributed memory machine. However, the particular

architecture considered in this work is based on the hypemube.

In this system, an input query tree is transformed into an

operation sequence tree, and the operation sequences are

queued until the query is initiated The operation sequences of

an active query are scheduled dynamically, at runtime.

Algorithms for dynamic site selection were provided. Also

presented were two policies which select the query to be

initiated from among the waiting queries. Both query selection

policies incorporate restrictions which insure that system

deadlock and query indefinite wait conditions do not occur.

References

[Bar861 Baru,C.K. and Su,S.Y.W., “The Architecture of
SM3: A Dynamically Partitionable Multicomputer with
Switchable Memory,” IEEE TC, pp.790-802, Sept. 1986.

[Bar87a] Baru,C.K. and Frieder,O., “Implementing
Relational Database Operations in a Cube-Connected
Multicomputer”, Procs. IEEE 3rd Intl. Conf. on Data
Engineering, February 1987, Los Angeles, CA.

[Bar87b] Baru,C.K., Frieder,O., Kandlur,D., and Segal,
M., “Join on a Cube: Analysis, Simulation, and
Implementation”, Procs. of the 5th Intl. Workshop on
Database Machines, J a p a n , 1 9 8 7 .

[Bar87c] Baru, C. K. and Frieder, O., “Database and data
redistribution operations on a cube-connected multicomputer,”
under review, Dec. 1987.

[Bor84] Boral, H. and Dewitt, D. J., “A Methodology for
Database System Performance Evaluation”, Procs. ACM
SIGMOD, pp 176-185, June, 1984.

[Dew851 Dewitt, D. J., “Benchmarking Database Systems:
Past Efforts and Future Directions”, IEEE Database
Engineering, Vol. 8, No. 1, pp 2-9. March, 1985.

[Eic85] Eich, M. H., “Transaction Oriented Performance
Analysis of Database Machines”, IEEE Databare Engineering,
Vol. 8, No. 1, pp 53-60, March, 1985.

[Fre86] Frenkel, K. A., “Evaluating Two Massively
Parallel Machines,” CACM, 29, 8, August 1986.

[Fri87] Frieder.0. and Baru,C.K., “Data Distribution and
Query Scheduling Policies for a Cube-Connected
Multicomputer System”, Procs. 2nd Intl. Conf. on
Supercomputing Systems, May 1987. San Francisco, CA.

[Ilaw Hawthom,P.B., “Variations on a Benchmark”,
IEEE Database Engineering, 8.1, pp 19-28, March, 1985.

[Hay861 Hayes, J. P. et al “Architecture of a Hypercube
Supercomputer”, IEEE MICRO, Oct. 1986.

[Hi1861 Hillyer, B. and Shaw, D. E., “NON-VON’s
Performance on Certain Database Benchmarks,” I,FEE TOSE,
SE-12,4. April 1986.

\I9nt!5] Intel iPSC Data Sheet, Order No. 280101-001,

[Men871 Menezes,B.L.. “Design of a HyperKYKLOS-
based Multiprocessor Architecture for High-Performance Join
z~tioioi 5th Intl. Workshop on Database Machines, Oct.

,

[Pet831 Peterson, J. L., Silberschatz, A., Operating
System Concepts, Addison-Wesley Publishing Co.. 1983,
Reading, Mass.

100

[Pet851 Peterson,J.C. et al, “The MARK III Hypercube-
Ensemble Concurrent Computer”, Procs. Znff. Co& on
Parallel Proc., August 1985.

[Sha82] Shaw, D. E. , “The NON-VON Supercomputer,”
Dept. Comp. Science, Columbia Univ., Tech. Rep., @gust,
1982.

[St1841 Su, S. Y. W. and Baru, C. K., ” Dynamically
Partitionable Mukicomuuters with Switchable Memory”,
~o~~9;\Parallel and D&ibuted Computing 1, pp 152-184,

,

Fiyre 1. P-cube with disk attached to each node

-
cl0

eontrot no
cube conn+ctlon linea + cube control lines

utput Collection Node, OCN 0 Initial Storage Subcubes, ISS

Figure 2. A U-node system with corresponding control structure

Rl R2 R3

Figure 4. System Architecture Model

Figure 5. A Sequence LItrectory

R1,2,3

Figure 6 . Aa Operation Sequence Tree

I D A T A S!Z MAX! LASC

TC4dlhC 14840 1 6 5 0 1
Data Set 3 wr query 3241 1289

rlvr wait 1 9 6 1 1 5 4

Data Set 4

I I

Alltimesareinmilli.uxonda

Figure ‘t. Query scheduling pol icy s imulat ion results
Fl~ure 3. Query tree with operation sequences

101

